JPS63143756A - Fuel battery device - Google Patents

Fuel battery device

Info

Publication number
JPS63143756A
JPS63143756A JP61288681A JP28868186A JPS63143756A JP S63143756 A JPS63143756 A JP S63143756A JP 61288681 A JP61288681 A JP 61288681A JP 28868186 A JP28868186 A JP 28868186A JP S63143756 A JPS63143756 A JP S63143756A
Authority
JP
Japan
Prior art keywords
cooling water
fuel cell
block
inlet
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61288681A
Other languages
Japanese (ja)
Inventor
Hiroshi Tomiki
冨来 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61288681A priority Critical patent/JPS63143756A/en
Publication of JPS63143756A publication Critical patent/JPS63143756A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve the safety and reliability of fuel battery equipment by controlling the temperature difference of cooling water at inlet and outlet to be the same using a cooling water distribution controller. CONSTITUTION:Many laminated element batteries are divided into blocks by a definite number. To each block, a cooling water piping is connected and on the inlet side of each cooling water piping, cooling volume control valves 121, 122, 123 are connected. At the inlet and outlet of the cooling water piping, temperatures of the cooling water are measured and the temperature difference between them is detected. Furthermore, a cooling water distribution controller 17 is provided to control the volume of cooling water fed to each block of fuel battery bodies 81, 82, 83 through the cooling volume control valves 121, 122, 123. The temperature difference of cooling water at the inlet and outlet of each block is controlled to keep the same value. By the arrangement, breakdown of fuel battery due to the inhomogeneous distribution of cooling water can be prevented.

Description

【発明の詳細な説明】 【発明の目的〕 (産業上の利用分野) 本発明は燃料電池装置に係り、特に素電池が多数積層さ
れた燃料電池本体に冷却水を均一配流するようにした燃
料電池装置に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Field of Application) The present invention relates to a fuel cell device, and in particular to a fuel cell device in which cooling water is uniformly distributed in a fuel cell body in which a large number of unit cells are stacked. This invention relates to a battery device.

(従来の技術) 燃料電池装置は燃料のもつ化学的エネルギを直接電気的
エネルギに変換するものであって、電解質を挟んで1対
の多孔質電極を配置するとともに、一方の電極の背面に
水素などの燃料ガスを接触させ、他方の電極の背面に酸
素を含む酸化ガスを接触させて化学反応を生じさせ、こ
のとき発生する電気的エネルギを上記1対の多孔質電極
から取出すように構成されている。
(Prior art) A fuel cell device converts the chemical energy of fuel directly into electrical energy, and includes a pair of porous electrodes with an electrolyte sandwiched between them, and hydrogen is placed on the back of one electrode. A chemical reaction is caused by contacting a fuel gas such as the above, and an oxidizing gas containing oxygen is brought into contact with the back surface of the other electrode, and the electrical energy generated at this time is extracted from the pair of porous electrodes. ing.

電解質としては溶融塩、アルカリ溶液、酸性溶液などが
あるが、ここではリン酸を電解質とする燃料電池装置に
ついて説明する。
Examples of the electrolyte include molten salt, alkaline solution, and acidic solution, but here, a fuel cell device using phosphoric acid as the electrolyte will be described.

第2図において、図中1は繊維質シートや鉱物質粉末に
リン酸を含浸させた電解質層である。また図中2はアノ
ード、3はカソードである。アノード2およびカソード
3はいずれも炭素質の多孔性の電極で1通常は電解質層
1に接する面に触媒としての白金を塗付しである。図中
4は水素を含む燃料ガスFを流入させる燃料ガス流入室
、5は酸素を含む酸化ガス(通常は空気)Aを流入させ
る酸化ガス流入室である。
In FIG. 2, numeral 1 is an electrolyte layer made of a fibrous sheet or mineral powder impregnated with phosphoric acid. Further, in the figure, 2 is an anode, and 3 is a cathode. Both the anode 2 and the cathode 3 are carbonaceous porous electrodes 1 whose surfaces in contact with the electrolyte layer 1 are usually coated with platinum as a catalyst. In the figure, reference numeral 4 denotes a fuel gas inflow chamber into which a fuel gas F containing hydrogen is introduced, and 5 is an oxidant gas inflow chamber into which an oxidizing gas (usually air) A containing oxygen is introduced.

そこで、燃料ガス流入室4に流入した燃料ガスF中の水
素は多孔性電極であるアノード2の空隙を通して触媒に
接触する。ここで水素は触媒の作用により水素イオンと
電子に解離する。このときの反応式は。
Therefore, hydrogen in the fuel gas F that has flowed into the fuel gas inlet chamber 4 comes into contact with the catalyst through the pores of the anode 2, which is a porous electrode. Here, hydrogen is dissociated into hydrogen ions and electrons by the action of a catalyst. What is the reaction formula in this case?

H2→2H” + 2e    −■ である。そして水素イオンは電解質層1に入り、起電圧
による作用と浸度拡散により、カソード3に向って泳動
する。また水素イオンの解離によって分離した電子は外
部の電力負荷6を通って仕事をし、カソード3に流れ込
む。一方、前記酸化ガス流入室5に流入した酸化ガスA
中の酸素は多孔性電極であるカソード3の空隙を通して
触媒に接触し、アノード2側より泳動してきた水素イオ
ンおよび外部の電力負荷6を通りカソード3に戻ってき
た電子と共に、触媒の作用で次の反応を起す。
H2 → 2H" + 2e -■. Then, the hydrogen ions enter the electrolyte layer 1 and migrate toward the cathode 3 due to the action of electromotive force and immersion diffusion. Furthermore, the electrons separated by the dissociation of the hydrogen ions are released to the outside. The oxidizing gas A flowing into the oxidizing gas inflow chamber 5 performs work through the electric power load 6 and flows into the cathode 3.
The oxygen inside comes into contact with the catalyst through the pores of the cathode 3, which is a porous electrode, and together with the hydrogen ions that have migrated from the anode 2 side and the electrons that have returned to the cathode 3 through the external power load 6, the next generation is caused by the action of the catalyst. cause a reaction.

4H”+4e+0.−)2H,O−■ かくして水素は酸化されて水になり、同時に化学的エネ
ルギは電気的エネルギに変換されて外部の電力負荷6に
与えられる。
4H"+4e+0.-)2H,O-■ Thus, hydrogen is oxidized to water, and at the same time, chemical energy is converted to electrical energy and provided to external power load 6.

ところで上記の電池反応は発熱反応となるため電池本体
を冷却する必要があるため通常、素電池数セル毎に冷却
板を配置しこれに冷却水(約200℃)を通流して冷却
している。
By the way, since the above battery reaction is an exothermic reaction, it is necessary to cool the battery body, so normally a cooling plate is placed for every few cells of the battery, and cooling water (approximately 200 degrees Celsius) is passed through this plate to cool the battery. .

このような燃料電池は通常、素電池を多数積層したかた
ちで使用に供される。そこで前述のような電池反応によ
る発熱を冷却するための冷却水の供給は、素電池をある
単位数量毎のブロックに分けてそれぞれのブロックに分
岐するような構成がとられている。
Such fuel cells are usually used in the form of a stack of multiple unit cells. Therefore, the supply of cooling water for cooling the heat generated by the battery reaction as described above is configured such that the unit cells are divided into blocks of a certain unit quantity and branched to each block.

そこで、この燃料電池を運転する場合の冷却水の供給方
法について従来例を第3図の系統図について説明する。
Therefore, a conventional example of a cooling water supply method when operating this fuel cell will be explained with reference to the system diagram shown in FIG.

同図において、同一容器7内に収納された燃料電池本体
の各ブロック81,82,83・・・へ送入する冷却水
Wは冷却水総量供給弁9において、全ブロック81.8
2.83・・・に必要な冷却水Wを供給すべく弁開度が
調節されその後に、冷却水供給配管101.102゜1
03・・・に分岐され各々流量は、前記冷却水供給配管
101,102,103.・・・に接続された水流量測
定用オリフィス111,112,113.・・・により
測定されその値を基に同じく冷却水供給配管101.1
02.103に接続された冷却水量調節弁121,12
2,123・・・により流量調節されて、前記燃料電池
本体の各ブロック81,82゜83−′・・へ逆流され
、熱交換され、冷却水排出配管131.132,133
.・・・より排出される方法をとっている。
In the figure, the cooling water W to be sent to each block 81, 82, 83, . . . of the fuel cell main body housed in the same container 7 is supplied to all blocks 81.
2.83... The valve opening degree is adjusted to supply the necessary cooling water W, and then the cooling water supply piping 101.102゜1
The cooling water supply pipes 101, 102, 103, . . . ... orifices for measuring water flow rate 111, 112, 113. ... and based on the value, the cooling water supply pipe 101.1
Cooling water flow control valves 121, 12 connected to 02.103
The flow rate is adjusted by 2, 123, and flows back to each block 81, 82, 83-', of the fuel cell main body, where heat is exchanged, and cooling water discharge piping 131, 132, 133.
.. ...We are using a method that allows for more emissions.

(発明が解決しようとする問題点) 上述したように従来は素電池を多数積層した燃料電池本
体素電池が単位数量毎のブロックに分けられ、それに対
応して、冷却水の供給配管が、この冷却水量の調節は流
量測定用オリフィス111゜112、113によって流
量を測定し、それを基に冷却水量調節弁121,122
,123・・・により制御するように構成されている。
(Problems to be Solved by the Invention) As mentioned above, in the past, the fuel cell main unit cell, which is a stack of many unit cells, was divided into blocks for each unit quantity, and correspondingly, the cooling water supply piping was divided into blocks. To adjust the amount of cooling water, the flow rate is measured by the flow rate measuring orifices 111, 112, 113, and based on that, the cooling water amount adjustment valves 121, 122 are adjusted.
, 123 . . .

しかしながら、冷却水の流量を測定するオリフィスの特
性は一般に測定レンジの上下限lO%近辺では測定誤差
が大きくなる傾向がある。又、オリフィスの取付方法及
び取付個所により各々のオリフィスに特性上のズレが発
生することもある。又、通常、燃料電池本体に供される
冷却水の温度は約200℃と扁温のため、一部に気相(
蒸気)を含むことがあり、これもオリフィスでの測定に
大きな誤差要因となることもある。
However, the characteristics of an orifice for measuring the flow rate of cooling water generally tend to have a large measurement error near the upper and lower limits of the measurement range 10%. Further, depending on the mounting method and location of the orifice, differences in characteristics may occur between the orifices. In addition, the temperature of the cooling water supplied to the fuel cell body is usually about 200°C, which is a flat temperature, so some parts of the cooling water are in the gas phase (
vapor), which can also be a major source of error in orifice measurements.

このようなことのため、流量測定が不正確となり、燃料
電池本体の各ブロック81,82.83・・・に均一に
冷却水を供給することが回置となる64このように、燃
料電池本体の各ブロックに冷却水の供給不拘−生がじる
と、必要流量以上に冷却水が供給されているブロックは
問題ないが逆に必要流量の冷却水が確保されていないブ
ロックの燃料電池本体は、前述の電池反応熱を充分に冷
却することができず、電池温度が上昇し、リン酸型燃料
電池について言えば、リン酸を含む電解質が乾きはじめ
燃料電池特性が低下すると共に、尚も進行すると電解質
層に穴が明きついには1.燃料ガスと酸化剤ガスとが直
接混合してクロスオーバー現象を引き起こすこともあり
、燃料電池本体は致命的損傷を受けその再使用が不可能
となることもあった。
Because of this, the flow rate measurement becomes inaccurate, and it is necessary to supply cooling water uniformly to each block 81, 82, 83, etc. of the fuel cell main body64. When cooling water is not supplied to each block, there is no problem for blocks to which cooling water is supplied at a rate higher than the required flow rate, but conversely, for blocks where the required flow rate of cooling water is not secured, the fuel cell main body of the block is In the case of phosphoric acid fuel cells, the electrolyte containing phosphoric acid begins to dry out and the fuel cell characteristics deteriorate, and the cell temperature continues to rise. Then, a hole appears in the electrolyte layer and finally 1. In some cases, the fuel gas and oxidizing gas directly mix, causing a crossover phenomenon, and the fuel cell itself may be fatally damaged, making it impossible to reuse it.

本発明は、上記事情に鑑みてなされたもので、その目的
は素電池が多数積層された燃料電池本体に冷却水を均一
に配流するように構成した燃料電池装置を提供すること
にある。
The present invention has been made in view of the above circumstances, and its object is to provide a fuel cell device configured to uniformly distribute cooling water to a fuel cell main body in which a large number of unit cells are stacked.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は上記目的を達成するためになされたもので1、
素電池を多数積層し、しかも素電池をある数量毎にブロ
ック分けし、この各々のブロックにそれぞれ冷却水配管
が接続されていて又、この各々の冷却水配管の入口側に
冷却量調節弁が接続され、同様に冷却水配管の入口出口
に接続されて、冷却水の入口、出口の温度を測定し、さ
らに温度を測定し、さらに温度差を検出する。そのうえ
に前記各ブロックの温度差を比較する温度測定器と、こ
の比較された値を受けて、前記、冷却水量調節弁を制御
し燃料電池本体の各ブロックに供給される冷却水量を調
節する冷却水配置制御器とから構成され、前記各ブロッ
クに流入排出する冷却水の温度差が同一になるように制
御することを特徴とするものである。
(Means for solving the problems) The present invention has been made to achieve the above objects.1.
A large number of unit cells are stacked, and the unit cells are divided into blocks according to a certain number, each block is connected to a cooling water pipe, and a cooling amount adjustment valve is installed on the inlet side of each cooling water pipe. It is also connected to the inlet and outlet of the cooling water pipe to measure the temperature of the inlet and outlet of the cooling water, further measure the temperature, and detect the temperature difference. In addition, there is a temperature measuring device that compares the temperature difference between the blocks, and a cooling water that receives the compared values and controls the cooling water amount control valve to adjust the amount of cooling water supplied to each block of the fuel cell main body. It is characterized by comprising a placement controller and controlling so that the temperature difference between the cooling water flowing into and discharging each of the blocks is the same.

(作 用) 上記の如く構成された本発明の燃料電池装置において、
冷却水に入口、出口の温度差が同一になるようにする冷
却水配流制御器で制御されるので。
(Function) In the fuel cell device of the present invention configured as described above,
It is controlled by a cooling water distribution controller that ensures that the temperature difference between the inlet and outlet of the cooling water is the same.

燃料電池を多数積層しある単位数毎にブロック分され冷
却水配管を個々に設置した燃料電池本体内に均一に、冷
却水を配流することが可能となる。
Cooling water can be uniformly distributed within a fuel cell main body in which a large number of fuel cells are stacked and each unit is divided into blocks and cooling water pipes are individually installed.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。第
1図は本発明の一実施例の系統図を示すものであり、既
に説明した第3図と同一部分には同一符号を付してその
詳細な説明は省略する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 shows a system diagram of an embodiment of the present invention, and the same parts as those in FIG. 3 already explained are given the same reference numerals, and detailed explanation thereof will be omitted.

第1図において、同一容器7内に収納されて、ある単位
数毎にブロック分けされた燃料電池本体81.82,8
3.・・・・・・を冷却する冷却水Wは冷却水総量供給
弁9によって全ブロックの燃料電池本体81゜82、8
3・・・の冷却に必要な流量を供給すべく弁開度が調整
される。ここで、冷却水Wは冷却水供給配管101,1
02,103.に分岐され、この供給配管に接続された
冷却水、量調節弁121,122,123.により、流
量調節され、前記燃料電池本体の各ブロック81゜82
、83・・・に流入し、前述のように電池を冷却し、冷
却水排出配管131,132,133.・・・から排出
される。
In FIG. 1, fuel cell main bodies 81, 82, 8 are housed in the same container 7 and divided into blocks according to a certain number of units.
3. The cooling water W that cools the fuel cell bodies 81, 82, 8 of all blocks is supplied by the cooling water total supply valve 9.
The valve opening degree is adjusted to supply the flow rate necessary for cooling 3.... Here, the cooling water W is supplied to the cooling water supply pipes 101, 1
02,103. Cooling water and quantity control valves 121, 122, 123, . The flow rate is adjusted by the blocks 81 and 82 of the fuel cell main body.
, 83 . It is discharged from...

ここで、前述の冷却水供給配管101,102,103
.・・・の夫々に接続されて、冷却水入口温度Til、
T121Ti3・・・を測定する冷却水入口温度測定用
熱電対141.142,143と又、冷却水排出配管1
31,132,133゜・・・の夫々に接続されて、冷
却水出口温度Tol、 Ta2゜Ta2・・・を測定す
る冷却水出口温度測定用熱電対151.152,153
.・・・とこれ等温度信号を受けて、燃料電池本体ブロ
ック81,82,83・・・の冷却水入口出口の温度差
を演算し、その温度差を前記、燃料電池本体各ブロック
81,82.83・・・間での比較をも行う、冷却水温
度測定器16と、この各ブロック間の温度差を比較した
値により、前記冷却水流量調節弁121゜122.12
3.・・・を調整する冷却水配流制御器17とから構成
されていて、前記、冷却水温度測定器16は燃料電池本
体各ブロック81,82.83・・・の冷却水入口出口
の温度差(Tol−Til、Ta2−Ti2.Ta2−
Ti)の演算を実施すると共に、この温度差を各ブロッ
ク間で比較し、温度差の大きい燃料電池本体ブロックが
ある場合に、冷却水配流制御器17は冷却水流量調節弁
の開度を大にし供給される冷却水流量を増大させる。逆
に温度差が他に較べて、低い燃料電池本体ブロックがあ
る場合は、冷却水配流制御器17は、冷却水流量調節弁
の開度を小にし、供給される冷却水流量を減少させる。
Here, the above-mentioned cooling water supply pipes 101, 102, 103
.. ... are connected to each of the cooling water inlet temperature Til,
Thermocouples 141, 142, 143 for measuring cooling water inlet temperature and cooling water discharge pipe 1 for measuring T121Ti3...
Thermocouples 151, 152, 153 for measuring the cooling water outlet temperature are connected to each of the cooling water outlet temperatures Tol, Ta2° Ta2...
.. ... and these temperature signals, the temperature difference between the cooling water inlets and outlets of the fuel cell main blocks 81, 82, 83... is calculated, and the temperature difference is calculated between the fuel cell main blocks 81, 82, etc. .83... The cooling water flow rate control valve 121°122.12
3. The cooling water distribution controller 17 adjusts the temperature difference between the cooling water inlet and outlet of each block 81, 82, 83, . Tol-Til, Ta2-Ti2.Ta2-
Ti) and compares the temperature difference between each block, and if there is a fuel cell main body block with a large temperature difference, the cooling water distribution controller 17 increases the opening degree of the cooling water flow rate control valve. Increase the flow rate of cooling water supplied. Conversely, if there is a fuel cell main block with a lower temperature difference than others, the cooling water distribution controller 17 reduces the opening degree of the cooling water flow control valve to reduce the flow rate of the supplied cooling water.

このような制御を行うことにより、本実施例によれば、
素電池を多数積層し、冷却水供給配管を複数設けた燃料
電池本体への冷却水の供給を均一にすることが可能とな
り、従来のような冷却水の不均一配流からくる燃料電池
本体の破損を防止することができる。
By performing such control, according to this embodiment,
It is now possible to uniformly supply cooling water to the fuel cell main body, which has many stacked unit cells and multiple cooling water supply pipes, and prevents damage to the fuel cell main body caused by uneven distribution of cooling water as in the past. can be prevented.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、素電池を多数積層
した燃料電池本体に冷却水を均一に配流することが可能
なり、冷却水量の不足による燃料電池本体の損傷を防止
することができるので、燃料電池装置の安全性および信
頼性を向上させるというすぐれた効果を奏する。
As explained above, according to the present invention, it is possible to uniformly distribute cooling water to the fuel cell main body in which a large number of unit cells are stacked, and damage to the fuel cell main body due to insufficient amount of cooling water can be prevented. This has the excellent effect of improving the safety and reliability of the fuel cell device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す系統図、第2図は燃料
電池の原理図、第3図は従来燃料電池の冷却水供給系統
図である。 81.82.83   ・・・燃料電池本体9   ・
・・冷却水総量供給弁 111 、112.113  ・・・冷却水流量測定オ
リフィス121.122,123  ・・・冷却水量調
節弁141.142,143  ・・・冷却水入口温度
測定器151.152,153  ・・・冷却水出口温
度測定器16    ・・・冷却水温度測定器 17    ・・・配流制御器 代理人 弁理士 則 近 憲 佑 同  三俣弘文 第 1c(I 第2図
FIG. 1 is a system diagram showing an embodiment of the present invention, FIG. 2 is a principle diagram of a fuel cell, and FIG. 3 is a diagram of a conventional fuel cell cooling water supply system. 81.82.83 ...Fuel cell body 9 ・
... Cooling water total amount supply valves 111, 112, 113 ... Cooling water flow rate measurement orifices 121, 122, 123 ... Cooling water amount adjustment valves 141, 142, 143 ... Cooling water inlet temperature measuring device 151, 152, 153...Cooling water outlet temperature measuring device 16...Cooling water temperature measuring device 17...Distribution controller representative Patent attorney Nori Chika Ken Yudo Hirofumi Mitsumata No. 1c (I Figure 2)

Claims (1)

【特許請求の範囲】[Claims] 電解質層を挟んでアノード電極及びカソード電極の一対
の多孔質電極を配置し、前記アノード電極の背面に燃料
ガスをカソード電極の背面に酸化剤ガスを夫々供給し、
このときの電極化学的反応により発生する電気エネルギ
ーを前記一対の多孔質電極間から取出す燃料電池におい
て、この素電池を多数積層し、しかも素電池をある数量
毎にブロック分けし、このそれぞれのブロックに冷却水
配管が接続されていて、この各々の冷却水配管の入口側
に冷却水量調節弁が接続され、又、同様に各冷却水配管
の入口、出口に接続されて、冷却水の入口、出口温度を
測定すると共にその温度差を検出し、さらに、前記各ブ
ロックの温度差を比較する温度測定器とこの比較された
値を基に、前記、各々の冷却水配管に接続された冷却水
量調節弁を制御し、燃料電池本体の各ブロックに供給さ
れる冷却水量を調節する冷却水配流制御器とから構成さ
れ前記、各ブロックに流入する冷却水の入口、出口温度
を測定しその差がブロック間で同一になるように制御す
る様にしたことを特徴とする燃料電池装置。
A pair of porous electrodes, an anode electrode and a cathode electrode, are arranged with an electrolyte layer in between, and a fuel gas is supplied to the back surface of the anode electrode, and an oxidant gas is supplied to the back surface of the cathode electrode, respectively,
In a fuel cell in which the electrical energy generated by the electrode chemical reaction is extracted from between the pair of porous electrodes, a large number of these unit cells are stacked, and the unit cells are divided into blocks of a certain number, and each block is Cooling water pipes are connected to the cooling water pipes, and a cooling water flow control valve is connected to the inlet side of each of the cooling water pipes, and similarly connected to the inlet and outlet of each of the cooling water pipes to control the cooling water inlet, A temperature measuring device that measures the outlet temperature and detects the temperature difference, and further compares the temperature difference of each block, and based on this compared value, calculates the amount of cooling water connected to each cooling water pipe. It is composed of a cooling water distribution controller that controls the control valve and adjusts the amount of cooling water supplied to each block of the fuel cell main body. A fuel cell device characterized in that control is performed so that blocks are the same.
JP61288681A 1986-12-05 1986-12-05 Fuel battery device Pending JPS63143756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61288681A JPS63143756A (en) 1986-12-05 1986-12-05 Fuel battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61288681A JPS63143756A (en) 1986-12-05 1986-12-05 Fuel battery device

Publications (1)

Publication Number Publication Date
JPS63143756A true JPS63143756A (en) 1988-06-16

Family

ID=17733308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61288681A Pending JPS63143756A (en) 1986-12-05 1986-12-05 Fuel battery device

Country Status (1)

Country Link
JP (1) JPS63143756A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332630A (en) * 1991-11-04 1994-07-26 Hsu Michael S On-board recharging system for battery powered electric vehicles
US5858568A (en) * 1996-09-19 1999-01-12 Ztek Corporation Fuel cell power supply system
EP1006601A2 (en) * 1998-12-02 2000-06-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system with improved startability
US6380637B1 (en) 1996-09-19 2002-04-30 Ztek Corporation Off-board station and an electricity exchanging system suitable for use with a mobile vehicle power system
WO2007105112A2 (en) * 2006-01-11 2007-09-20 Nissan Motor Co., Ltd. Fuel cell system with coolant circulation
FR2915835A1 (en) * 2007-05-03 2008-11-07 Renault Sas Fuel cell system i.e. proton exchange membrane type fuel cell system, managing method for e.g. automobile field, involves determining presence/absence of instability, where absence is detected when flow is higher than/equal to minimum flow
WO2019035171A1 (en) * 2017-08-14 2019-02-21 日産自動車株式会社 Fuel cell system and refrigerant flow rate estimation method of fuel cell system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0752731A1 (en) * 1991-11-04 1997-01-08 Michael S. Hsu A system for providing excess power off board of an electric vehicle
US5332630A (en) * 1991-11-04 1994-07-26 Hsu Michael S On-board recharging system for battery powered electric vehicles
US6649289B2 (en) 1996-09-19 2003-11-18 Ztek Corporation Fuel cell power supply system
US5858568A (en) * 1996-09-19 1999-01-12 Ztek Corporation Fuel cell power supply system
US6380637B1 (en) 1996-09-19 2002-04-30 Ztek Corporation Off-board station and an electricity exchanging system suitable for use with a mobile vehicle power system
EP1006601A3 (en) * 1998-12-02 2007-02-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system with improved startability
EP1006601A2 (en) * 1998-12-02 2000-06-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system with improved startability
EP2209155A1 (en) * 1998-12-02 2010-07-21 Toyota Jidosha Kabushiki Kaisha Fuel cell system with improved startability
WO2007105112A2 (en) * 2006-01-11 2007-09-20 Nissan Motor Co., Ltd. Fuel cell system with coolant circulation
WO2007105112A3 (en) * 2006-01-11 2008-01-17 Nissan Motor Fuel cell system with coolant circulation
US8110313B2 (en) 2006-01-11 2012-02-07 Nissan Motor Co., Ltd Fuel cell system
FR2915835A1 (en) * 2007-05-03 2008-11-07 Renault Sas Fuel cell system i.e. proton exchange membrane type fuel cell system, managing method for e.g. automobile field, involves determining presence/absence of instability, where absence is detected when flow is higher than/equal to minimum flow
WO2019035171A1 (en) * 2017-08-14 2019-02-21 日産自動車株式会社 Fuel cell system and refrigerant flow rate estimation method of fuel cell system
JPWO2019035171A1 (en) * 2017-08-14 2020-06-18 日産自動車株式会社 Fuel cell system and refrigerant flow rate estimation method for fuel cell system
US11545682B2 (en) 2017-08-14 2023-01-03 Nissan Motor Co., Ltd. Fuel cell system and refrigerant flow rate estimation method for the same

Similar Documents

Publication Publication Date Title
EP2517293B1 (en) Management of operation of a pem fuel cell stack back-up electric generator
US7687164B2 (en) On-line system identification and control of fuel cell humidification via HFR measurements
US20080032163A1 (en) Preventing corrosion during start up and shut down of a fuel cell
JP4331125B2 (en) Operation control method and system for solid oxide fuel cell
US20080152961A1 (en) Purging a fuel cell system
US6696190B2 (en) Fuel cell system and method
JPH09259913A (en) Fuel battery power generator and operation method thereof
JPS63143756A (en) Fuel battery device
JPH08138709A (en) Fuel cell power generating system
JPS63291364A (en) Control of fuel cell voltage distribution
US20090136790A1 (en) Regulating An Oxidizer In An Electrochemical Cell Pumping System
JP4362266B2 (en) Fuel gas supply shortage detection method and fuel cell control method
JP5244504B2 (en) Solid oxide fuel cell system and operation method thereof
US9490493B2 (en) Manufacturing method of fuel cell, fuel cell and fuel cell system
JPH01281682A (en) Fuel cell
JPH03222261A (en) Electrode for solid electrolytic fuel cell
US10651483B2 (en) Determination of a spatial distribution of the permeability of an electrochemical - cell electrode
US10181612B2 (en) Determination of a spatial distribution of the catalytic activity of an electrochemical-cell electrode
US6576356B1 (en) Preconditioning membranes of a fuel cell stack
JP5734635B2 (en) Control method of fuel cell stack
JPS62271354A (en) Fuel cell
JPH01298653A (en) Fuel cell
JPS61185872A (en) Fuel cell device
JPS6356674B2 (en)
JPH0654674B2 (en) Fuel cell power generator