JPS63144279A - Radat system - Google Patents

Radat system

Info

Publication number
JPS63144279A
JPS63144279A JP61293134A JP29313486A JPS63144279A JP S63144279 A JPS63144279 A JP S63144279A JP 61293134 A JP61293134 A JP 61293134A JP 29313486 A JP29313486 A JP 29313486A JP S63144279 A JPS63144279 A JP S63144279A
Authority
JP
Japan
Prior art keywords
signal
pulse
phase
frequency
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61293134A
Other languages
Japanese (ja)
Other versions
JPH0543278B2 (en
Inventor
Shinichi Ito
信一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61293134A priority Critical patent/JPS63144279A/en
Publication of JPS63144279A publication Critical patent/JPS63144279A/en
Publication of JPH0543278B2 publication Critical patent/JPH0543278B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To suppress unnecessary waves such as a 2nd turn-around signal by switching the phase of a radar-sent signal, pulse by pulse, and also performing phase detection based upon the sent wave at the time of reception, and performing coherent integration processing. CONSTITUTION:A sent intermediate frequency signal generated by a coherent oscillator 1 is modulated by a pulse modulator 2 with a transmission trigger signal from a transmission controller 4 and then led to a frequency converter 3. A pulse-modulated high-frequency signal of the sum frequency of said signal and a local signal from a local oscillator 5 is amplified 10 in terms of power and radiated from an antenna 12. A received reflection wave is amplified 13 at a high frequency and inputted to a phase detector 14. The phase detector 14 while maintaining the phase relation between a received high-frequency signal and the local signal outputs a received intermediate frequency signal whose frequency is equal to the difference between both frequencies. This signal is amplified 15 at the intermediate frequency and then inputted to a mixer 16 togetyher with a sent intermediate-frequency signal from the oscillator 1, and the output is inputted as a bipolar video signal to an integral processor 17 to perform the coherent integration processing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はパルス・レーダに関し、特にコヒアレント積分
処理による不要波抑圧性能の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to pulse radar, and particularly to improvement of unnecessary wave suppression performance by coherent integration processing.

〔従来の技術〕[Conventional technology]

従来、この株の不要波抑圧レーダ方式としては、送信パ
ルス間隔を変化させて不要受信波の時間相関性を劣化さ
せて抑圧する方式(%公昭52−45479干渉信号除
去レーダ装置)があった。
Conventionally, as this type of unnecessary wave suppression radar system, there has been a system (% Kosho 52-45479 interference signal removal radar apparatus) in which the time correlation of unnecessary received waves is suppressed by changing the transmission pulse interval to deteriorate the time correlation of the unnecessary received waves.

これらのレーダでは、送信パルスから次の送信パルスま
での1スイープ内に受信される確定距離範囲にある目標
反射信号に対し、不要波として1週期前の送信パルス波
に対応する反射信号(遠距離目標からのセカンド・タイ
ム・アラウンド信号;Second−Time−Aro
und Echo)と他の電波応用装置からの干渉電波
等が考えられていた。第5図に従来の不要波抑圧レーダ
方式の送信パルス列とセカンド−タイム・ア2クンド信
号受信パルス列の時間的関係を示す。同図に示すように
送信パルスt!、21[のパルス間隔T1とT虞をパル
ス毎に繰〕返しながら送信される。この送信パルスに対
する反射波は、引き続くlスイープ内に受信される目標
については送信パルスと受信パルスの間隔は一定値とな
る。これに対し不要波でらるセカンド・タイム・7ラン
ド信号に対する受信パルス列は、それぞれ−スイープ前
の対応する送信パルスからの経過時間は全ての受信波に
ついて一定値to (=2R/C、R:レーダから目標
までの距離、C:光速)であるが、受信パルスと同一ス
イープにある直前の送信パルスからの経過時間はtl(
=to−Tz)とtz(to−’h)の如く2攬の異な
る値を取る。従って、目標受信信号の直前の送信パルス
からの経過時間を複数のスイープの間で比較し、同一の
値を示すならば真の目標信号としてそのまま出力し又、
パルス毎に異なる値となるならば不要波であるセカンド
・タイムアラウンド信号として除去する。この様な処理
を行なう仁とにより他装置からの干渉電波に対しても非
同期干渉波については言うまでもなく、又、時間的な同
期干渉波に対してもその装置が十分遠距離にあって、干
渉パルス波の到来時間が第5図のセカンド・タイム・ア
ラウンド受信波と同様の時間領域の受信波についても不
要波の除去が行なわれる。
In these radars, for a target reflected signal within a fixed distance range that is received within one sweep from one transmitted pulse to the next transmitted pulse, a reflected signal corresponding to the transmitted pulse wave one week earlier (long-distance Second-Time-Aro signal from target; Second-Time-Aro
Interfering radio waves from other radio wave application devices were thought to be the cause. FIG. 5 shows the temporal relationship between the transmission pulse train of the conventional unwanted wave suppression radar system and the second-time answer signal reception pulse train. As shown in the figure, the transmission pulse t! , 21 [pulse intervals T1 and T0 are repeated for each pulse]. Regarding the reflected wave for this transmitted pulse, the interval between the transmitted pulse and the received pulse will be a constant value for targets that are received within the subsequent 1 sweeps. On the other hand, in the received pulse train for the second time 7 land signal that is an unnecessary wave, the elapsed time from the corresponding transmitted pulse before the sweep is a constant value to (=2R/C, R: The distance from the radar to the target, C: speed of light), but the elapsed time from the previous transmitted pulse in the same sweep as the received pulse is tl (
=to-Tz) and tz(to-'h). Therefore, the elapsed time from the transmission pulse immediately before the target reception signal is compared between multiple sweeps, and if they show the same value, the true target signal is output as is, and
If each pulse has a different value, it is removed as a second time-around signal which is an unnecessary wave. By performing such processing, it is possible to prevent interference from interference radio waves from other devices, not only from asynchronous interference waves, but also from time-synchronized interference waves when the device is sufficiently far away. Unwanted waves are also removed for received waves in the time domain whose pulse wave arrival time is similar to the second time around received wave shown in FIG.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の不要波抑圧レーダ方式では、受信パルス
列のそれぞれのパルス毎に送信パルスからの経過時間を
計掬する必要があるため、単一パルスだけで目標信号の
存在を判定することが必要となシ、01188号対雑音
比に大きな値が要求でれた。このため通常のレーダが小
さな信号レベルの目標検出のために採用している積分処
理が採用できないという欠点を有していた。
In the conventional unwanted wave suppression radar method described above, it is necessary to measure the elapsed time from the transmitted pulse for each pulse of the received pulse train, so it is necessary to determine the presence of a target signal using only a single pulse. No. 01188 required a large value for the noise ratio. For this reason, it has the disadvantage that it cannot employ the integral processing that ordinary radars employ to detect targets with small signal levels.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点を解決するために、本発明のレーダ方式は
レーダ送信波の位相関係が引き続く送信パルス間で保持
されるコヒアレント・パルス・レーダにおいて、送信パ
ルス毎に送信波位相t−変化させる手段と、レーダ受信
パルス信号を対応する送信パルス波の位相が基準となる
ように位相検波する手段と、 前記位相検波後の受信パルス列に対するコヒアレント積
分処理手段とを備えている。
In order to solve the above problems, the radar system of the present invention is a coherent pulse radar in which the phase relationship of the radar transmission waves is maintained between successive transmission pulses. , means for phase-detecting the radar reception pulse signal so that the phase of the corresponding transmission pulse wave becomes a reference, and coherent integration processing means for the reception pulse train after the phase detection.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示す系統図である。FIG. 1 is a system diagram showing one embodiment of the present invention.

第1図に2いてコヒアレント発振器lによシ発生された
送信中間周波信号はパルス変v4器2に尋びかれ、送信
制御器4からの送信トリガー信号によ〕変調を受けた後
、周波数変換器3に導ひかれる。
In FIG. 1, the transmission intermediate frequency signal generated by the coherent oscillator l is sent to the pulse converter V4 2, and after being modulated by the transmission trigger signal from the transmission controller 4, frequency conversion is performed. Guided by Vessel 3.

−万、ローカル発振器5で発生されたローカル信号はス
イッチ6に導びかれ、送信制御器4による送信パルス毎
の切替信号によシ端子7又は端子8に交互に切り替えら
れる。前記ローカル信号音よ端子7に切り替えられた場
合には位相遅延を受けない状態で、又端子8に切り替見
られた場合に鉱位相器9によシΔφだけの位相M地を受
けた状態で1周波数y&換器3に専びかれる。周波数変
換器3は、前記送信中間周波信号と前記ローカル信号を
入力として、画周波数の和の周波数のパルス変調高絢波
信号を出力する。前記高周波信号はこの後電力増幅器l
Oで電力増幅され、送受切替器lを経て空中線12へ導
びかれ、レーダ送信パルスとして空間に放射される。こ
の時前記筒周波信号は、高安定なコヒアレント発振器l
及びローカル発振器2の出力信号を株として作られるの
で、送信パルス間の位相関係が保存されたコヒアレント
な高周波信号となっている。
- The local signal generated by the local oscillator 5 is guided to the switch 6, and is alternately switched to the terminal 7 or 8 by a switching signal from the transmission controller 4 for each transmission pulse. When the local signal tone is switched to terminal 7, it is not subjected to phase delay, and when it is switched to terminal 8, the phase shifter 9 receives a phase M ground of only Δφ. 1 frequency & converter 3. The frequency converter 3 receives the transmission intermediate frequency signal and the local signal as input, and outputs a pulse modulated high frequency signal having a frequency equal to the sum of the image frequencies. The high frequency signal is then passed through a power amplifier l.
The power is amplified at O, guided to the antenna 12 via the transmitter/receiver switch l, and radiated into space as a radar transmission pulse. At this time, the cylindrical frequency signal is generated by a highly stable coherent oscillator l.
Since the output signal of the local oscillator 2 and the output signal of the local oscillator 2 are used as a stock, it is a coherent high-frequency signal in which the phase relationship between the transmitted pulses is preserved.

次に、レーダ目標からの反射波は受信高周波信号として
空中Mlzを介して受信され、送受切替器11によシ受
信側へ切シ替見られて高周波増幅器13へ導びかれ、増
幅された後、前記ローカル信号と共に位相検波器14に
入力される。位相横波器14は受信高周波信号とローカ
ル信号の位相関係を保存したまま両部波数の差の周波数
に等しい受信中間周波信号を出力し、この受信中間周波
数信号は中間周波増幅器15で増幅された後、前記コヒ
アレント発振器1からの送信中間周波信号と共にミキサ
ー16に入力される。ミキサー16は肉入力信号の位相
差に応じてプラス又はマイナスの電圧であるバイポーラ
自ビデオ信号を発生し、次いで前記ビデオ信号は積分処
理器17に入力される。積分処理器17は引き続くあら
かじめ定められた数のビデオ信号を蓄積した後、コヒア
レント積分処理を行ない積分後の信号を次の処理のため
出力する。
Next, the reflected wave from the radar target is received as a received high-frequency signal via the airborne Mlz, is switched to the receiving side by the transmitter/receiver switch 11, is guided to the high-frequency amplifier 13, and is amplified. , are input to the phase detector 14 together with the local signal. The phase transverse transducer 14 outputs a received intermediate frequency signal equal to the frequency of the difference between the wave numbers of both parts while preserving the phase relationship between the received high frequency signal and the local signal, and after this received intermediate frequency signal is amplified by the intermediate frequency amplifier 15. , are input to the mixer 16 together with the transmission intermediate frequency signal from the coherent oscillator 1. The mixer 16 generates a bipolar self-video signal having a positive or negative voltage depending on the phase difference of the meat input signal, and then the video signal is input to the integral processor 17. After accumulating a predetermined number of successive video signals, the integral processor 17 performs coherent integral processing and outputs the integrated signal for subsequent processing.

次に第2図は、第1図の系統のレーダが送信する送信パ
ルス列Ps、Pg、・・・ と受信パルス列(1)Ss
、Sx、・・・、及び受信パルス列(2)FO*” r
・・・、の時間的関係を示す図であシ、時刻t1.t2
・・・の送信パルスPs、Pt、・・・ の目標反射波
が距離確定領域(Unambiguous Range
)にある目標については受信パルス(t)SttS冨*
・・・ として、又距離不確定領域(Ambiguou
ss Range)にある目標についてはセカンド会タ
イムΦアラウンド信号としての受信パルス(23Flt
Fs *・・・ としてそれぞれ受信されることを示し
ている。
Next, Fig. 2 shows the transmission pulse trains Ps, Pg, ... transmitted by the radar of the system shown in Fig. 1, and the received pulse train (1) Ss.
, Sx, ..., and received pulse train (2) FO*" r
. . is a diagram showing the temporal relationship between time t1. t2
The target reflected waves of the transmitted pulses Ps, Pt,... are in the Unambiguous Range.
), the received pulse (t) SttS depth *
..., and the distance uncertainty region (Ambiguou
For targets in the ss Range), the reception pulse (23Flt
Fs*... indicates that each is received as Fs*....

今、第1図におけるスイッチ6が時間t1〜1gでは端
子7に接続され、時間t3〜t3では端子8に接続され
、以後パルス送信毎に交互に切シ替わるものとすると、
送信パルスPI、P意に対応する電圧Vt eVz I
d複素宍示によシそれぞれVt=AeJ(ωt+α) Vz=Aej(ωt+α−Δφ) ここに、 A==信振幅 ω=送送向角周波 数=時刻 α==信波のある基準値に対する位相 で表わされ、以後送信パルスPs 、P4 、・・・ 
に対応する電圧Vs 、Va 、・・・ についてもV
s = Vs =・・・ Va  = V4 =・・彎 と同一の式で表わされる。
Now, suppose that the switch 6 in FIG. 1 is connected to the terminal 7 from time t1 to 1g, and connected to the terminal 8 from time t3 to t3, and thereafter is switched alternately every time a pulse is transmitted.
Transmission pulse PI, voltage corresponding to P intention Vt eVz I
According to the d complex demonstration, Vt=AeJ(ωt+α) Vz=Aej(ωt+α−Δφ) Here, A==Signal amplitude ω=Transmission direction angular frequency=Time α==Phase of signal wave with respect to a certain reference value Hereinafter, the transmission pulses Ps, P4,...
Regarding the voltages Vs, Va, ... corresponding to
s = Vs =... Va = V4 =... It is expressed by the same formula as curvature.

一方、受信パルス(1)sl 、Ss 、Ss 、・・
・に対応する電圧X 1eXzeX”#・・・について
は、レーダから目標までの往復距離に対応する遅延位相
をβとして、次式で表わされる。
On the other hand, received pulses (1) sl, Ss, Ss,...
The voltage X 1eXzeX''# corresponding to .

X*=Xs=  ・−=  Be J (”t+α−β
)Xz=Xa = ・・・= Be J (ωt+α−
β)ここに、B:受信振幅 又、受信パルス(2)Fl、Fz、Fs、・・・に対応
する電圧Yx、Yx、Ys、・・・にりいて鉱、レーダ
から目1mまでの往復距離に対応する遅延移相をrとし
て、次式で表わされる。
X*=Xs= ・-= Be J ("t+α-β
)Xz=Xa=...= Be J (ωt+α−
β) Here, B: Reception amplitude and voltages corresponding to the reception pulse (2) Fl, Fz, Fs, ... It is expressed by the following equation, where r is the delay phase shift corresponding to the distance.

Y1=Ys=−=CeJ(ωt+α−r)Y2=Y4=
 、−=Cej(ωt+α−Δφ−r)ここに、C:受
信振幅 ここで、各送信パルスに対応する受信パルス(1)及び
(2)の積分処理@17への入力信号について考える。
Y1=Ys=-=CeJ(ωt+α-r)Y2=Y4=
, -=Cej(ωt+α-Δφ-r) where, C: reception amplitude Here, consider the input signal to the integration process @17 of reception pulses (1) and (2) corresponding to each transmission pulse.

受信パルスSl、Ss ・・−は、スイッチ6が端子7
に接続された状態のローカル信号(位相はV!、Vx 
、Vs 、・・・に同じ)Kよシ位相検波されるので、
積分処理器17への入力信号X’!、XI 、・・・/
dXsとVxの式を参照して次式で表わされる。
For the received pulses Sl, Ss...-, the switch 6 is connected to the terminal 7.
local signal (phase is V!, Vx
, Vs ,...) Since K is phase detected,
Input signal X' to the integral processor 17! ,XI,.../
It is expressed by the following equation with reference to the equations of dXs and Vx.

X’l=X’3 =・−=D e jβただし、Dは各
af損失・刹得を考慮した相対振幅であシ、又位相につ
いては受信系の構成で決まる相対値については省略した
。次に受信パルス82゜S a、・・・ は、スイッチ
6が端子8に接続された状態のローカル信号(位相はV
x=Va=・・・ に同じ)により位札検波されるので
、積分処理器17への入力信号X’g 、 X’a 、
・・・はX2と■2の式を参照して次式で表わされる。
X'l=X'3 =.-=D e jβ However, D is a relative amplitude in consideration of each af loss and gain, and as for the phase, a relative value determined by the configuration of the receiving system is omitted. Next, the received pulse 82°S a,... is a local signal with the switch 6 connected to the terminal 8 (the phase is V
(same as x=Va=...), the input signals to the integral processor 17 are X'g, X'a,
... is expressed by the following equation with reference to the equations X2 and (2).

X’z = X’4 = l)6 Jβ即ち、X’l 
、JC’2 、X’3 、・・・は全て同相で複素的に
等しい大きさを有しておシ、ejl を基準にしてX’
SとX′2t−ベクトル図で描くと第3図(a)となる
X'z = X'4 = l)6 Jβ, that is, X'l
, JC'2, X'3,... are all in phase and have the same complex size, and X'
When drawn as a S and X'2t-vector diagram, it is shown in FIG. 3(a).

一方、受信パルスF1.Fs、・・・は、受信パルス列
(1)の場合とはローカル信号の切替が逆となっている
ので、積分処m器17への入力信号Y’l 、 Y’s
 。
On the other hand, received pulse F1. In Fs, . . . , the local signal switching is reversed from that of the received pulse train (1), so the input signals Y'l, Y's to the integrator 17 are
.

・・・はYlと■意の式を参照して次式で表わされるY
’s =Y’s= ・−= E e J (’−Δφ)
たぞし、Eは各徨損失拳利得を考慮した相対畿幅であシ
、又位相については受信系の構成で決まる相対値につい
ては省略した。次に、受信パルスFx 、F4 、・・
・ についても同様に積分処理器17へして次式で表わ
される。
... is expressed by the following formula with reference to Yl and ■
's = Y's= ・-= E e J ('-Δφ)
Note that E is the relative width in consideration of each side loss and gain, and as for the phase, the relative value determined by the configuration of the receiving system is omitted. Next, the received pulses Fx, F4,...
・ is similarly applied to the integral processor 17 and is expressed by the following equation.

Y’x=Y’a= 1. = E 1!1 j (r+
Δφ)上記Y’s 、 Y’s 、・・・とYf、Y’
a、・・・の式を見ると受信パルス毎に交互に±Δφだ
け位相が変化していることが分る。今、Δφ=π/2と
し、e” f:基準としてY’l、 Y’* t−ベク
トル図で描くと第3図(b)となる。第3図(IL) 
、 (b) t−参照すると、コヒアレント積分処理を
同相で行なう場合、第3図(&)K対応する受信パルス
列(1)では積分結果は加算され、第3図(b)に対応
する受信パルス列(2)では積分結果はキャンセルされ
て0となシ(積分パルス数が2n(n=整数)の場合)
不要波であるセカンド・タイム−アラウンド信号が抑圧
されることが分る。
Y'x=Y'a=1. = E 1!1 j (r+
Δφ) Above Y's, Y's,... and Yf, Y'
Looking at the equations a, . . . , it can be seen that the phase alternately changes by ±Δφ for each received pulse. Now, if we set Δφ = π/2 and draw a vector diagram with e'' f: Y'l and Y'* t-vector diagram, we get Figure 3 (b). Figure 3 (IL)
, (b) t- Referring to, when coherent integration processing is performed in the same phase, the integration results are added in the received pulse train (1) corresponding to (&)K in Fig. 3, and the received pulse train corresponding to Fig. 3 (b) In (2), the integration result is canceled and becomes 0 (when the number of integration pulses is 2n (n = integer))
It can be seen that the second time-around signal, which is an unnecessary wave, is suppressed.

他の電波応用装置からの同期干渉波についても、干渉波
が1スイ一プ分遅延して受信される遠方からの受信の場
合、同様の抑圧効果が期待できる。
Regarding synchronous interference waves from other radio wave application devices, a similar suppression effect can be expected when the interference waves are received from a distance with a delay of one sweep.

この結果正規の目標反射波について積分処理の効果t−
確保しつつ不要波については抑圧を図ることが可能とな
る。
As a result, the effect of integration processing on the normal target reflected wave t-
It becomes possible to suppress unnecessary waves while ensuring the same.

以上説明した第1の実施例ではローカル信号の位相切替
周期2として説明したが、次に切替周期を3とした第2
の実施例について説明する。この場合のローカル信号の
位相は、−例として0→2π/3→O1−周期として繰
シ返すものとすると、第1の実施例の考察と同様にして
送信パルスと同一スイープ内にある受信パルスについて
は積分処理器170入力信号は全て同相とな〕第4図(
→のベクトル図となる。又送信パルスに対応するスイー
プに隣接するスイープ内の受信パルスについては、積分
処理缶入力信号は位相が回転し第4図(ロ)のベクトル
図となる。従って、コヒアレント積分処理を同相で行な
うものとすると、不要波であるセカンド・タイム・アラ
ウンド信号やlスイープ遅延した同期干渉波が抑圧され
る。
In the first embodiment described above, the phase switching period of the local signal was explained as 2, but next, the second embodiment in which the switching period was 3 was explained.
An example will be described. Assuming that the phase of the local signal in this case is repeated as a period of 0→2π/3→O1, as in the case of the first embodiment, the received pulse within the same sweep as the transmitted pulse , all the input signals to the integral processor 170 are in phase] FIG. 4 (
→ becomes a vector diagram. Regarding the received pulse in the sweep adjacent to the sweep corresponding to the transmitted pulse, the phase of the integral processing can input signal is rotated, resulting in the vector diagram shown in FIG. 4(b). Therefore, if coherent integration processing is performed in the same phase, unnecessary waves such as second time around signals and l-sweep delayed synchronous interference waves are suppressed.

さらに一般には、ローカル信号の位相の切替周期は2,
3だけでなく4以上でも構成でき、又切替位相の組も上
記の実施例に留まらず確定領域の目標反射信号について
は常に積分処理器17への入力信号が同相になるので、
積分処理缶入力信号にベクトル回転を生ずる切替え位相
であれば積分による抑圧効果が得られるので、各種の実
用的な位相の組み曾せが可能である。
Furthermore, in general, the phase switching period of the local signal is 2,
It is possible to configure not only 3 but also 4 or more, and the set of switching phases is not limited to the above embodiment, but since the input signal to the integral processor 17 is always in phase with respect to the target reflection signal in the definite region,
Since a suppression effect due to integration can be obtained if the switching phase causes vector rotation in the input signal of the integration processing unit, various practical phase combinations are possible.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、レーダ送信波の位相ヲハ
ルス毎に切替えると共に受信時に送信波を基準とした位
相検波を行なうことにより、コヒアレント積分を実施し
た上でセカンド・タイム−アラウンド信号等の不要波を
抑圧できる効果がある。
As explained above, the present invention eliminates the need for a second time-around signal, etc. by performing coherent integration by switching the phase of the radar transmission wave for each phase and performing phase detection based on the transmission wave at the time of reception. It has the effect of suppressing waves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す系統図、第2図は送信
パルス列と受信パルス列の時間的関係を示す図、第3−
は積分処理前の信号の位相関係を示すベクトル図、第4
図は他の実施例についての第3図と同様のベクトル図、
第5図は従来の不要波抑圧方式の送信パルス列と受信パ
ルス列の時間的関係を示す図である。 l・・・・・・コヒアレント発振器、2・・・・・・パ
ルス変調器、3・・・・・・周波数変換器、4・・・・
・・送信制御器、5・・・・・・ローカル発振器、6・
・・・・・スイッチ、9・・・・・・位相器、ll・・
・・・・送受切替器、12・・・・・・空中線、14・
・・°°・位相検波器、16・・・・・・ミキサー、1
7・・・・・・積分処理器。
Fig. 1 is a system diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing the temporal relationship between a transmitted pulse train and a received pulse train, and Fig. 3-
is a vector diagram showing the phase relationship of the signals before integration processing, the fourth
The figure is a vector diagram similar to FIG. 3 for other embodiments,
FIG. 5 is a diagram showing the temporal relationship between a transmission pulse train and a reception pulse train in a conventional unnecessary wave suppression method. l...Coherent oscillator, 2...Pulse modulator, 3...Frequency converter, 4...
...Transmission controller, 5...Local oscillator, 6.
...Switch, 9...Phase shifter, ll...
...Transmission/reception switch, 12...Antenna, 14.
...°°・Phase detector, 16...Mixer, 1
7...Integrator.

Claims (1)

【特許請求の範囲】[Claims] レーダ送信波の位相関係が引き続く送信パルス間で保持
されるコヒアレント・パルス・レーダにおいて、送信パ
ルス毎に送信波位相を変化させる手段と、レーダ受信パ
ルス信号を対応する送信パルス波の位相が基準となるよ
うに位相検波する手段と、前記位相検波後の受信パルス
列に対するコヒアレント積分処理手段とを備えることを
特徴とするレーダ方式。
In a coherent pulse radar in which the phase relationship of radar transmission waves is maintained between successive transmission pulses, there is a means for changing the transmission wave phase for each transmission pulse, and a means for changing the transmission wave phase for each transmission pulse, and a means for changing the phase of the radar reception pulse signal with respect to the phase of the corresponding transmission pulse wave. What is claimed is: 1. A radar system comprising: means for performing phase detection such that the phase is detected; and coherent integration processing means for the received pulse train after the phase detection.
JP61293134A 1986-12-08 1986-12-08 Radat system Granted JPS63144279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61293134A JPS63144279A (en) 1986-12-08 1986-12-08 Radat system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61293134A JPS63144279A (en) 1986-12-08 1986-12-08 Radat system

Publications (2)

Publication Number Publication Date
JPS63144279A true JPS63144279A (en) 1988-06-16
JPH0543278B2 JPH0543278B2 (en) 1993-07-01

Family

ID=17790856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61293134A Granted JPS63144279A (en) 1986-12-08 1986-12-08 Radat system

Country Status (1)

Country Link
JP (1) JPS63144279A (en)

Also Published As

Publication number Publication date
JPH0543278B2 (en) 1993-07-01

Similar Documents

Publication Publication Date Title
US6646587B2 (en) Doppler radar apparatus
US20030018259A1 (en) Ultrasound diagnostic apparatus
US8384587B2 (en) Radar for aerial target detection fitted to an aircraft notably for the avoidance of obstacles in flight
US5309160A (en) Radar system and method having variable tracking range
JPH0566268A (en) Digital pulse compression device
JP2004085452A (en) Fm-cw radar system
JPH0672920B2 (en) Radar equipment
JP3142364B2 (en) Radar equipment
US3383686A (en) Diverse frequency echo detection system with doppler frequency coherence
JP2000206227A (en) Ecm radar apparatus
JPS63144279A (en) Radat system
JPS58189570A (en) Interference eliminating system of radar
JP2566095B2 (en) Unwanted signal suppression radar device
JP3303862B2 (en) Pulse compression radar device
JP3438409B2 (en) Radar equipment
JP2603024B2 (en) Radar equipment
JP3335778B2 (en) Radar equipment
RU2591049C2 (en) Pseudocoherent rls with high repetition frequency of sounding pulses
JPS61165677A (en) Pulse radar apparatus
JPH0245834B2 (en)
JP2011203185A (en) Radar system, target speed detection method, and target speed detection program
JPH01308985A (en) Radar system
JPS63206679A (en) Stagger trigger type pulse radar apparatus
US3373427A (en) Delay line canceller for radar system
JPH06242233A (en) Radar apparatus for detecting moving target

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term