JPS61240543A - Ion source - Google Patents

Ion source

Info

Publication number
JPS61240543A
JPS61240543A JP8335385A JP8335385A JPS61240543A JP S61240543 A JPS61240543 A JP S61240543A JP 8335385 A JP8335385 A JP 8335385A JP 8335385 A JP8335385 A JP 8335385A JP S61240543 A JPS61240543 A JP S61240543A
Authority
JP
Japan
Prior art keywords
holder
emitter chip
ion source
helium
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8335385A
Other languages
Japanese (ja)
Other versions
JPH0584019B2 (en
Inventor
Yoshizo Sakuma
佐久間 美三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP8335385A priority Critical patent/JPS61240543A/en
Publication of JPS61240543A publication Critical patent/JPS61240543A/en
Publication of JPH0584019B2 publication Critical patent/JPH0584019B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0802Field ionization sources
    • H01J2237/0807Gas field ion sources [GFIS]

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To enhance the efficiency of cooling, by providing a holder made of a material of high thermal conductivity to hold an emitter chip at a gas ion source, and by inserting the holder into the central portion of an annular coolant container to keep the holder in heat transfer contact therewith to reduce the heat resistance therebetween. CONSTITUTION:A holder 2 for holding an emitter chip 1 at the gas ion source of an ion beam apparatus is made of a material of high thermal conductivity. The holder 2 is inserted into the central portion of an annular coolant container 3 for supplying liquefied helium, so that the holder is kept in heat transfer contact with the container. A steel ball 2P attached to a spring 2C provided at the bottom of the coolant container 3 is fitted in the groove 2H of the tip portion of the holder 2 to secure it. Gaseous helium enough cooled by a heat exchanger 10 is supplied to the vicinity of the tip of the emitter chip 1 so that the helium is ionized and then led out by an electrode 7. The heat resistance between the coolant container 3 and the emitter chip 1 is thus much reduced to efficiently cool the emitter chip.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、イオンビーム描画装置等のイオンビーム装置
への使用に最適なガスフェーズイオン源に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a gas phase ion source most suitable for use in an ion beam device such as an ion beam lithography device.

[従来の技術] 最近、ガスフェーズイオン源を用いたイオンビーム装置
が開発されている。
[Prior Art] Recently, ion beam devices using gas phase ion sources have been developed.

このガスフェーズイオン源は、先端が鋭く形成されたエ
ミッタチップを、例えば、液体ヘリウムで4°に程度に
冷却すると共に、チップ先端にヘリウムガスを供給し、
先端に付着したヘリウムガス分子を電界によって電離さ
せ、イオン化するイオン源である。
This gas phase ion source cools an emitter tip with a sharp tip to about 4 degrees with liquid helium, and supplies helium gas to the tip of the tip.
This is an ion source that ionizes helium gas molecules attached to the tip using an electric field.

さて、このイオン源において、エミッタチップを効率良
く冷却する事が望まれる。従来にd3いては、第2図に
示す様に、液体ヘリウムが供給されている冷媒槽Cの下
に絶縁物製のエミッタホルダHを固定し、このホルダの
先端部に取付(プられたエミッタチップEを冷却しよう
としている。尚、前記エミッタチップの根元はこのチッ
プを固定した捩子Sとなっており、この捩子が絶縁物製
ホルダに挟込まれている。そして、この捩子と引出電極
Rの間に引出電圧が印加されている。
Now, in this ion source, it is desired to efficiently cool the emitter chip. In the conventional d3, as shown in Fig. 2, an emitter holder H made of an insulator is fixed under the coolant tank C to which liquid helium is supplied, and the emitter holder H is attached to the tip of this holder. We are trying to cool the chip E.The base of the emitter chip is a screw S that fixes this chip, and this screw is sandwiched between an insulating holder. An extraction voltage is applied between the extraction electrodes R.

[発明が解決しようとする問題点] しかし、これでは、ホルダの冷却効率が余り良くない。[Problem to be solved by the invention] However, in this case, the cooling efficiency of the holder is not very good.

又、このホルダは、絶縁物製なので、熱抵抗が大きく、
その為、エミッタチップは効率的に冷却されない。
Also, since this holder is made of insulating material, it has high thermal resistance.
Therefore, the emitter chip is not efficiently cooled.

本発明は、このような問題を解決する事を目的としたも
のである。
The present invention aims to solve such problems.

[発明が解決しようとする問題点] そこで、本発明のガスフェーズイオン源は、このエミッ
タチップを保持するホルダを熱良導体製のものとし、こ
のホルダを熱的接触を保って挿入する部分を持つ環状の
冷媒槽を設け、エミッタチップまでの熱抵抗を著しく小
さくする様に成した。
[Problems to be Solved by the Invention] Therefore, in the gas phase ion source of the present invention, the holder for holding the emitter chip is made of a good thermal conductor, and the holder has a part into which the holder is inserted while maintaining thermal contact. An annular coolant tank was provided to significantly reduce the thermal resistance up to the emitter chip.

[実施例] 第1図は、本発明の一実施例として示したイオンビーム
装置の概略図である。
[Embodiment] FIG. 1 is a schematic diagram of an ion beam apparatus shown as an embodiment of the present invention.

図中1はエミッタチップで、その先端は、数百〜数千オ
ングストロームの曲率半径を持つ超微小円状に形成され
ている。2は、このチップを保持する為の熱良導体製の
ホルダである。3は環状の冷媒槽3で、熱良導体で形成
されており、その中央部に、前記ホルダを熱的接触を保
って挿入する為の穴を持っている。このホルダの先端に
近い箇所には、浅い溝2Hが彫られており、この溝の部
分に、前記冷媒槽3の下面に固定されたバネ2cの先端
に取付けられた鋼球2Pを嵌込む事によって、ホルダ2
を固定する様にしている。この冷媒If!f3は、図示
しないが、何らかの保持体ににって、鏡筒4の上部に固
定されている。又、この冷媒槽には、パイプ5を通じて
、液体ヘリウムが供給されると同時に、ここで気化した
ヘリウムガスがバイブロを通じて外部へ排出される。7
は、前記デツプ1に対向して配置された引出電極で、中
央部に小孔が開りられている。この引出電極は、絶縁材
料により形成された支持台8の上面に固定されている。
In the figure, reference numeral 1 denotes an emitter chip, the tip of which is formed in the shape of an ultra-fine circle with a radius of curvature of several hundred to several thousand angstroms. 2 is a holder made of a good thermal conductor for holding this chip. Reference numeral 3 denotes an annular refrigerant tank 3, which is made of a good thermal conductor and has a hole in its center for inserting the holder while maintaining thermal contact. A shallow groove 2H is carved near the tip of this holder, and a steel ball 2P attached to the tip of a spring 2c fixed to the lower surface of the refrigerant tank 3 is fitted into this groove. By holder 2
I am trying to fix it. If this refrigerant! Although not shown, f3 is fixed to the upper part of the lens barrel 4 by some kind of holder. Further, liquid helium is supplied to this refrigerant tank through the pipe 5, and at the same time, the helium gas vaporized here is discharged to the outside through the vibro. 7
1 is an extraction electrode disposed opposite to the depth 1, and has a small hole in the center thereof. This extraction electrode is fixed to the upper surface of a support base 8 made of an insulating material.

この支持台は、環状に形成されており、その中央部には
、円錐台形状の孔9が聞けられている。そして、この孔
の内面は熱良う9体9Gで形成されている。この円♀1
[台形状の孔の一番径の小さい部分が前記引出電極の小
孔と略同じ大きざである。この支持台の内部の空間部8
Sには、熱交換器10及びパイプ11を通じて、液体窒
素が供給されると同時に、この空間部8Sで気化した窒
素ガスは、パイプ12を通じてfJl出される。この窒
素ガスによる冷却を効率良く行なう為、支持台8の上面
には、開口が開けられている。13.14は夫々、前記
鏡筒4の側壁と冷媒槽3との間に固定されたベローズ、
前記鏡筒の側壁と支持台8との間に固定されたベローズ
である。これらのベローズ13.14によって鏡筒上部
において隔□離された空間Aは、空間BとCとから熱的
に絶縁される。そして、空間BとCはバイパス管15に
よって繋がれている。16は、前記熱交換器10を通じ
て送られて来るヘリウムガスを、前記空間A内のエミッ
タチップ1の周辺に導く為のパイプである。17は集束
レンズ、18’a、18b、・・・・・・・・・、18
jは加速電極である。19はブランキング用電極、20
はブランキング用絞りである。21は対物レンズ、22
は、ヘリウムイオンのターゲット23上の位置を制御す
る偏向器である。24は、前記加速電極18a、18b
、・・・・・・・・・、18jに夫々印加される加速電
圧の分圧電圧を決定する為の分圧抵抗体である。この分
圧抵抗体の一@pは前記引出電極7に繋がっており、他
端は大地に繋がっている。25は前記ホルダ2と引出電
極7との間に印加する引出電圧を制御する引出型圧制御
電源、26は前記分圧抵抗体2/lの一端pと大地間に
印加される加速電圧を制御する加速電圧制御電源である
。27は前記加速電圧制御電源26によって制御された
加速電圧から、前記引出電圧制御電源25によって制御
された引出電圧を差し引いて、その差に対応した加ai
圧が前記分圧抵抗体24の一喘ρと大地間に印加される
J:うに、前記加速電圧制御電源26をコントロールす
る制御回路である。
This support base is formed in an annular shape, and a truncated conical hole 9 is formed in the center thereof. The inner surface of this hole is formed of nine thermally conductive bodies 9G. This circle♀1
[The smallest diameter part of the trapezoidal hole has approximately the same size as the small hole of the extraction electrode. Space 8 inside this support stand
Liquid nitrogen is supplied to S through the heat exchanger 10 and pipe 11, and at the same time, nitrogen gas vaporized in this space 8S is discharged fJl through the pipe 12. In order to efficiently perform cooling with this nitrogen gas, an opening is provided in the upper surface of the support base 8. 13 and 14 are bellows fixed between the side wall of the lens barrel 4 and the refrigerant tank 3, respectively;
This is a bellows fixed between the side wall of the lens barrel and the support base 8. A space A separated from the upper part of the lens barrel by these bellows 13 and 14 is thermally insulated from spaces B and C. The spaces B and C are connected by a bypass pipe 15. 16 is a pipe for guiding the helium gas sent through the heat exchanger 10 to the periphery of the emitter chip 1 in the space A. 17 is a focusing lens, 18'a, 18b, 18
j is an accelerating electrode. 19 is a blanking electrode, 20
is the aperture for blanking. 21 is an objective lens, 22
is a deflector that controls the position of helium ions on the target 23. 24 is the acceleration electrode 18a, 18b
, . . . are voltage dividing resistors for determining the divided voltage of the accelerating voltage applied to each of 18j. One end of this voltage dividing resistor @p is connected to the extraction electrode 7, and the other end is connected to the ground. Reference numeral 25 indicates a draw-out pressure control power source that controls the extraction voltage applied between the holder 2 and the extraction electrode 7, and 26 controls the accelerating voltage applied between one end p of the voltage dividing resistor 2/l and the ground. This is an accelerating voltage controlled power supply. 27 subtracts the extraction voltage controlled by the extraction voltage control power supply 25 from the acceleration voltage controlled by the acceleration voltage control power supply 26, and calculates an addition ai corresponding to the difference.
This is a control circuit that controls the accelerating voltage control power source 26, in which voltage is applied between one part of the voltage dividing resistor 24 and the ground.

この様に成した装置は次の様に動作づる。The device constructed in this manner operates as follows.

先ず、エミッタチップ1をホルダ2に取付け、このホル
ダを冷媒槽3の中央の穴に挿入し、鋼球2Pを溝2Hに
′嵌込む事により、このホルダを冷媒槽に固定する。さ
て、液体ヘリウムが供給された冷却槽3に接したホルダ
2は、充分に冷やされ、エミッタチップ1は4°に稈爪
に冷却される。そして、熱交換器10内で充分冷やされ
たヘリウムガスがパイプ16を通じて空間Δ内に導かれ
、そのガス分子が前記チップ先端に付着する。この時、
ホルダ2と引出電極7との間に、引出電圧制御電源25
から引出電圧(25にボルト)が、この引出電極と加速
電極j8a、18b、18c、・・・・・・。
First, the emitter chip 1 is attached to the holder 2, this holder is inserted into the hole in the center of the refrigerant tank 3, and the holder is fixed to the refrigerant tank by fitting the steel ball 2P into the groove 2H. Now, the holder 2 in contact with the cooling bath 3 supplied with liquid helium is sufficiently cooled, and the emitter chip 1 is cooled to a culm angle of 4 degrees. Then, the helium gas sufficiently cooled in the heat exchanger 10 is guided into the space Δ through the pipe 16, and the gas molecules adhere to the tip of the tip. At this time,
An extraction voltage control power source 25 is connected between the holder 2 and the extraction electrode 7.
The extraction voltage (25 volts) is applied to this extraction electrode and the accelerating electrode j8a, 18b, 18c,...

18jとの間に加速電圧制御電源26から加速電圧(R
大100にボルト)が夫々印加される。この際、制御回
路27は、前記加速電圧制御電源26によって制御され
た加速電圧から、前記引出電圧制御型?l!25によっ
て制御された引出電圧を差し引いて、その差に対応した
加速電圧(75にボルト)が前記分圧抵抗体24の一端
pと大地間に印加されるように、前記加速電圧制御電源
26をコントロールする。従って、25にボルトの引出
電圧印加により、ヘリウムイオンが引出され、最終的に
、100にボルトまで加速されて、ターゲラ1へ23に
照射される。このイオン引出時、エミッタチップ1から
のイオンが、引出電極7に当るが、この引出電極は支持
台8によって冷やされているので、この引出電極からエ
ミッタ1への輻射熱が無い。従って、エミッタの温度1
貸が防止される。
Accelerating voltage (R
100 volts) are applied, respectively. At this time, the control circuit 27 converts the acceleration voltage controlled by the acceleration voltage control power supply 26 into the extraction voltage control type? l! The accelerating voltage control power supply 26 is operated such that an accelerating voltage (volts at 75) corresponding to the difference is applied between one end p of the voltage dividing resistor 24 and the ground. control. Therefore, by applying an extraction voltage of 25 volts to 25, helium ions are extracted, and are finally accelerated to 100 volts and irradiated onto the target laser 1 at 23. During this ion extraction, ions from the emitter chip 1 hit the extraction electrode 7, but since this extraction electrode is cooled by the support 8, there is no radiant heat from this extraction electrode to the emitter 1. Therefore, the emitter temperature 1
Loans are prevented.

[発明の効果] 本発明によれば、熱良導体製のホルダが環状の冷媒槽と
熱的接触を保って、その中心部に挿入されているので、
エミッタチップは非常に良く冷却される。又、エミッタ
チップの交換が容易となる。
[Effects of the Invention] According to the present invention, the holder made of a good thermal conductor is inserted into the center of the annular refrigerant tank while maintaining thermal contact with it.
The emitter chip is very well cooled. Furthermore, the emitter chip can be easily replaced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例として示したイオンビーム
装置の概略図、第2図は、従来のイオン源の一部概略図
である。
FIG. 1 is a schematic diagram of an ion beam apparatus shown as an embodiment of the present invention, and FIG. 2 is a partial schematic diagram of a conventional ion source.

Claims (1)

【特許請求の範囲】[Claims] エミッタチップ、このチップを保持する熱良導体製のホ
ルダ、このホルダを熱的接触を保って挿入する部分を持
つ環状の冷媒槽、前記チップの周囲にイオン化されるガ
スを供給する手段、前記チップに対向して配置される引
出電極を備えたイオン源。
an emitter chip; a holder made of a good thermal conductor for holding the chip; an annular coolant tank having a portion into which the holder is inserted while maintaining thermal contact; means for supplying ionized gas around the chip; An ion source with extraction electrodes placed opposite each other.
JP8335385A 1985-04-18 1985-04-18 Ion source Granted JPS61240543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8335385A JPS61240543A (en) 1985-04-18 1985-04-18 Ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8335385A JPS61240543A (en) 1985-04-18 1985-04-18 Ion source

Publications (2)

Publication Number Publication Date
JPS61240543A true JPS61240543A (en) 1986-10-25
JPH0584019B2 JPH0584019B2 (en) 1993-11-30

Family

ID=13800071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8335385A Granted JPS61240543A (en) 1985-04-18 1985-04-18 Ion source

Country Status (1)

Country Link
JP (1) JPS61240543A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169297A (en) * 2012-05-11 2012-09-06 Hitachi High-Technologies Corp Gas field ionization ion source, charged particle microscope and device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117053U (en) * 1982-02-04 1983-08-10 日本電子株式会社 Field ionization type ion source

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117053U (en) * 1982-02-04 1983-08-10 日本電子株式会社 Field ionization type ion source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169297A (en) * 2012-05-11 2012-09-06 Hitachi High-Technologies Corp Gas field ionization ion source, charged particle microscope and device

Also Published As

Publication number Publication date
JPH0584019B2 (en) 1993-11-30

Similar Documents

Publication Publication Date Title
US4638209A (en) Ion beam generating apparatus
WO1988001424A1 (en) Electron beam memory system with ultra-compact, high current density electron gun
JPH03192644A (en) Manufacturing device for semiconductor
US20220195581A1 (en) Source arrangement, deposition apparatus and method for depositing source material
US2960457A (en) Apparatus for vaporizing coating materials
US9640361B2 (en) Emitter structure, gas ion source and focused ion beam system
US5264706A (en) Electron beam exposure system having an electromagnetic deflector configured for efficient cooling
JPS61240543A (en) Ion source
US3210454A (en) High temperature apparatus
US4727236A (en) Combination induction plasma tube and current concentrator for introducing a sample into a plasma
JPH0374454B2 (en)
JPH03266336A (en) Gas ion source apparatus
US5296669A (en) Specimen heating device for use with an electron microscope
US2305458A (en) Electronic microscope
KR101961596B1 (en) Method for manufacturing sputter target and sputter gun for accomodating the sputter target
JPS6297242A (en) Ion gun for focus ion beam apparatus
JPH0724206B2 (en) Charged particle beam device
JPS61225748A (en) Gas phase ion source
US3171958A (en) Heated specimen holder for the electron microscope
JPH0423372B2 (en)
JPH03252033A (en) Gas phase ion source
US3171956A (en) Variant temperature environment for specimen stage of scientific instrument
JPH0261941A (en) Electric field dissociative ion source
US5334813A (en) Metal inert gas welding system for use in vacuum
JPH0646056Y2 (en) Focused ion beam device