JPS6314369Y2 - - Google Patents

Info

Publication number
JPS6314369Y2
JPS6314369Y2 JP1434382U JP1434382U JPS6314369Y2 JP S6314369 Y2 JPS6314369 Y2 JP S6314369Y2 JP 1434382 U JP1434382 U JP 1434382U JP 1434382 U JP1434382 U JP 1434382U JP S6314369 Y2 JPS6314369 Y2 JP S6314369Y2
Authority
JP
Japan
Prior art keywords
insulator
vacuum chamber
gas
refrigerant
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1434382U
Other languages
Japanese (ja)
Other versions
JPS58117053U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1434382U priority Critical patent/JPS58117053U/en
Publication of JPS58117053U publication Critical patent/JPS58117053U/en
Application granted granted Critical
Publication of JPS6314369Y2 publication Critical patent/JPS6314369Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)
  • Electron Tubes For Measurement (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【考案の詳細な説明】 本考案は電界電離型イオン源に関し、特に高輝
度のガスイオンを発生することができるイオン源
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a field ionization type ion source, and particularly to an ion source capable of generating high-intensity gas ions.

近年超LSIデバイスの製造過程において、半導
体ウエハの微細な領域を選択的にエツチングする
ための手段としてガスイオンの利用が考えられ、
それに適したガスイオン源の開発が進められてい
る。第1図はこのイオンエツチング用更にはイオ
ンプローブマイクロアナライザー用に適した電界
電離型のガスイオン源の一例を示しており、図中
1はイオン化を行う真空室である。該真空室1内
には導電性を有し、熱伝導の良好な材料で形成さ
れた支柱2,3に支持された尖鋭な先端部を有す
るエミツターチツプ4が配置されている。該チツ
プ4と引き出し電極5との間には適宜な電流から
5乃至10KV程度の引き出し電圧が印加され、又
該チツプ4と接地電位の陰極6との間には20乃至
50KV程度の加速電圧が印加される。該支柱3,
4は真空室上部に配置された絶縁碍子7及び該碍
子7の上部の内部に液体窒素の如き冷媒8が入れ
られた冷却槽9内を貫通して真空室1外部に取り
出されている。10は例えばアルゴンガスが封入
されたガスボンベであり、該ガスボンベ10から
のアルゴンガスは弁11、テフロン製のガス導入
管12、絶縁碍子7に設けられた通路13を介し
て前記真空室1内に導入される。
In recent years, the use of gas ions has been considered as a means of selectively etching minute areas of semiconductor wafers in the manufacturing process of VLSI devices.
Gas ion sources suitable for this purpose are being developed. FIG. 1 shows an example of a field ionization type gas ion source suitable for this ion etching and also for an ion probe microanalyzer, and numeral 1 in the figure is a vacuum chamber for ionization. In the vacuum chamber 1, an emitter tip 4 having a sharp tip is supported by struts 2 and 3 made of a material that is electrically conductive and has good thermal conductivity. An extraction voltage of about 5 to 10 KV from an appropriate current is applied between the chip 4 and the extraction electrode 5, and a voltage of 20 to 10 KV is applied between the chip 4 and the cathode 6 at ground potential.
An accelerating voltage of about 50KV is applied. The pillar 3,
4 is taken out to the outside of the vacuum chamber 1 through an insulator 7 disposed above the vacuum chamber and a cooling tank 9 in which a refrigerant 8 such as liquid nitrogen is placed inside the insulator 7. 10 is a gas cylinder filled with argon gas, for example, and the argon gas from the gas cylinder 10 enters the vacuum chamber 1 through a valve 11, a Teflon gas introduction pipe 12, and a passage 13 provided in the insulator 7. be introduced.

上述した如き構成においてエミツターチツプ4
の尖鋭な先端部近傍には電界が集中し、強電界が
形成される。その結果、弁11を開け、アルゴン
ガスを真空室1内に導入すれば、該チツプ4の先
端部近傍のアルゴンガスは電界電離し、イオンと
なつて引き出され、更には陰極6によつて加速さ
れて、エツチング等の目的に使用される。ところ
で、このようなイオン源において発生するイオン
ビーム電流iは次に示す通りガスの圧力Pと温度
Tとの関数となつている。
In the configuration as described above, emitter tip 4
The electric field is concentrated near the sharp tip, and a strong electric field is formed. As a result, when the valve 11 is opened and argon gas is introduced into the vacuum chamber 1, the argon gas near the tip of the chip 4 is ionized in the electric field and extracted as ions, which are further accelerated by the cathode 6. and used for purposes such as etching. Incidentally, the ion beam current i generated in such an ion source is a function of the gas pressure P and temperature T as shown below.

i∝PV/T3/2 上式においてVは引き出し電圧である。従つて
ビーム電流を増加し、輝度を高めるためには、ガ
スの温度を低くすれば良い。その為第1図に示し
た従来のイオン源においてはガス導入管12を液
体窒素の如き冷媒8中に配置することによつて真
空室1中に導入されるガスの温度を低下させると
共に、支柱2,3更にはエミツターチツプ4を冷
媒8によつて冷却し、真空室1内のガス温度を低
くするようにしいてる。しかしながら、上述した
構成においては、絶縁碍子7は高電圧が印加され
る支柱2,3等と真空室1の外壁14との間の沿
面放電を防止するため長く構成しなければならな
い。従つて冷媒8が入れられた冷却槽9とイオン
化が行われるエミツターチツプ4先端の間の距離
は必然的に長くなり、該チツプ4先端部の冷却効
率は悪く、結果としてイオン化されるガスの温度
を望ましく低くすることができない。
i∝PV/T 3/2 In the above equation, V is the extraction voltage. Therefore, in order to increase the beam current and increase the brightness, it is sufficient to lower the gas temperature. Therefore, in the conventional ion source shown in FIG. 1, the gas introduction tube 12 is placed in a refrigerant 8 such as liquid nitrogen to lower the temperature of the gas introduced into the vacuum chamber 1, and 2, 3 Furthermore, the emitter chip 4 is cooled by a refrigerant 8 to lower the gas temperature within the vacuum chamber 1. However, in the above-described configuration, the insulator 7 must be made long in order to prevent creeping discharge between the pillars 2, 3, etc. to which high voltage is applied and the outer wall 14 of the vacuum chamber 1. Therefore, the distance between the cooling tank 9 containing the refrigerant 8 and the tip of the emitter chip 4 where ionization is performed inevitably becomes long, and the cooling efficiency of the tip of the chip 4 is poor, resulting in a decrease in the temperature of the gas to be ionized. It cannot be made as low as desired.

本考案は上述した点に鑑みてなされたもので、
イオン化されるガスの温度を低くし、高輝度のイ
オンビームを発生することができる電界電離型イ
オン源を提供することを目的とする。
This invention was made in view of the above points,
It is an object of the present invention to provide a field ion source that can lower the temperature of ionized gas and generate a high-intensity ion beam.

本考案に基づく電界電離型イオン源はイオン化
を行う真空室内に配置され先端が尖鋭にされた部
材と、該部材の先端部に強電界を形成する手段
と、該部材を支持する支持部材と、該真空室内に
イオン化されるガスを供給するためのガス導入管
と、該真空室上部に配置されその一部が中空にさ
れた絶縁碍子と、該絶縁碍子に接近して配置され
て該絶縁碍子の中空部と連通し、その内部に冷媒
が入れられる冷却槽とを有し、前記支持部材と前
記ガス導入管の一部を該絶縁碍子中空部内の冷媒
中に配置している。
A field ionization type ion source based on the present invention includes a member disposed in a vacuum chamber for ionization and having a sharp tip, means for forming a strong electric field at the tip of the member, and a support member for supporting the member. a gas introduction pipe for supplying gas to be ionized into the vacuum chamber; an insulator disposed above the vacuum chamber and partially hollow; and an insulator disposed close to the insulator. The support member and a part of the gas introduction pipe are disposed in the refrigerant in the hollow part of the insulator.

以下本考案の一実施例を第2図に基づき詳述す
る。
An embodiment of the present invention will be described in detail below with reference to FIG.

第2図において第1図と同一部分は同一番号を
付してその説明を省略するが、この実施例では第
1図の絶縁碍子7に代え、有底円筒状の絶縁碍子
15が用いられている。該碍子15の中空部は冷
却槽9内と連通しており、液体窒素の如き冷媒8
によつて満たされている。エミツターチツプ4を
支持する支柱2,3と真空室1内にガスを導入す
るためのガス導入管12は該碍子15中空部の冷
媒中に配置される。
In FIG. 2, the same parts as in FIG. 1 are given the same numbers and their explanations are omitted, but in this embodiment, a bottomed cylindrical insulator 15 is used in place of the insulator 7 in FIG. There is. The hollow part of the insulator 15 communicates with the inside of the cooling tank 9, and a refrigerant 8 such as liquid nitrogen is in communication with the inside of the cooling tank 9.
is filled by. The struts 2 and 3 supporting the emitter chip 4 and the gas introduction pipe 12 for introducing gas into the vacuum chamber 1 are arranged in the refrigerant in the hollow part of the insulator 15.

このような第2図の構成により、十分に長い絶
縁碍子を使用しているにも拘わらず冷媒とエミツ
ターチツプ4の先端部までの距離を著しく短縮す
ることができるので、該冷媒中を通つて導入さ
れ、該チツプ先端部に到達するガスの温度は低く
でき、更には真空室内の支柱とチツプの冷却効率
が向上することから、該チツプ先端部近傍のガス
は低温に維持され、発生するイオンビーム電流を
増加させることができる。
With the configuration shown in FIG. 2, the distance between the refrigerant and the tip of the emitter chip 4 can be significantly shortened even though a sufficiently long insulator is used, so that the distance between the refrigerant and the tip of the emitter chip 4 can be significantly shortened. As a result, the temperature of the gas that reaches the tip of the chip can be lowered, and the cooling efficiency of the pillars and the chip in the vacuum chamber is improved, so the gas near the tip of the chip is maintained at a low temperature and the generated ion beam is Current can be increased.

以上詳述した如く本考案により、高輝度のイオ
ンビームを発生することができるイオン源が提供
される。
As detailed above, the present invention provides an ion source capable of generating a high-intensity ion beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のイオン源を示す断面図、第2図
は本考案の一実施例である電界電離型イオン源を
示す断面図である。 1:真空室、2,3:支柱、4:エミツターチ
ツプ、5:引き出し電極、6:陰極、7:絶縁碍
子、8:冷媒、9:冷却槽、10:ガスボンベ、
11:弁、12:ガス導入管、13:通路、1
4:外壁、15:絶縁碍子。
FIG. 1 is a sectional view showing a conventional ion source, and FIG. 2 is a sectional view showing a field ion source which is an embodiment of the present invention. 1: Vacuum chamber, 2, 3: Strut, 4: Emitter chip, 5: Extraction electrode, 6: Cathode, 7: Insulator, 8: Refrigerant, 9: Cooling tank, 10: Gas cylinder,
11: Valve, 12: Gas introduction pipe, 13: Passage, 1
4: Exterior wall, 15: Insulator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] イオン化を行う真空室内に配置され先端が尖鋭
にされた部材と、該部材の先端部に強電界を形成
する手段と、該部材を支持する支持部材と、該真
空室内にイオン化されるガスを供給するためのガ
ス導入管と、該真空室上部に配置されその一部が
中空にされた絶縁碍子と、該絶縁碍子に接近して
配置されて該絶縁碍子の中空部と連通し、その内
部に冷媒が入れられる冷却槽とを有し、前記支持
部材と前記ガス導入管の一部を該絶縁碍子中空部
内の冷媒中に配置した電界電離型イオン源。
A member arranged in a vacuum chamber for ionization and having a sharp tip, means for forming a strong electric field at the tip of the member, a support member for supporting the member, and supplying gas to be ionized into the vacuum chamber. an insulator placed in the upper part of the vacuum chamber and partially hollow; and an insulator placed close to the insulator and communicating with the hollow part of the insulator, A field ionization type ion source comprising a cooling tank into which a refrigerant is placed, and wherein the support member and a part of the gas introduction pipe are disposed in the refrigerant in the hollow part of the insulator.
JP1434382U 1982-02-04 1982-02-04 Field ionization type ion source Granted JPS58117053U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1434382U JPS58117053U (en) 1982-02-04 1982-02-04 Field ionization type ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1434382U JPS58117053U (en) 1982-02-04 1982-02-04 Field ionization type ion source

Publications (2)

Publication Number Publication Date
JPS58117053U JPS58117053U (en) 1983-08-10
JPS6314369Y2 true JPS6314369Y2 (en) 1988-04-22

Family

ID=30026813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1434382U Granted JPS58117053U (en) 1982-02-04 1982-02-04 Field ionization type ion source

Country Status (1)

Country Link
JP (1) JPS58117053U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240543A (en) * 1985-04-18 1986-10-25 Jeol Ltd Ion source
JP5134439B2 (en) * 2008-05-30 2013-01-30 株式会社日立ハイテクノロジーズ Ion beam equipment

Also Published As

Publication number Publication date
JPS58117053U (en) 1983-08-10

Similar Documents

Publication Publication Date Title
US4638209A (en) Ion beam generating apparatus
JPS6314369Y2 (en)
US4506160A (en) Ion source apparatus
US1863702A (en) Gaseous conduction method and apparatus
JP3454384B2 (en) Ion beam generator and method
JPH0746586B2 (en) Ion source
JPH01221847A (en) High voltage introduction part in gas phase ion source
US3100272A (en) Low pressure mercury plasma discharge tube
JPH07123121B2 (en) Plasma processing device
Masic et al. A new way of producing ion beams from metals and gases using the plasma jet from a duoplasmatron
JP3254282B2 (en) Pulsed ion beam generation method
JPH0272544A (en) Ion source and ion generating method
JPH0353403Y2 (en)
US4389573A (en) Pulsed electron beam device comprising a cathode having through holes
US3476971A (en) Apparatus for plasma processing
US3412196A (en) Electron beam vacuum melting furnace
JP4114770B2 (en) Vacuum processing equipment for oxygen ion generation
JPH0423372B2 (en)
JP2644677B2 (en) Method and apparatus for producing fullerenes
JPH0372068A (en) Solid ion source
JP2703029B2 (en) Method of introducing impurities into substrate
JPS594428Y2 (en) Vacuum sealing mechanism of the ion generating section at the tip of the ion source device
JPS58135544A (en) Field ionization type ion source
JP2526228B2 (en) Electronic beam type plasma device
JPS6298543A (en) Ion beam generator