JPS63143530A - Method for driving liquid crystal electrooptic device - Google Patents

Method for driving liquid crystal electrooptic device

Info

Publication number
JPS63143530A
JPS63143530A JP29127286A JP29127286A JPS63143530A JP S63143530 A JPS63143530 A JP S63143530A JP 29127286 A JP29127286 A JP 29127286A JP 29127286 A JP29127286 A JP 29127286A JP S63143530 A JPS63143530 A JP S63143530A
Authority
JP
Japan
Prior art keywords
liquid crystal
electro
voltage
crystal molecules
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29127286A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sakayori
坂寄 寛幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP29127286A priority Critical patent/JPS63143530A/en
Priority to US07/128,583 priority patent/US5029983A/en
Publication of JPS63143530A publication Critical patent/JPS63143530A/en
Priority to US07/278,569 priority patent/US4904057A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily select liquid crystal to be used and to reduce power consumption by applying a voltage to liquid crystal molecules which do not have bistability from outside and applying a voltage to electrodes so that a produced electric field is in only one direction. CONSTITUTION:The liquid crystal molecules which do not have the bistability in a liquid crystal electrooptic device are applied with the voltage so that the electric field produced in the liquid crystal electrooptic device with the voltage applied from outside is in only one direction and thus the liquid crystal molecules are changed in state and the resulting electrooptic effect is utilized. In the cell structure of, for example, the 3X3 matrix liquid crystal electrooptic device, the electric field is produced in a part where different orienting films are formed on upper and lower substrates to make the ferroelectric liquid crystal molecules monostable, a unipolar pulse signal for placing X1-Y1 and X1-Y2 in an ON bright state is applied to electrodes X and Y to make a display, and even liquid crystal which is slow in response speed is usable.

Description

【発明の詳細な説明】 「発明の利用分野」 この発明は強誘電性液晶を用いた電気光学装置の駆動方
法の新規な駆動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a novel method for driving an electro-optical device using a ferroelectric liquid crystal.

r従来の技術」 CRTに代わる固体表示装置は液晶材料を用いたもの、
エレクトロクロミック現象を利用したもの、ガス放電を
用いたもの等多種多様にわたって開発がなされてきた。
rConventional technology Solid-state display devices that replace CRT are those that use liquid crystal materials,
A wide variety of devices have been developed, including those that utilize electrochromic phenomena and those that use gas discharge.

取り分け、液晶表示装置は消費電力の小さいことと応答
速度が速いことから、実用向きであり、特に開発が盛ん
になった。
In particular, liquid crystal display devices are suitable for practical use due to their low power consumption and fast response speed, and their development has been particularly active.

しかし、最近、情!1量の増加に伴い、一画面中の画素
数は増加の一途を辿っている。少量画素の場合にはTN
液晶材料を用いた表示装置でも表示品質は確保できたが
、例えば640 x400画素程度の多量画素を持つマ
トリクス液晶表示装置の場合にはクロストーク等による
画質低下を免れず、液晶材料として強誘電性液晶を用い
たり、TN液晶を用いた場合でもSBEモードを用いた
り、半導体素子を各画素のスイッチとして用いた駆動を
することで画質の改善がなされてきた。
However, recently, Jo! As the number of pixels increases, the number of pixels in one screen continues to increase. TN for a small number of pixels
Although display quality could be ensured even with display devices using liquid crystal materials, for example, in the case of matrix liquid crystal display devices with a large number of pixels, such as 640 x 400 pixels, the image quality deteriorates due to crosstalk etc. Image quality has been improved by using liquid crystals, by using SBE mode even when using TN liquid crystals, and by driving using semiconductor elements as switches for each pixel.

半導体素子を用いたTNアクティブ・マトリックス表示
装置では、半導体素子形成のための生産コストが高く、
さらにその素子の製造歩留りが低いため表示装置そのも
のの価格を低減することが困難であった。しかし表示画
質そのものは良好であったが生産価格も多量生産等の努
力で低減可能であったが、液晶材料の応答速度が遅く、
高速性を必要とする表示内容には不向きであった。
In a TN active matrix display device using semiconductor elements, the production cost for forming the semiconductor elements is high;
Furthermore, since the manufacturing yield of the device is low, it has been difficult to reduce the price of the display device itself. However, although the display image quality itself was good and the production price could be reduced through efforts such as mass production, the response speed of the liquid crystal material was slow,
It was unsuitable for displaying content that required high speed.

また、このTN型液晶にかわってN、A、C1arkら
により強誘電性液晶をもちいた液晶電気光学装置が提案
された(特開昭56−107216)この液晶電気光学
袋゛ 置において強誘電性液晶分子が第1図に示すよう
に、スメクチック層の層の法線方向に対して+θ傾いた
第1の状、nja、 (I )と−θ傾いた第2の状態
(It)を取る。
In addition, instead of this TN type liquid crystal, a liquid crystal electro-optical device using a ferroelectric liquid crystal was proposed by N. A. C1ark et al. As shown in FIG. 1, the liquid crystal molecules assume a first state, nja (I), which is tilted by +θ with respect to the normal direction of the smectic layer, and a second state (It), which is tilted by −θ.

この二つの状態間を外部より電界を加えて、強誘電性液
晶分子をスイッチさせることにより発生する複屈折効果
の違いにより表示を行うものであった。
Display was performed by applying an external electric field to switch between these two states to switch the ferroelectric liquid crystal molecules, thereby making use of the difference in birefringence effect generated.

この時強誘電性液晶分子を第1の状態(I)より第2の
状fi (n)へかえる為にはスメクチック層に対して
垂直方向に例えば正の電界を加えることにより成される
At this time, in order to change the ferroelectric liquid crystal molecules from the first state (I) to the second state fi (n), for example, a positive electric field is applied in a direction perpendicular to the smectic layer.

また逆に第2の状M (II)より第1の状l (I)
へ反転させる為には、逆に負の電界を加えることにより
成されるものであった。すなわち外部より印加される電
界の向きをかえることにより強誘電性液晶分子の取る2
状態を変化させそれに伴って生じる電気光学効果の違い
を利用するものであった。
Conversely, the second state M (II) makes the first state l (I)
In order to reverse it, it was done by applying a negative electric field. In other words, by changing the direction of the externally applied electric field, the 2
This method utilized the difference in electro-optical effect that occurs as a result of changing the state.

さらにこの外部より印加する電界を除去しても強誘電性
液晶分子はその状態を安定に保っており第1と第2の双
安定なメモリー性を持っていた。
Furthermore, even when this externally applied electric field was removed, the ferroelectric liquid crystal molecules maintained their state stably and had the first and second bistable memory properties.

その為、この強誘電性液晶を用いた液晶電気光学装置を
駆動する信号波形としては第2図に示すように、両極性
パルス列となっており、パルス極性の切り替わる方向に
より強誘電性液晶分子の取る2状態間をスイッチングし
ていた。
Therefore, the signal waveform that drives a liquid crystal electro-optical device using this ferroelectric liquid crystal is a bipolar pulse train, as shown in Figure 2, and the direction in which the pulse polarity switches changes the direction of the ferroelectric liquid crystal molecules. It was switching between two states.

このスイッチングはTN型液晶に比べて非常に高速にお
こなわれ、なおかつこの信号を取り去っても強誘電性液
晶分子の状態はメモリーされている。
This switching is performed much faster than in TN type liquid crystals, and even if this signal is removed, the state of the ferroelectric liquid crystal molecules is retained in memory.

ところが、このような信号波形を用いて強誘電性液晶を
マトリクス駆動する方法では強誘電性液晶に要求される
応答速度は走査選択時間の1/2以下でなければならな
かった。
However, in the method of matrix driving the ferroelectric liquid crystal using such a signal waveform, the response speed required of the ferroelectric liquid crystal must be 1/2 or less of the scanning selection time.

さらに、2状態間をスイッチングするために2回の走査
で、1周期となり、例えば走査線が400本の画面を1
秒間に30フレ一ム表示しようとすれば、強誘電性液晶
の応答時間は20μsec以下でなければならなかった
Furthermore, in order to switch between two states, two scans constitute one cycle, and for example, a screen with 400 scanning lines is scanned in one cycle.
In order to display 30 frames per second, the response time of the ferroelectric liquid crystal had to be 20 μsec or less.

このような超高速の応答は強誘電性液晶では理論的に可
能ではあったが、実際にそれを実現することは、非常に
難しいものであった。
Although such an ultra-high-speed response was theoretically possible with ferroelectric liquid crystals, it was extremely difficult to actually achieve it.

このように、従来の駆動法では強誘電性液晶に高速の応
答性が要求される為に使用可能な強誘電性液晶材料が非
常に少なかった。
As described above, in the conventional driving method, the ferroelectric liquid crystal is required to have high-speed response, so there are very few usable ferroelectric liquid crystal materials.

また、駆動用のICの動作周波数も同様に高く成るため
に消費電力の増加を招いていた。これは本来液晶電気光
学装置の持つ特徴の一つである低消費電力ということに
反するものであった。
Furthermore, the operating frequency of the driving IC also increases, resulting in an increase in power consumption. This was originally contrary to low power consumption, which is one of the characteristics of liquid crystal electro-optical devices.

さらに、従来の強誘電性液晶を用いた液晶電気光学装置
において強誘電性液晶分子は双安定性を有している必要
があった為、該装置の構造も双安定性を実現する為にあ
る特定の条件を満たしている必要があった。すなわち強
誘電性液晶をはさんでいる基板間隔を双安定性が実現さ
れる間隔まで狭くする必要があった。
Furthermore, in conventional liquid crystal electro-optical devices using ferroelectric liquid crystals, the ferroelectric liquid crystal molecules were required to have bistability, so the structure of the device was also designed to achieve bistability. Certain conditions had to be met. In other words, it was necessary to narrow the distance between the substrates that sandwich the ferroelectric liquid crystal to a distance that would achieve bistability.

r問題を解決するための手段」 本発明は強誘電性を示す液晶を用い、該液晶分子の取り
得る状態の違いにより発生する電気光学効果を利用する
液晶電気光学装置を駆動する方法において、該液晶分子
は液晶電気光学装置内で双安定性を有しておらず、該液
晶に対して外部より印加する電圧により液晶電気光学装
置内で発生する電界の方向を単一方向のみとなるように
、電極に電圧を加えることにより、液晶分子の状態を変
化させ、其に伴って発生する電気光学効果を利用するこ
とを特徴とするものである ところでTVや端末機のディスプレイ等に用いられるC
RTのような発光型ディスプレイは走査電圧パルスに対
する立ち上がり応答時間が早(、立ち下がりの応答時間
が比較的遅いという螢光前の応答特性と周期的な光刺激
にたいしてはある周期より短ければちらつきを感じない
という人間の目の特性を利用したものといえる。
The present invention provides a method for driving a liquid crystal electro-optical device that uses a liquid crystal exhibiting ferroelectricity and utilizes the electro-optic effect generated due to the difference in states that the liquid crystal molecules can take. Liquid crystal molecules do not have bistability within the liquid crystal electro-optical device, and the direction of the electric field generated within the liquid crystal electro-optical device is made to be in only one direction by the voltage applied to the liquid crystal from the outside. , which is characterized by changing the state of liquid crystal molecules by applying a voltage to the electrodes and utilizing the electro-optic effect generated accordingly.
A light-emitting display such as an RT has a pre-fluorescent response characteristic in which the rising response time to a scanning voltage pulse is fast (and the falling response time is relatively slow), and it does not flicker if the period is shorter than a certain period for periodic light stimulation. This can be said to take advantage of the characteristic of the human eye, which cannot be sensed.

ところで、強誘電性液晶の電気光学応答特性は第4図(
A)に′示すようなものである。この特性は第3図に示
す測定系を使用して測定したものでありディテクター(
4)の電気信号をオシロスコープ(5)にて表示したも
のである。
By the way, the electro-optical response characteristics of ferroelectric liquid crystal are shown in Figure 4 (
It is as shown in A). This characteristic was measured using the measurement system shown in Figure 3, and the detector (
4) is displayed on an oscilloscope (5).

第4図(A)の特性は同図(C)に示す信号波形を加え
た時に得られたものである。このくわえる信号波形のパ
ルス幅を短くしてゆくと同図(B)のようにメモリー性
を示さなくなる。
The characteristics shown in FIG. 4(A) were obtained when the signal waveform shown in FIG. 4(C) was added. If the pulse width of the signal waveform to be added is shortened, the memory property will no longer be exhibited as shown in FIG. 2(B).

このような、領域において、加える信号波形を第4図(
D)のように単極性とすると、その時の強誘電性液晶の
応答特性は第4図(E)に示すようにCRTの応答特性
に非常に似ている。
In such a region, the signal waveform to be applied is shown in Figure 4 (
When the liquid crystal is unipolar as shown in D), the response characteristics of the ferroelectric liquid crystal are very similar to those of a CRT, as shown in FIG. 4(E).

つまり、加える信号波形に対する立ち上がりの応答時間
が早く、立ち下がりが遅いと言う特性を示す。
In other words, it exhibits characteristics such that the rising response time to the applied signal waveform is fast and the falling response time is slow.

このようなモードを用いればCRTと同様の表示を強誘
電性液晶を用いて行うことが可能である。
By using such a mode, it is possible to perform a display similar to that of a CRT using a ferroelectric liquid crystal.

すなわち、立ち下がりの応答時間が遅いことを利用する
ため強誘電性液晶分子は双安定性を有する必要がなく、
また、人間の目がちらつきを感しない程度に応答速度が
早ければいいため、20μsec以下という超高速の応
答速度を必要としない等工業的に有益な特徴を有する。
In other words, ferroelectric liquid crystal molecules do not need to have bistability because they take advantage of the slow falling response time.
Furthermore, since the response speed only needs to be fast enough that the human eye does not perceive flicker, it has industrially useful features such as not requiring an ultra-high response speed of 20 μsec or less.

また、この強誘電性液晶分子は基板界面より弱い影響を
受けているため、立ち下がりの応答時間が逆に遅すぎる
場合がある。このような時は強誘電性液晶駆動信号にバ
イアス電圧を加えて、強誘電性液晶分子を単安定とする
ことにより、立ち下がりの応答時間を早くすることが可
能である。
Furthermore, since the ferroelectric liquid crystal molecules are influenced weaker than the substrate interface, the response time for falling may be too slow. In such a case, by applying a bias voltage to the ferroelectric liquid crystal drive signal to make the ferroelectric liquid crystal molecules monostable, it is possible to speed up the falling response time.

また、このバイアス電圧を加える代わりに液晶電気光学
装置のセル構造を特殊な構造として(例えば配向膜の種
類を上下で違う物を使用して、セル内部に内部電界を発
生させる)強誘電性液晶分子の単安定性を実現してもよ
い。
In addition, instead of applying this bias voltage, the cell structure of the liquid crystal electro-optical device can be made into a special structure (for example, by using different types of alignment films on the top and bottom to generate an internal electric field inside the cell), ferroelectric liquid crystal Monostability of the molecule may be achieved.

以下実施例に実施例を示す。Examples are shown below.

「実施例j 第5図は本実施例で使用した液晶電気光学装置の概略を
示している。
Embodiment j FIG. 5 schematically shows a liquid crystal electro-optical device used in this embodiment.

これは3×3のマトリクス液晶電気光学装置である。本
実施例の場合用いた液晶電気光学装置のセル構造は上下
の基板に異なった配向膜を形成してせる内部に電界を発
生せしめた。
This is a 3×3 matrix liquid crystal electro-optical device. In the cell structure of the liquid crystal electro-optical device used in this example, different alignment films were formed on the upper and lower substrates to generate an electric field inside.

そのため、強誘電性液晶分子は単安定となっていた。Therefore, ferroelectric liquid crystal molecules were monostable.

コノとき、X+−Y、X+−YzをON(明)状態とす
る為に第6図に示したような、単極性のパルス信号を各
々X、Yの電極に加えて、表示を行った。
At this time, unipolar pulse signals as shown in FIG. 6 were applied to the X and Y electrodes, respectively, in order to turn X+-Y and X+-Yz into an ON (bright) state, and a display was performed.

本実施例にて使用した強誘電性液晶はその応答速度が0
.5m5eと従来の強誘電性液晶駆動方法では使用不可
能な特性を持つ物であったが、本発明の駆動方法を用い
ると充分使用可能となった。
The ferroelectric liquid crystal used in this example has a response speed of 0.
.. 5m5e, which had characteristics that made it impossible to use with conventional ferroelectric liquid crystal driving methods, but it became fully usable with the driving method of the present invention.

r効果」 本発明は強誘電性を示す液晶を用い、該液晶分子の取り
得る状態の違いにより発生する電気光学効果を利用する
液晶電気光学装置を駆動する方法において、該液晶分子
は液晶電気光学装置内で双安定性を有しておらず、該液
晶に対して外部より印加する電圧により液晶電気光学装
置内で発生するる電界の方向を単一方向のみとなるよう
に、電極に電圧を加えることにより、液晶分子の状態を
変化させ、其に伴って発生する電気光学効果を利用する
ことを特徴とするものである。すなわち、双安定性を必
要としない為、液晶電気光学装置を作製する際の工業的
なマージンを大きくとることが可能となった。
r effect" The present invention relates to a method for driving a liquid crystal electro-optical device that uses a liquid crystal exhibiting ferroelectricity and utilizes an electro-optic effect generated due to the difference in states that the liquid crystal molecules can take. A voltage is applied to the electrodes so that the device does not have bistability and the electric field generated in the liquid crystal electro-optical device by a voltage applied externally to the liquid crystal is in only one direction. It is characterized in that the state of the liquid crystal molecules is changed by adding it, and the electro-optic effect generated accordingly is utilized. That is, since bistability is not required, it has become possible to obtain a large industrial margin when manufacturing a liquid crystal electro-optical device.

本発明の駆動方法を用いることにより要求される強誘電
性液晶の応答速度は従来の駆動方法によるものよりも遅
くても使用可能となり使用できる強誘電性液晶の選択を
容易にすることができた。
By using the driving method of the present invention, the required response speed of the ferroelectric liquid crystal can be used even if it is slower than that using the conventional driving method, making it easier to select a usable ferroelectric liquid crystal. .

また、本発明の駆動法は駆動周波数を高くする必要がな
いため、消費電力を少なくすることができ特別の駆動用
ICを必要としない。
Further, since the driving method of the present invention does not require a high driving frequency, power consumption can be reduced and a special driving IC is not required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は強誘電性液晶分子の様子を示す。 第2図は従来の液晶表示体駆動方法による場合の信号波
形を示す。 第3図は電気光学効果の測定系を示す。 第4図は強誘電性液晶の駆動信号波形に対する電気光学
効果の様子を示す。 第5図は本発明による強誘電性液晶電気光学装置の概略
ずを・示す。 第6図は本発明の駆動信号の一例を示す。
FIG. 1 shows the appearance of ferroelectric liquid crystal molecules. FIG. 2 shows signal waveforms when using a conventional liquid crystal display driving method. FIG. 3 shows a measurement system for electro-optic effects. FIG. 4 shows the electro-optic effect on the drive signal waveform of the ferroelectric liquid crystal. FIG. 5 schematically shows a ferroelectric liquid crystal electro-optical device according to the present invention. FIG. 6 shows an example of the drive signal of the present invention.

Claims (1)

【特許請求の範囲】 1、強誘電性を示す液晶を用い、該液晶分子の取り得る
状態の違いにより発生する電気光学効果を利用する液晶
電気光学装置を駆動する方法において、該液晶電気光学
装置において液晶分子は双安定性を有しておらず、該液
晶に対して外部より印加する電圧により液晶電気光学装
置内で発生する電界の方向を単一方向のみとなるように
、電極に電圧を加えることにより、液晶分子の状態を変
化させ、其に伴って発生する電気光学効果を利用するこ
とを特徴とする液晶電気光学装置駆動方法 2、特許請求の範囲第1項において、前記電極に電圧を
印加する前の液晶分子は単一方向にのみ揃っていること
を特徴とした液晶電気光学装置駆動方法 3、特許請求の範囲第1項において、前記液晶分子を単
一方向にのみ揃えるために、外部より印加する電圧にバ
イアス電圧を加えることを特徴とした液晶電気光学装置
駆動方法
[Scope of Claims] 1. A method for driving a liquid crystal electro-optical device using a liquid crystal exhibiting ferroelectricity and utilizing electro-optic effects generated due to differences in possible states of the liquid crystal molecules, the liquid crystal electro-optical device Since liquid crystal molecules do not have bistability, a voltage is applied to the electrodes so that the direction of the electric field generated within the liquid crystal electro-optical device is only in a single direction due to the voltage applied externally to the liquid crystal. A method 2 for driving a liquid crystal electro-optical device, characterized in that the state of liquid crystal molecules is changed by adding a voltage to the electrode, and an electro-optic effect generated thereby is utilized. Liquid crystal electro-optical device driving method 3, characterized in that the liquid crystal molecules are aligned only in a single direction before applying , a method for driving a liquid crystal electro-optical device characterized by adding a bias voltage to an externally applied voltage.
JP29127286A 1986-12-06 1986-12-06 Method for driving liquid crystal electrooptic device Pending JPS63143530A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29127286A JPS63143530A (en) 1986-12-06 1986-12-06 Method for driving liquid crystal electrooptic device
US07/128,583 US5029983A (en) 1986-12-06 1987-12-04 Liquid crystal device with a smectic chiral liquid crystal
US07/278,569 US4904057A (en) 1986-12-06 1988-12-01 Liquid crystal device with a smectic chiral liquid crystal and with a rectifier in series with each pixel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29127286A JPS63143530A (en) 1986-12-06 1986-12-06 Method for driving liquid crystal electrooptic device

Publications (1)

Publication Number Publication Date
JPS63143530A true JPS63143530A (en) 1988-06-15

Family

ID=17766726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29127286A Pending JPS63143530A (en) 1986-12-06 1986-12-06 Method for driving liquid crystal electrooptic device

Country Status (1)

Country Link
JP (1) JPS63143530A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254120A (en) * 1984-05-31 1985-12-14 Katsumi Yoshino Method for maintaining ferroelectric liquid crystal in transparent state

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254120A (en) * 1984-05-31 1985-12-14 Katsumi Yoshino Method for maintaining ferroelectric liquid crystal in transparent state

Similar Documents

Publication Publication Date Title
US4697887A (en) Liquid crystal device and method for driving the same using ferroelectric liquid crystal and FET's
US5124820A (en) Liquid crystal apparatus
JPS6031120A (en) Driving method of optical modulating element
JPH02173724A (en) Matrix type ferroelectric liquid crystal display device
JPS63143530A (en) Method for driving liquid crystal electrooptic device
JPH028814A (en) Liquid crystal device
JP3057587B2 (en) Active matrix display device
JPS63198024A (en) Liquid crystal electrooptic device
JPH0782167B2 (en) Liquid crystal display
JP2000019485A (en) Method for driving liquid crystal device
JP2843861B2 (en) Driving method of liquid crystal electro-optical device
JPS6294829A (en) Liquid crystal display device
JPS63192023A (en) Liquid crystal electrooptic device
JP2662793B2 (en) Liquid crystal element
KR940007504B1 (en) Driving method for ferro electric lcd particle
JP3210385B2 (en) Liquid crystal display
JPS63259516A (en) Method for driving matrix type liquid crystal display body
JP2739147B2 (en) Liquid crystal electro-optical device
JPH02130525A (en) Liquid crystal device
JPS62287226A (en) Driving method for liquid crystal display device
JPS6170530A (en) Driving method of liquid crystal element
JP3528481B2 (en) Liquid crystal display device and liquid crystal cell driving method
JPH075433A (en) Method for driving liquid crystal electrooptic device
JPH0588646A (en) Matrix driving method for plane type display device
JPS60262134A (en) Driving method of liquid-crystal element