JPS63144110A - Production of polycrystalline silicon - Google Patents

Production of polycrystalline silicon

Info

Publication number
JPS63144110A
JPS63144110A JP29116686A JP29116686A JPS63144110A JP S63144110 A JPS63144110 A JP S63144110A JP 29116686 A JP29116686 A JP 29116686A JP 29116686 A JP29116686 A JP 29116686A JP S63144110 A JPS63144110 A JP S63144110A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen chloride
polycrystalline silicon
concentration
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29116686A
Other languages
Japanese (ja)
Inventor
Toshiyuki Uragami
浦上 敏之
Sanji Ochiai
三二 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Co Ltd
Original Assignee
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Co Ltd filed Critical Osaka Titanium Co Ltd
Priority to JP29116686A priority Critical patent/JPS63144110A/en
Publication of JPS63144110A publication Critical patent/JPS63144110A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To prevent contamination of polycrystalline silicon with adverse contaminants in producing polycrystalline silicon by reduction of SiHCl3 with H2, by determining concentration of hydrogen chloride in purified hydrogen obtained by treating an exhaust gas with active carbon and monitoring the measured value. CONSTITUTION:An exhaust gas obtained in the production of polycrystalline silicon by reducing reaction with hydrogen is passed through an active carbon layer, hydrogen is purified and returned to the above-mentioned reducing reaction. In the process, concentration of hydrogen chloride in purified hydrogen is continuously or intermittently determined, damage of the active carbon by adverse contaminants is detected by rise in the concentration of hydrogen chloride measured by the determination before the damage occurs and contamination of the polycrystalline silicon with the adverse contaminants is prevented. Since hydrogen chloride brings about damage to active carbon earlier than the adverse contaminants such as phosphorus chloride, etc., and the amount of hydrogen chloride added in hydrogen is allowed up to about 10ppm even if damage by hydrochloride occurs, production is stopped until the concentration is reached and the active carbon is regenerated not to cause contamination with hydrogen chloride.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水素による還元反応により多結晶シリコンを
製造する方法に関し、更に詳しくは還元反応において生
した排ガスを活性炭層に通し、水素を精製して再利用す
るようにした多結晶シリコンの製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing polycrystalline silicon by a reduction reaction using hydrogen, and more specifically, the present invention relates to a method for producing polycrystalline silicon by a reduction reaction using hydrogen. The present invention relates to a method for producing polycrystalline silicon that can be recycled.

〔従来の技術〕[Conventional technology]

このような製造方法を第1図により説明すると、還元炉
lに三塩化シラン(SiHCls)、水素(Ht)を供
給することにより下記の還元反応が起こり、多結晶シリ
コン(Si)が製造されると同時に、四塩化ケイ素(S
iC14)、塩化水素(HC/l)、水素(H2)等を
排出する。
To explain this manufacturing method with reference to Figure 1, by supplying silane trichloride (SiHCls) and hydrogen (Ht) to the reduction furnace 1, the following reduction reaction occurs, and polycrystalline silicon (Si) is manufactured. At the same time, silicon tetrachloride (S
iC14), hydrogen chloride (HC/l), hydrogen (H2), etc.

4SiHC1x→Si+3SrC1a +2HzSIH
CIj+Hz→Si+3HC1 排出された四塩化ケイ素、塩化水素、水素と更に未反応
の三塩化シラン、水素とを含んだ排ガスは、水素回収装
置2に送られ、ここで活性炭による塩化物の吸着を受け
、水素のみが精製されて還元炉1に送られ、上記の還元
反応に再利用される。
4SiHC1x→Si+3SrC1a +2HzSIH
CIj+Hz→Si+3HC1 The exhaust gas containing silicon tetrachloride, hydrogen chloride, hydrogen, and unreacted trichlorosilane and hydrogen is sent to the hydrogen recovery device 2, where the chloride is adsorbed by activated carbon. Only hydrogen is purified and sent to the reduction furnace 1, where it is reused in the above-mentioned reduction reaction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この場合、水素は多結晶シリコンの汚染を防止する意味
から、高純度のものが要求され、そのために活性炭を使
用しているわけであるが、活性炭は一定量の物質を吸着
すると、その段階を境に一気に吸着不能に陥る。この現
象は、活性炭の破過と呼ばれ、吸着物質の種類によって
段階的に生じてゆくものである。
In this case, hydrogen must be of high purity in order to prevent contamination of polycrystalline silicon, and activated carbon is used for this purpose. Once activated carbon has absorbed a certain amount of material, it stops at that stage. It suddenly becomes impossible to absorb. This phenomenon is called breakthrough of activated carbon, and occurs in stages depending on the type of adsorbent.

第1図の製造系統においてこのような破過が生じると、
破過を生じさせた物質が活性炭に吸着されずにそのまま
還元炉lに流入し、多結晶シリコンを汚染することにな
る。汚染物質のなかでもシリコンの電気伝導度に影響を
与える物質、例えば塩化物による破過に起因して活性炭
から生じるリン塩化′JIyJ(pczゴ)、ボロン塩
化物(BCj!3)等は特に有害で、これによる破過は
絶対に回避されなければならず、シリコン中の混入量は
0.1ppba  (10−” )程度までしか許容さ
れない。
If such a breakthrough occurs in the manufacturing system shown in Figure 1,
The substances that caused the breakthrough flow into the reduction furnace 1 as they are without being adsorbed by the activated carbon, contaminating the polycrystalline silicon. Among the contaminants, substances that affect the electrical conductivity of silicon, such as phosphorus chloride 'JIyJ (pczgo) and boron chloride (BCj!3), which are generated from activated carbon due to chloride breakthrough, are particularly harmful. Therefore, breakthrough due to this must be absolutely avoided, and the amount of contamination in the silicon is only allowed to be about 0.1 ppba (10-'').

ところが、現実にこのようなオーダーでリン塩化物等を
検出できる簡易計測器は存在しない、そこで、例えばリ
ン塩化物等の悪性汚染物質による破過の時期を活性炭の
使用期間から経験的に推定して、活性炭の再生を行うと
いうことが考えられるが、当然のことながら再生時期が
安定化せず、再生時期が早すぎた場合は活性炭が無駄に
なり、万一再生時期が遅れた場合は多結晶シリコンが汚
染によって欠陥品となり一層大きな無駄を生じることに
なる。
However, in reality, there is no simple measuring instrument that can detect phosphorus chloride, etc. on this order of magnitude, so the time of breakthrough due to malignant pollutants such as phosphorus chloride is estimated empirically from the period of use of activated carbon. Therefore, it is possible to regenerate the activated carbon, but of course the regeneration time is not stabilized, and if the regeneration time is too early, the activated carbon will be wasted, and if the regeneration time is delayed, there will be many problems. Contamination of the crystalline silicon results in defective products and even greater waste.

本発明は、リン塩化物等の悪性汚染物質による汚染を確
実に防止し、しかも活性炭が使用限界近くまで効率よく
使用することができる多結晶シリコンの製造方法を提供
するものである。
The present invention provides a method for producing polycrystalline silicon that reliably prevents contamination by malignant pollutants such as phosphorus chloride, and allows activated carbon to be used efficiently up to its usage limit.

〔問題点を解決するための手段) ところで、第1図に示したような水素還元による多結晶
シリコンの製造においては、前述したように排ガスとし
て塩化水素が生じる。この塩化水素は多結晶シリコンの
品質への影響はなく著しい高濃度になると生産性への影
響はあるが、10ppm程度では問題はない。
[Means for Solving the Problems] By the way, in the production of polycrystalline silicon by hydrogen reduction as shown in FIG. 1, hydrogen chloride is produced as exhaust gas, as described above. This hydrogen chloride does not affect the quality of polycrystalline silicon, and if the concentration is extremely high, it may affect productivity, but at about 10 ppm there is no problem.

しかも、この塩化水素は好都合なことに、沸点が−84
,8℃(latm)と、リン塩化物等の悪性汚染物質の
沸点(P Cl sで74.2℃)に比べて低い。つま
り、活性炭は沸点の低い物質から破過を起こすので、リ
ン塩化物等の悪性汚染物質による破過が発生する前に塩
化水素による破過を生じるのである。
Moreover, this hydrogen chloride conveniently has a boiling point of -84
, 8°C (latm), which is lower than the boiling point of malignant pollutants such as phosphorus chloride (74.2°C for P Cl s). In other words, since activated carbon causes breakthrough from substances with low boiling points, breakthrough from hydrogen chloride occurs before breakthrough from malignant pollutants such as phosphorus chloride occurs.

本発明の方法は、この多結晶シリコンの製造における塩
化水素と悪性汚染物質との特長的関係に着目してなされ
たもので、その特徴とするところは、活性炭層を通すこ
とにより精製された水素中の塩化水素濃度を連続的また
は間欠的に定量測定し、定量測定された塩化水素濃度の
上昇からリン塩化物等の悪性汚染物質による活性炭の破
過を未然に検知し、多結晶シリコンへの悪性汚染物質の
混入を防止する点にある。
The method of the present invention was developed by focusing on the characteristic relationship between hydrogen chloride and malignant pollutants in the production of polycrystalline silicon. The concentration of hydrogen chloride in the carbon is measured continuously or intermittently, and from the increase in the quantitatively measured hydrogen chloride concentration, breakthrough of activated carbon by malignant pollutants such as phosphorus chloride can be detected in advance, and it is possible to detect The purpose is to prevent the contamination of malignant pollutants.

〔作 用〕[For production]

前述したように、塩化水素はリン塩化物等の悪性Iη染
動物質りも早く活性炭に破過を生じさせる。
As mentioned above, hydrogen chloride causes a rapid breakthrough in activated carbon even from malignant Iη staining substances such as phosphorus chloride.

塩化水素による破過が生じると、水素中の塩化水素IQ
度が上昇するが、その濃度はtoppm程度まで許容さ
れる。ppmオーダーは簡易計測器で十分検出が可能な
量であるので、水素中の塩化水素濃度を定量的に監視す
ることにより、塩化水素による破過が即座に検知され、
これによりこの破過に続く悪性物質による破過を未然に
、しかも正確かつ自動的に知ることができるのである。
When hydrogen chloride breakthrough occurs, hydrogen chloride IQ in hydrogen
Although the concentration increases, the concentration is allowed up to about TOPPM. Since the ppm order is a quantity that can be sufficiently detected with a simple measuring instrument, by quantitatively monitoring the hydrogen chloride concentration in hydrogen, a breakthrough due to hydrogen chloride can be detected immediately.
This makes it possible to accurately and automatically detect breakthroughs caused by malignant substances following this breakthrough.

また、塩化水素による破過が生しても、水素中の混入量
が10ppmJSf度まで許容されているので、この濃
度に至るまでに製造を中止し、活性炭を再生すれば、塩
化水素による汚染を生じることもない。
In addition, even if breakthrough occurs due to hydrogen chloride, the amount of hydrogen mixed in is allowed up to 10 ppm JSf, so if production is stopped and activated carbon is regenerated before this concentration is reached, contamination by hydrogen chloride can be avoided. It never happens.

〔実施例〕〔Example〕

第2図は本発明の方法を実施するために検知系統を例示
したフローシートである。
FIG. 2 is a flow sheet illustrating a detection system for carrying out the method of the present invention.

図中、3は活性炭により精製された水素の母管を表わし
ている。母管3を通過する水素の一部はバルブ4を経て
例えばテフロンチューブ等の導管5により連続的または
間欠的にサンプリングされる。サンプリングされた水素
はフィルター6を通過後、センサ7にて塩化水素濃度が
測定され、サンプリング用ポンプ8を経て系外に放出さ
れる。
In the figure, 3 represents the main pipe of hydrogen purified by activated carbon. A portion of the hydrogen passing through the main pipe 3 is sampled continuously or intermittently via a valve 4 through a conduit 5, such as a Teflon tube. After the sampled hydrogen passes through the filter 6, the hydrogen chloride concentration is measured by the sensor 7, and is discharged to the outside of the system via the sampling pump 8.

測定された塩化水素濃度は例えば中央計器室等で遠隔か
ら監視される。
The measured hydrogen chloride concentration is monitored remotely, for example in a central control room.

なお、9は塩化水素ガスボンベで、センサ7の精度を定
期的にチェックするためのものである。
Note that 9 is a hydrogen chloride gas cylinder, which is used to periodically check the accuracy of the sensor 7.

第3図は塩化水素濃度センサの一例についてその動作原
理を示したものである。このセンサは、隔膜電極式電解
法の原理に基づくもので、水素等の可燃性ガス中の塩化
水素濃度を安全にしかもlppm単位で測定できる。
FIG. 3 shows the operating principle of an example of a hydrogen chloride concentration sensor. This sensor is based on the principle of diaphragm electrode electrolysis and can safely measure the concentration of hydrogen chloride in combustible gases such as hydrogen in lppm units.

同図において、塩化水素を含んだ水素は隔膜lOを通過
し、作用電極11との間の極めて薄い電解液FJ12に
塩化水素のみが溶解M、離する(下式溶解電離によって
生じた0ff−イオンは、上記作用極11上で酸化され
(、CR−−”C1l+e−)、これによって生しる電
流を測定することにより塩化水素濃度が定量的に測定さ
れる。電解電離によって塩化水素を失った水素はケース
13外に放出される。
In the figure, hydrogen containing hydrogen chloride passes through the diaphragm IO, only hydrogen chloride dissolves in the extremely thin electrolyte FJ12 between it and the working electrode 11, and is separated (0ff- ions generated by dissolution ionization using the following formula). is oxidized on the working electrode 11 (CR--"C1l+e-), and the hydrogen chloride concentration is quantitatively measured by measuring the current generated. Hydrogen chloride is lost by electrolytic ionization. Hydrogen is released outside the case 13.

なお、14は対極、15は基準極を示し、基i%極15
は、作用型illを他の可燃性ガス、有機溶剤などに反
応しない電位に保つためのものであ第2図の検知系統に
おいて、水素中の塩化水素濃度をセンサ7により監視す
るようにすれば、活性炭に塩化水素による破過が生じて
ない状態では、上記塩化水素は検出されない、この状態
では当然、リン塩化物等の悪性汚染物質による破過も生
じていない。
In addition, 14 shows the counter electrode, 15 shows the reference electrode, and the basic i% electrode 15
is to maintain the active type ill at a potential that does not react with other combustible gases, organic solvents, etc. In the detection system shown in Fig. 2, if the hydrogen chloride concentration in hydrogen is monitored by sensor 7, In a state in which hydrogen chloride does not cause breakthrough in the activated carbon, the hydrogen chloride is not detected. In this state, naturally, no breakthrough occurs in malignant pollutants such as phosphorus chloride.

活性炭の塩化水素による破過が生じ始めると、活性炭の
塩化水素に対する吸着能力が急激に劣え始め、これに対
応して水素中の塩化水素濃度が上昇し始める。そして、
この水素中の塩化水素濃度の上昇を許容値到達前にセン
サ7により捉え、多結晶シリコンの製造を停止して活性
炭を再生すれば、リン塩化物等の悪性汚染物質によるl
η染が未然に防止される。
When breakthrough of activated carbon by hydrogen chloride begins to occur, the adsorption capacity of activated carbon for hydrogen chloride begins to deteriorate rapidly, and correspondingly, the hydrogen chloride concentration in hydrogen begins to increase. and,
If this increase in the concentration of hydrogen chloride in hydrogen is detected by sensor 7 before it reaches a permissible value, and production of polycrystalline silicon is stopped and activated carbon is regenerated, the increase in the concentration of hydrogen chloride in hydrogen can be detected.
η staining is prevented.

確認のため塩化水素を検出した時点で活性炭を取り出し
調査したところ、汚染物質による破過は認められなかっ
た。
For confirmation, when hydrogen chloride was detected, the activated carbon was taken out and examined, and no breakthrough due to contaminants was observed.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明の方法は水素中
の塩化水素濃度を測定することにより、活性炭の使用限
界が遠隔から正確かつ節華に予知され、これにより活性
炭の悪性汚染物質による破過を未然に防止し、悪性汚染
物質によるシリコン汚染を防いで、シリコンの高品’f
GIM保に大きな効果を奏するものである。
As is clear from the above explanation, the method of the present invention allows the use limit of activated carbon to be predicted remotely, accurately and conveniently by measuring the concentration of hydrogen chloride in hydrogen, and thereby enables the destruction of activated carbon by malignant pollutants. It prevents silicon pollution from occurring due to malignant pollutants, and improves the quality of silicone.
This has a great effect on GIM maintenance.

また、活性炭が必要以上に早く交換されるといった事態
も回避され、活性炭の使用コストも低減させることがで
きる。
Furthermore, a situation in which activated carbon is replaced sooner than necessary can be avoided, and the cost of using activated carbon can also be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は多結晶シリコンの製造方法を示すフローシート
、第2図は本発明に係る塩化水素濃度検知系統のフロー
シート、第3図は同しく塩化水素濃度センサの原理図で
ある。 図中、l:還元炉、2:水素回収袋;η、3:水素母管
、7:センサ。 第  1  図 第  2 図 第  3 凶
FIG. 1 is a flow sheet showing a method for manufacturing polycrystalline silicon, FIG. 2 is a flow sheet of a hydrogen chloride concentration detection system according to the present invention, and FIG. 3 is a diagram of the principle of the hydrogen chloride concentration sensor. In the figure, l: reduction furnace, 2: hydrogen recovery bag; η, 3: hydrogen main tube, 7: sensor. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)水素による還元反応により多結晶シリコンを製造
する際に生じる排ガスを活性炭層に通し、水素を精製し
て前記還元反応工程に還元させる多結晶シリコンの製造
において、精製された水素中の塩化水素濃度を連続的ま
たは間欠的に定量測定し、定量測定された塩化水素濃度
の上昇から悪性汚染物質による活性炭の破過を未然に検
知し、多結晶シリコンへの悪性汚染物質の混入を防止す
ることを特徴とする多結晶シリコンの製造方法。
(1) In the production of polycrystalline silicon, the exhaust gas generated during the production of polycrystalline silicon through a reduction reaction with hydrogen is passed through an activated carbon layer, the hydrogen is purified, and then reduced in the reduction reaction step. Quantitatively measures hydrogen concentration continuously or intermittently, detects the breakthrough of activated carbon by malignant pollutants from the quantitatively measured increase in hydrogen chloride concentration, and prevents malignant pollutants from entering polycrystalline silicon. A method for producing polycrystalline silicon, characterized by:
JP29116686A 1986-12-05 1986-12-05 Production of polycrystalline silicon Pending JPS63144110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29116686A JPS63144110A (en) 1986-12-05 1986-12-05 Production of polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29116686A JPS63144110A (en) 1986-12-05 1986-12-05 Production of polycrystalline silicon

Publications (1)

Publication Number Publication Date
JPS63144110A true JPS63144110A (en) 1988-06-16

Family

ID=17765299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29116686A Pending JPS63144110A (en) 1986-12-05 1986-12-05 Production of polycrystalline silicon

Country Status (1)

Country Link
JP (1) JPS63144110A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131491A (en) * 2004-10-05 2006-05-25 Tokuyama Corp Silicon production method
JP2008143776A (en) * 2006-11-14 2008-06-26 Mitsubishi Materials Corp Hydrogen purification/collection method and hydrogen purification/collection facility
JP2009227514A (en) * 2008-03-24 2009-10-08 Tokuyama Corp Silicon production process
JP2010275162A (en) * 2009-05-29 2010-12-09 Mitsubishi Materials Corp Method and apparatus for producing polycrystalline silicon
US8241401B2 (en) 2010-11-02 2012-08-14 Mitsubishi Polycrystalline Silicon America Corporation (MIPSA) Apparatus and method for producing purified hydrogen gas by a pressure swing adsorption processes
CN104928761A (en) * 2014-03-19 2015-09-23 新特能源股份有限公司 Preparation method of silicon wafer master alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131491A (en) * 2004-10-05 2006-05-25 Tokuyama Corp Silicon production method
JP2008143776A (en) * 2006-11-14 2008-06-26 Mitsubishi Materials Corp Hydrogen purification/collection method and hydrogen purification/collection facility
JP2009227514A (en) * 2008-03-24 2009-10-08 Tokuyama Corp Silicon production process
JP2010275162A (en) * 2009-05-29 2010-12-09 Mitsubishi Materials Corp Method and apparatus for producing polycrystalline silicon
US8241401B2 (en) 2010-11-02 2012-08-14 Mitsubishi Polycrystalline Silicon America Corporation (MIPSA) Apparatus and method for producing purified hydrogen gas by a pressure swing adsorption processes
US8431082B2 (en) 2010-11-02 2013-04-30 Mitsubishi Polycrystalline Silicon America Corporation (MIPSA) Apparatus and method for producing purified hydrogen gas by a pressure swing adsorption processes
CN104928761A (en) * 2014-03-19 2015-09-23 新特能源股份有限公司 Preparation method of silicon wafer master alloy

Similar Documents

Publication Publication Date Title
US20080242912A1 (en) Methods and Apparatus for Providing a High Purity Acetylene Product
JPS63144110A (en) Production of polycrystalline silicon
EP0495393A1 (en) Gas adsorber for exhaust gas
JP2951027B2 (en) Method for judging that gas purifier has reached the end of its useful life and apparatus used therefor
CN105699160A (en) Method and device for removing trace mercury in carrier gas
JP2000162387A (en) Method and device for judging exchange timing of chemical filter
US7799113B2 (en) Conditioning system and method for use in the measurement of mercury in gaseous emissions
JP3264453B2 (en) NF 3 gas pretreatment method
JP2001058118A (en) Method for removing chloride
KR910008102B1 (en) Method and device for evaluating capacity of gas refiner
JPH0736886B2 (en) Gas recovery circulation device
JPH07277720A (en) Method for analyzing hydrogen chloride gas in producing polycrystalline silicon
Maynard et al. Nitridation of Zr2Fe and its influence on tritium removal
CN117959902B (en) Gas purification function early warning system and method based on data feedback
JPH0353575B2 (en)
WO2022220405A1 (en) Device for monitoring degradation of wastewater from nuclear power plant decontamination, and operation method thereof
CN214952468U (en) Sampling device for mercury in solid waste incineration flue gas
CN117907548B (en) Formaldehyde detection method and formaldehyde detection device
JPH0269658A (en) Method for measuring volatile ruthenium
JP2000329721A (en) Means for detecting harmful substance
JPH0351448B2 (en)
JPH04177200A (en) Operation of liquid metal purification system
CN117959902A (en) Gas purification function early warning system and method based on data feedback
JPH0777523A (en) Determination of trace phosphorus in chlorosilane
TWI229146B (en) Regenerating method for cleaning solution of metallic product