JPS63143206A - Production of metal powder molding - Google Patents

Production of metal powder molding

Info

Publication number
JPS63143206A
JPS63143206A JP29099786A JP29099786A JPS63143206A JP S63143206 A JPS63143206 A JP S63143206A JP 29099786 A JP29099786 A JP 29099786A JP 29099786 A JP29099786 A JP 29099786A JP S63143206 A JPS63143206 A JP S63143206A
Authority
JP
Japan
Prior art keywords
powder
metal powder
boiling point
molding
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29099786A
Other languages
Japanese (ja)
Inventor
Yoshiki Kobayashi
由樹 小林
Kiyohiro Kamei
亀井 清弘
Kazuto Okumura
和人 奥村
Shigezo Osaki
茂三 大崎
Sumio Jinno
神野 純夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Nitto Denko Corp
Original Assignee
Mazda Motor Corp
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Nitto Electric Industrial Co Ltd filed Critical Mazda Motor Corp
Priority to JP29099786A priority Critical patent/JPS63143206A/en
Publication of JPS63143206A publication Critical patent/JPS63143206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily and stably obtain a metal powder molding which has a uniform thickness and is crack-free by incorporating a specific solvent into a compsn. for powder molding and molding the compsn. in such a state in which the solvent remains even after the molding. CONSTITUTION:For example, Fe-M-C multielement eutectic alloy powder (M is a metal element essentially consisting of >=one kinds among Mo, B and P) which is wear resistant alloy powder is prepd. as the most representative powder. The powder grain size of said metal powder is generally <=100mum, more preferably about 1-70mum average particle size. An org. high-polymer binder is then incorporated at 5-50pts.wt. and a high boiling point solvent having >=120 deg.C, more adequately >=150 deg.C b.p. at 5-50pts.wt. into 100pts.wt. above-mentioned metal powder. The resultant compsn. for powder molding is molded to a prescribed shape such as sheet by such a method by which the evaporation of the high boiling point solvent contained in the compsn. is obviated and part or the whole of said solvent is made to remain, by which the desired metal powder molding is obtd. The above-mentioned high boiling point solvent is exemplified by hydrocarbon solvents such as n-decane.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は金属粉末と有機高分子結合剤とを含むシート
状などの各種形状を有する金属粉末成形体の製造法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing metal powder compacts in various shapes such as sheet shapes containing metal powder and an organic polymer binder.

〔従来の技術〕[Conventional technology]

金属粉末成形体は、目的とする形状の捧管、シート片や
異形物の素材そのものとして利用されているほか、金属
母材面に貼り付けた状態で焼結して上記母材面に冶金学
的に結合させた金属焼結層を設けたり、それ単独で焼結
したものをビスまたは接着剤などの物理的な手段で上記
母材面に接合させるなどの方法によって、金属母材面に
特別な性質たとえば耐摩耗性や耐腐食性などを付与する
ための表面改質用として利用されている。
Metal powder compacts are used as raw materials for tubes, sheet pieces, and irregular shapes in the desired shape, as well as being sintered while attached to a metal base material surface and metallurgically applied to the base material surface. A specially bonded metal sintered layer can be applied to the metal base material surface by methods such as providing a sintered metal layer or bonding the sintered layer alone to the base metal surface using physical means such as screws or adhesives. It is used for surface modification to impart properties such as wear resistance and corrosion resistance.

従来、この種の金属粉末成形体の製造法として、金属粉
末と有機高分子結合剤とを含む粉末成形用組成物を、低
沸点溶剤の存在下均一に混練し、これを離型紙を被せた
型枠上に流し込み、溶剤を蒸発させたのち、圧延ロール
に通すなどしてシート状やその他の形状に成形する方法
が一般的に採用されている。
Conventionally, as a manufacturing method for this type of metal powder compact, a powder compacting composition containing metal powder and an organic polymer binder is uniformly kneaded in the presence of a low boiling point solvent, and the mixture is covered with release paper. A commonly used method is to pour the material into a mold, evaporate the solvent, and then pass it through rolling rolls to form it into a sheet or other shape.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、上記従来の製造法は、成形性に難点があり、
特に金属粉末として数μm〜数十μmという微細な粉末
を用いた場合、成形体に厚みむらやクラックが生じるな
どの問題があった。このような品質不良の成形体は、焼
結体の品質低下の原因となり、たとえば表面改質用にあ
っては金属母材面への均質でかつ良質の焼結層の形成を
妨げるため、耐摩耗性や耐腐食性などの付与という本来
の目的を充分に達成できなくなる。
However, the conventional manufacturing method described above has problems with moldability.
In particular, when a fine powder of several micrometers to several tens of micrometers is used as the metal powder, there are problems such as thickness unevenness and cracks in the molded body. Such poor-quality compacts cause deterioration in the quality of the sintered compact, and for example, in surface modification applications, it prevents the formation of a homogeneous and high-quality sintered layer on the metal base material surface, making it difficult to maintain durability. The original purpose of imparting wear resistance and corrosion resistance cannot be sufficiently achieved.

このような問題を回避するために、粉末成形用組成物中
の有機高分子結合剤の使用量を多くする、たとえば金属
粉末100重量部に対し7重量部以上の多めとすること
(通常は5重量部程度まで)が考えられるが、この場合
成形性の改善を図れても加熱焼結時に上記結合剤の熱分
解ガスに起因したふくれやボアー(す)などが生じやす
くなり、焼結体の品質がやはり損なわれてしまう。
In order to avoid such problems, the amount of organic polymer binder used in the powder molding composition should be increased, for example, 7 parts by weight or more per 100 parts by weight of metal powder (usually 5 parts by weight or more). In this case, even if the formability is improved, blisters and bores due to the thermal decomposition gas of the binder are likely to occur during heating and sintering, and the sintered body will deteriorate. Quality will still be compromised.

したがって、この発明は、有機高分子結合剤の使用量を
加熱焼結時に上述の如き問題をきたすことのない少量に
抑えても、また金属粉末として非常に微細なものを用い
たときでも、均一厚みでクラックのない金属粉末成形体
を容易にかつ安定して製造しうる新規な方法を提供する
ことを目的としている。
Therefore, the present invention can achieve uniformity even when the amount of organic polymer binder used is kept to a small amount that does not cause the above-mentioned problems during heating and sintering, and even when extremely fine metal powder is used. The object of the present invention is to provide a new method that can easily and stably produce a thick, crack-free metal powder compact.

〔問題点を解決するための手段〕[Means for solving problems]

この発明者は、上記の目的を達成するために鋭意検討し
た結果、粉末成形用組成物中に特定の溶剤を含ませ、こ
の溶剤が成形後も残存するような状態下で成形すれば、
成形性の大幅な改善を図れることを知り、この発明を完
成するに至った。
As a result of intensive studies to achieve the above object, the inventor found that if a powder molding composition contains a specific solvent and is molded under conditions such that the solvent remains after molding,
After learning that moldability could be significantly improved, this invention was completed.

すなわち、この発明は、金属粉末100重量部に有機高
分子結合剤1〜5重量部および沸点が120℃以上の高
沸点溶剤5〜50重量部を含ませてなる粉末成形用組成
物を、上記溶剤の一部もしくは全部を残存させた状態で
シート状などの所定の形状に成形することを特徴とする
金属粉末成形体の製造法に係るものである。
That is, the present invention provides a powder molding composition comprising 100 parts by weight of metal powder, 1 to 5 parts by weight of an organic polymer binder, and 5 to 50 parts by weight of a high boiling point solvent having a boiling point of 120° C. or higher. The present invention relates to a method for manufacturing a metal powder compact, which is characterized by forming a metal powder compact into a predetermined shape such as a sheet with some or all of the solvent remaining.

このように、この発明においては、粉末成形用組成物中
に高沸点溶剤を特定量含ませ、この溶剤の一部もしくは
全部が残存するような状態下でシート状などの所定の形
状に成形するようにしたことにより、有機高分子結合剤
の使用量が金属粉末100重量部に対して1〜5重量部
という少量であっても、また金属粉末として数μm〜数
十μmという微細な粉末を用いたときでも、厚みむらや
クラックのない良質の金属粉末成形体を容易にかつ安定
して製造することができる。
As described above, in the present invention, a specific amount of a high boiling point solvent is contained in a powder molding composition, and the powder molding composition is molded into a predetermined shape such as a sheet under conditions such that some or all of this solvent remains. By doing this, even if the amount of organic polymer binder used is as small as 1 to 5 parts by weight per 100 parts by weight of metal powder, it is possible to use fine powder of several μm to several tens of μm as metal powder. Even when used, it is possible to easily and stably produce a high-quality metal powder molded body without thickness unevenness or cracks.

なお、このような効果がいかなる理由で発現されるのか
は、現在のところ必ずしも明らかとはいえない。推測で
は、粉末成形用組成物をプレス成形やロール成形などに
より所定形状に成形する際、上記組成物中に含ませた前
記の高沸点溶剤が組成物の流動性を良好なものとし、こ
れが厚みむらやクラックの発生防止に好結果をもたらし
ているものと思われる。
At present, it is not necessarily clear why such an effect is produced. It is speculated that when a powder molding composition is molded into a predetermined shape by press molding, roll molding, etc., the high boiling point solvent contained in the composition improves the fluidity of the composition, and this increases the thickness. This seems to have brought about good results in preventing the occurrence of unevenness and cracks.

一方、この発明の方法により得られる金属粉末成形体に
よれば、これに含まれる高沸点溶剤が加熱焼結時の初期
の段階、たとえば300℃以下の低温領域下で揮散する
ため、この溶剤の残存に起因したふ(れやボアーの発生
をみることがなく、しかも成形体中の有機高分子結合剤
の使用量が少なくて加熱焼結時に上記結合剤の熱分解ガ
スに起因したふくれやボアーの発生をみることもないこ
とから、この成形体を通常の焼結処理に供することによ
って高密度で外観良好な高品質の焼結体を安定して製造
することができる。
On the other hand, according to the metal powder compact obtained by the method of the present invention, the high boiling point solvent contained therein volatilizes in the initial stage of heating and sintering, for example in a low temperature range of 300°C or less. There is no occurrence of bulges or bores caused by residue, and the amount of organic polymer binder used in the molded product is small, so there are no bulges or bores caused by thermal decomposition gas of the binder during heating and sintering. Therefore, by subjecting this molded body to a normal sintering process, a high-quality sintered body with high density and good appearance can be stably produced.

〔発明の構成・作用〕[Structure and operation of the invention]

この発明において使用する金属粉末としては、たとえば
表面改質用では自溶性合金粉末や耐摩耗性合金粉末など
金属母材面に付与するべき性質に応じて各種の金属粉末
が用いられる。最も代表的な金属粉末として、耐摩耗性
合金粉末であるFe−M−C系の多元共晶合金粉末を挙
げることができる。上記のMはMo、BおよびPのうち
いずれか少なくとも一種を主成分とし、副次的な元素と
してCr、V、W、Nb、Ta、 Tiを含むことがあ
り、また他の元素としてSi、Ni、Mnなどを含むこ
とができる。かかる多元共晶合金粉末は焼結温度が比較
的低く、一般に1.000〜1.150℃の温度範囲で
液相が10〜50容量%となり、しかもこの液相は母材
に対して濡れ性がすぐれているという特徴を有している
As the metal powder used in this invention, for example, for surface modification, various metal powders such as self-fusing alloy powder and wear-resistant alloy powder are used depending on the properties to be imparted to the surface of the metal base material. The most typical metal powder is Fe-MC multi-component eutectic alloy powder, which is a wear-resistant alloy powder. The above M contains at least one of Mo, B, and P as a main component, and may contain Cr, V, W, Nb, Ta, and Ti as secondary elements, and other elements include Si, It can contain Ni, Mn, etc. Such multi-component eutectic alloy powder has a relatively low sintering temperature, and generally has a liquid phase of 10 to 50% by volume in a temperature range of 1.000 to 1.150°C, and this liquid phase has a wettability to the base material. It has the characteristic of being excellent.

これら金属粉末の粉末粒度は、焼結後の気孔率に影響す
るため、密度の高い焼結体を形成するうえで、平均粒子
径が一般に100μm以下、好適には1〜70μm程度
であるのがよい。このような微細な金属粉末を用いる場
合でも、この発明方法を適用することにより、良好な成
形性を得ることができる。
The particle size of these metal powders affects the porosity after sintering, so in order to form a sintered body with high density, the average particle size is generally 100 μm or less, preferably about 1 to 70 μm. good. Even when such fine metal powder is used, good moldability can be obtained by applying the method of the present invention.

この発明において使用する有機高分子結合剤には、従来
公知の各種の高分子物質がいずれも包含される。具体的
には、(メタ)アクリル酸アルキルエステル系共重合体
、ポリビニルエーテル系樹脂、ポリエステル系樹脂、ポ
リアミド系樹脂などの各種樹脂類、アクリロニトリル−
ブタジェン共重合ゴム、クロロブレン系ゴム、ポリイソ
ブチレン系ゴム、エチレン−プロピレンターポリマー系
ゴムなどの各種ゴム類などが挙げられる。また、これら
高分子物質とともに、アルキルフェノール系樹脂、クマ
ロンインデン系樹脂、ポリテルペン系樹脂、ロジン系樹
脂、石油系樹脂、ポリビニルエーテル系樹脂などの接着
性付与樹脂を併用することもできる。
The organic polymer binder used in this invention includes any of various conventionally known polymer substances. Specifically, various resins such as (meth)acrylic acid alkyl ester copolymers, polyvinyl ether resins, polyester resins, and polyamide resins, acrylonitrile-
Examples include various rubbers such as butadiene copolymer rubber, chloroprene rubber, polyisobutylene rubber, and ethylene-propylene terpolymer rubber. In addition, adhesion-imparting resins such as alkylphenol resins, coumaron indene resins, polyterpene resins, rosin resins, petroleum resins, and polyvinyl ether resins can also be used together with these polymeric substances.

このような有機高分子結合剤の使用量は、前記の金属粉
末100重量部に対して1〜5重量部の範囲とすべきで
ある。1重量部未満となると成形性の低下をさけられず
、また5重量部より多くなると加熱焼結時に分解ガスに
起因したふくれやポアーの発生をみることとなるため、
いずれも不適当である。
The amount of such an organic polymer binder used should be in the range of 1 to 5 parts by weight per 100 parts by weight of the metal powder. If it is less than 1 part by weight, a decrease in formability cannot be avoided, and if it is more than 5 parts by weight, blistering and pores will occur due to decomposed gas during heating and sintering.
Both are inappropriate.

この発明における高沸点溶剤としては、その沸点が12
0℃以上、好適には150℃以上のものが用いられる。
The high boiling point solvent in this invention has a boiling point of 12
A temperature of 0°C or higher, preferably 150°C or higher is used.

120℃未満の溶剤では、成形中に揮散して前記した流
動性改善効果を期待できなくなるため、不適当である。
A solvent at a temperature lower than 120° C. is unsuitable because it volatilizes during molding and the above-mentioned fluidity improvement effect cannot be expected.

なお、この溶剤の沸点があまりに高くなりすぎると、加
熱焼結時の初期の段階、たとえば300℃程度までの低
温領域下で完全に揮散させにくく、この場合ガス化成分
が焼結体にふくれやボアーを生じさせる結果となるため
、通常は250℃以下、特に好適には220℃以下の沸
点であるのがよい。
Note that if the boiling point of this solvent becomes too high, it will be difficult to completely volatilize it at the initial stage of heating and sintering, for example at a low temperature of about 300°C, and in this case, the gasified components may cause blisters in the sintered body. Since this results in the formation of bores, the boiling point is usually 250°C or lower, particularly preferably 220°C or lower.

このような高沸点溶剤としては、キシレン、n−デカン
、ジエチルベンゼンなどの炭化水素系溶剤、酢酸2−エ
チルヘキシル、テキサノールイソブチル、酢酸メチルシ
クロヘキシルなどのエステル系溶剤、n−ヘキサノール
、n−ペンタノール、シクロヘキサノールなどのアルコ
ール系溶削、アセトフェノン、アセトニルアセトン、ジ
イソブチルケトンなどのケトン系溶剤、エチルベンジル
エーテル、タレジルメチルエーテル、ジイソアミルエー
テルなどのエーテル系溶剤、ジメチルアニリン、モノメ
チルアニリン、2−エチルヘキシルアミンなどのアミン
系溶剤、N−N−ジメチルホルムアミド、アセトアミド
などのアミド系溶剤などが挙げられる。
Examples of such high boiling point solvents include hydrocarbon solvents such as xylene, n-decane, and diethylbenzene, ester solvents such as 2-ethylhexyl acetate, texanol isobutyl, and methylcyclohexyl acetate, n-hexanol, n-pentanol, Alcohol-based solvents such as cyclohexanol, ketone-based solvents such as acetophenone, acetonyl acetone, and diisobutyl ketone, ether-based solvents such as ethylbenzyl ether, talesyl methyl ether, and diisoamyl ether, dimethylaniline, monomethylaniline, and 2-ethylhexyl. Examples include amine solvents such as amines, and amide solvents such as N-N-dimethylformamide and acetamide.

上記の高沸点溶剤の使用量は、有機高分子結合剤100
重量部に対して5〜50重量部、特に好適には10〜2
0重量部である。この使用量が5重量部未満となると、
所望の効果が得られず、50重量部より多くなると、有
機高分子結合剤の金属粉末に対する結合力が弱くなって
、成形性が却つて悪くなるため、いずれも不適当である
The amount of the above high boiling point solvent used is 100% of the organic polymer binder.
5 to 50 parts by weight, particularly preferably 10 to 2 parts by weight
It is 0 parts by weight. If the amount used is less than 5 parts by weight,
If the desired effect is not obtained and the amount exceeds 50 parts by weight, the binding force of the organic polymer binder to the metal powder becomes weaker and the moldability becomes worse, so both are unsuitable.

この発明においては、以上の金属粉末、有機高分子結合
剤および高沸点溶剤を必須成分とし、これに必要に応じ
て任意成分として界面活性側、酸化防止剤、潤滑剤、可
塑剤などを含ませてなる粉末成形用組成物を調製し、こ
の組成物よりシート状や各種形状の金属粉末成形体を得
るものであるが、その際の成形方法は、組成物中に含ま
れる高沸点溶剤が揮散することなく、その一部もしくは
全部が成形後も残存するような方法であれば特に限定さ
れない。
In this invention, the above-mentioned metal powder, organic polymer binder, and high boiling point solvent are the essential components, and if necessary, optional components such as a surfactant, an antioxidant, a lubricant, and a plasticizer may be included. A powder molding composition is prepared, and metal powder compacts in sheet shapes and various shapes are obtained from this composition. The method is not particularly limited as long as it is a method in which part or all of it remains after molding without molding.

−S的に推奨できる成形方法としては、上記の粉末成形
用組成物をアセトン、トルエン、メチルエチルケトンな
どのその沸点が110℃以下の低沸点溶剤の存在下で混
練し、これを離型紙を被せた型枠上に流し込んで上記溶
剤を揮散させたのち、プレス成形やロール成形などによ
ってシート状などの所定の形状に成形する方法がある。
- As a recommended molding method in terms of S, the above powder molding composition is kneaded in the presence of a low boiling point solvent such as acetone, toluene, methyl ethyl ketone, etc. whose boiling point is 110°C or less, and this is covered with release paper. There is a method of pouring it onto a mold to volatilize the solvent, and then forming it into a predetermined shape such as a sheet by press molding, roll molding, or the like.

また、上記の粉末成形用組成物を低沸点溶剤を用いるこ
となく加熱下または加熱真空下で混練し、これをそのま
ま加圧成形する方法を採用してもよい。
Alternatively, a method may be adopted in which the above-mentioned powder molding composition is kneaded under heating or under heating vacuum without using a low boiling point solvent, and then pressure molded as it is.

このような種々の成形方法において、圧延成形時および
前記低沸点溶剤を揮散させる時の温度は、一般に100
℃以下、特に好適には80℃以下であるのがよい。この
温度が高くなりすぎると、粉末成形用組成物中に含まれ
る高沸点溶剤までもが揮散され、成形性を損なう結果と
なるため、好ましくない。
In these various forming methods, the temperature during rolling forming and when volatilizing the low boiling point solvent is generally 100°C.
The temperature is preferably 80°C or lower, particularly preferably 80°C or lower. If this temperature becomes too high, even the high boiling point solvent contained in the powder molding composition will be volatilized, resulting in impaired moldability, which is not preferable.

このようにして得られる金属粉末成形体は、厚みむらや
クラックのない均質でかつ良質の成形体であって、取り
扱い上皇まれる良好な機械的強度をも備えている。この
成形体がシート状物である場合の厚みは通常1〜3鶴程
度、密度は一般に4゜0〜6.0g/co!程度である
The metal powder molded body thus obtained is a homogeneous and high-quality molded body without thickness unevenness or cracks, and also has good mechanical strength that makes it easy to handle. When this molded product is a sheet-like product, the thickness is usually about 1 to 3 mm, and the density is generally 4.0 to 6.0 g/co! That's about it.

この金属粉末成形体をたとえば、金属母材の表面改質用
として使用する場合は、この成形体を金属母材面に接着
剤層を介しもしくは介さずして貼りつけたのち、金属粉
末の種類に応じた所定の温度条件で焼結処理するか、あ
るいは成形体単独で焼結処理したのちこれを金属母材面
に機械的な手段で接合すればよい。上記焼結処理は、金
属粉末の種類に応じて、真空雰囲気下、還元性ガスや不
活性ガスなどの非酸化性ガス雰囲気下、あるいは酸化性
ガス雰囲気下で、行うことができる。
When using this metal powder compact for surface modification of a metal base material, for example, after pasting this compact on the metal base material surface with or without an adhesive layer, Either the molded body may be sintered under predetermined temperature conditions depending on the molded body, or the compact may be sintered alone and then bonded to the surface of the metal base material by mechanical means. The sintering process can be performed in a vacuum atmosphere, in a non-oxidizing gas atmosphere such as a reducing gas or an inert gas, or in an oxidizing gas atmosphere, depending on the type of metal powder.

このようにして金属母材面に形成される焼結層は、高沸
点溶剤の揮散や有機高分子結合剤の分解揮散に起因した
ふくれがなくボアーの少ない外観良好でかつ7.2〜7
.8g/ad程度の高い密度を存し、金属母材面の摩耗
や腐食を防止するなどの本来の性能をよりよく発揮させ
ることができるものである。
The sintered layer thus formed on the surface of the metal base material has a good appearance with no blisters caused by volatilization of high-boiling solvents or decomposition and volatilization of organic polymer binders, and has few bores.
.. It has a high density of about 8 g/ad, and can better exhibit its original performance such as preventing wear and corrosion on the metal base material surface.

この発明の金属粉末成形体は、上述の特徴を活かして、
工具5機械、電気、自動車などの金属母材の表面改質層
として応用できるほか、目的とする形状の棒管、シート
片や異形物の素材として、またその他の各種用途に広く
応用できるものである。上記素材としての用途などにあ
っては、成形体を所望形状に加工したのち、前記同様の
焼結処理を施すことにより、目的とする種々の焼結製品
を得ることができる。
The metal powder compact of the present invention takes advantage of the above-mentioned characteristics, and
Tool 5 In addition to being applicable as a surface modification layer for metal base materials in machinery, electricity, automobiles, etc., it can also be used as a material for rods and pipes of desired shapes, sheet pieces, and irregular shapes, and for a wide range of other uses. be. When used as the above-mentioned material, various desired sintered products can be obtained by processing the compact into a desired shape and then subjecting it to the same sintering treatment as described above.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明においては、粉末成形用組成物
中に特定の高沸点溶剤を特定量含ませ、この溶剤の一部
もしくは全部を残存させた状態で成形するようにしたこ
とにより、有機高分子結合剤の使用量が少なくても、ま
た金属粉末として非常に微細なものを用いたときでも、
厚みむらやクシツクの発生をきたすことのない均質でか
つ良質の金属粉末成形体を容易にかつ安定して製造する
ことができる。しかも、この方法にて得られる成形体に
よれば、ふくれがな(ボアーの少ない外観良好でかつ高
い密度を有する焼結体を形成できるから、たとえば表面
改質用などにあっては金属母材面の摩耗や腐食を防止す
るなどの本来の性能をよりよ(発揮させることができる
As described above, in this invention, a powder molding composition contains a specific amount of a specific high-boiling point solvent, and molding is performed with some or all of this solvent remaining. Even when using a small amount of polymeric binder or using extremely fine metal powder,
It is possible to easily and stably produce a homogeneous and high-quality metal powder molded body that does not cause thickness unevenness or clumps. Moreover, the molded body obtained by this method can be formed into a sintered body with a good appearance and high density with few bulges (bores), so it is suitable for use in surface modification of metal base materials. The original performance, such as preventing surface wear and corrosion, can be improved.

〔実施例〕〔Example〕

以下に、この発明の実施例を記載してより具体的に説明
する。なお、以下において部および%とあるはそれぞれ
重量部および重量%を意味するものとする。
EXAMPLES Below, examples of the present invention will be described in more detail. Note that in the following, parts and % mean parts by weight and % by weight, respectively.

実施例1 300メツシユパス(平均粒子径40μm)の鉄系合金
粉末100部に、アクリル酸アルキルエステル系共重合
体(アクリルfin−ブチルとアクリル酸エチルとアク
リル酸との重量比80:15:5の共重合体であって、
平均分子量50万)3部とキシレン(沸点130〜15
5℃)0.5部とを添加し、低沸点溶剤としてトルエン
15部を用いて混練した。これを離型紙を被せた型枠上
に流し込み、トルエンを揮散させたのちロール成形して
、厚さ2.01の合金粉末シートを作製した。なお、ト
ルエン揮散時の温度は100℃以下、ロール成形時の温
度は60〜80℃であった。
Example 1 100 parts of iron-based alloy powder of 300 mesh pass (average particle size 40 μm) was added with an acrylic acid alkyl ester copolymer (acrylic fin-butyl, ethyl acrylate, and acrylic acid in a weight ratio of 80:15:5). A copolymer,
3 parts (average molecular weight 500,000) and xylene (boiling point 130-15
5° C.) and kneaded with 15 parts of toluene as a low boiling point solvent. This was poured onto a mold covered with release paper, and after volatilizing the toluene, it was roll-formed to produce an alloy powder sheet with a thickness of 2.01 mm. Note that the temperature during toluene volatilization was 100°C or less, and the temperature during roll forming was 60 to 80°C.

このようにして得られた合金粉末シートは、その内部に
高沸点溶剤としてのキシレンを含んでおり、厚みむらや
クシツクのない均質でかつ良質のシートであって、密度
が4.8g/cI+!であった。
The alloy powder sheet obtained in this way contains xylene as a high boiling point solvent inside, and is a homogeneous and high quality sheet with no thickness unevenness or clumps, and has a density of 4.8 g/cI+! Met.

実施例2 500メツシユパス(平均粒子径25μm)の鉄系合金
粉末100部に、アクリル酸アルキルエステル系共重合
体(実施例1に記載のものと同じ)5部と酢酸2−エチ
ルヘキシル(沸点198.4℃)1部とを添加し、以下
実施例1と全く同様にして厚さ2.0mmの合金粉末シ
ートを作製した。
Example 2 To 100 parts of iron-based alloy powder of 500 mesh pass (average particle size 25 μm), 5 parts of acrylic acid alkyl ester copolymer (same as described in Example 1) and 2-ethylhexyl acetate (boiling point 198. An alloy powder sheet having a thickness of 2.0 mm was prepared in exactly the same manner as in Example 1.

このようにして得られた合金粉末シートは、その内部に
高沸点溶剤としての酢酸2−エチルヘキシルを含んでお
り、厚みむらやクシツクのない均質でかつ良質のシート
であって、密度が5.0g/dであった。
The alloy powder sheet thus obtained contains 2-ethylhexyl acetate as a high boiling point solvent, is a homogeneous and high quality sheet with no thickness unevenness or clumps, and has a density of 5.0 g. /d.

実施例3 鉄系合金粉末(実施例2に記載のものと同じ)100部
に、アクリロニトリル−ブタジェン共重合ゴム(平均分
子量40万)4部とキシレン(沸点130〜155℃)
0.5部とを添加し、以下実施例1と全く同様にして厚
さ2.01の合金粉末シートを作製した。
Example 3 To 100 parts of iron-based alloy powder (same as described in Example 2), 4 parts of acrylonitrile-butadiene copolymer rubber (average molecular weight: 400,000) and xylene (boiling point: 130 to 155°C)
An alloy powder sheet having a thickness of 2.01 mm was prepared in exactly the same manner as in Example 1.

このようにして得られた合金粉末シートは、その内部に
高沸点溶剤としてのキシレンを含んでおり、厚みむらや
クラックのない均質でかつ良質のシートであって、密度
が5.1g/adであった。
The alloy powder sheet thus obtained contains xylene as a high boiling point solvent, is a homogeneous and high quality sheet with no thickness unevenness or cracks, and has a density of 5.1 g/ad. there were.

比較例1 鉄系合金粉末(実施例2に記載のものと同じ)100部
に、アクリル酸アルキルエステル系共重合体(実施例1
に記載のものと同じ)7部を添加し、以下実施例1と全
く同様にして厚さ2.0 mmの合金粉末シートを作製
した。得られた合金粉末シートは、厚みむらやクラック
がほとんど認められず、密度が4.6g/c−+dであ
った。
Comparative Example 1 100 parts of iron-based alloy powder (same as described in Example 2) was added with an acrylic acid alkyl ester copolymer (Example 1).
An alloy powder sheet having a thickness of 2.0 mm was prepared in exactly the same manner as in Example 1. The obtained alloy powder sheet had almost no thickness unevenness or cracks, and had a density of 4.6 g/c-+d.

比較例2 鉄系合金粉末(実施例2に記載のものと同じ)100部
に、アクリル酸アルキルエステル系共重合体(実施例1
に記載のものと同じ)5部と酢酸エチル(沸点77.1
℃)2部とを添加し、以下実施例1と全く同様にして厚
さ2.0 mmの合金粉末シートを作製した。得られた
合金粉末シートは、厚みむらやクラックが明確に認めら
れ、外観不良であった。密度は5.2g/cjであった
Comparative Example 2 100 parts of iron-based alloy powder (same as that described in Example 2) was added with an acrylic acid alkyl ester copolymer (Example 1).
) and 5 parts of ethyl acetate (boiling point 77.1
℃) was added, and an alloy powder sheet having a thickness of 2.0 mm was prepared in exactly the same manner as in Example 1. The obtained alloy powder sheet had a poor appearance, with uneven thickness and cracks clearly observed. The density was 5.2 g/cj.

比較例3 鉄系合金粉末(実施例2に記載のものと同じ)100部
に、アクリル酸アルキルエステル系共重合体(実施例1
に記載のものと同じ)5部と酢酸2−エチルヘキシル(
沸点198.4℃)0.15部とを添加し、以下実施例
1と全く同様にして厚さ2、0 mmの合金粉末シート
を作製した。得られた合金粉末シートには厚みむらやク
ラックがある程度認められた。密度は5.1g/adで
あった。
Comparative Example 3 100 parts of iron-based alloy powder (same as that described in Example 2) was added with an acrylic acid alkyl ester copolymer (Example 1).
) and 5 parts of 2-ethylhexyl acetate (same as described in
An alloy powder sheet having a thickness of 2.0 mm was prepared in exactly the same manner as in Example 1, with the addition of 0.15 parts (boiling point: 198.4°C). Thickness unevenness and cracks were observed to some extent in the obtained alloy powder sheet. The density was 5.1 g/ad.

比較例4 鉄系合金粉末(実施例2に記載のものと同じ)100部
に、アクリル酸アルキルエステル系共重合体(実施例1
に記載のものと同じ)5部と酢酸2−エチルヘキシル(
沸点198.4℃)3部とを添加し、以下実施例1と全
く同様にして厚さ2.011fflの合金粉末シートを
作製した。得られた合金粉末シートは、その内部に酢酸
2−エチルヘキシルを過剰に含みすぎるために前記共重
合体の金属粉末に対する結合力が弱まり、これが原因で
厚みむらやクラックがかなり認められ、外観良好とはい
えなかった。密度は4.8g/adであった。
Comparative Example 4 100 parts of iron-based alloy powder (same as that described in Example 2) was added with an acrylic acid alkyl ester copolymer (Example 1).
) and 5 parts of 2-ethylhexyl acetate (same as described in
(boiling point: 198.4° C.) was added, and the same procedure as in Example 1 was carried out to prepare an alloy powder sheet having a thickness of 2.011 ffl. The resulting alloy powder sheet contains too much 2-ethylhexyl acetate inside, which weakens the bonding force of the copolymer to the metal powder, which causes considerable thickness unevenness and cracks, and the appearance is not good. I couldn't say yes. The density was 4.8 g/ad.

上記実施例1〜3および比較例1〜4の各合金粉末シー
トの焼結後の特性を調べるために、各シートを20nX
20nの大きさに切断し、真空中1.100℃、30分
の条件で加熱焼結した。得られた焼結体につき、その密
度と外観とを調べた結果は、下記の表に示されるとおり
であった。なお、外観は、厚みむらやクラックがあるか
どうかということに加えて、焼結時に発生したふくれや
ポアーが認められるかどうかということについても総合
的に判断し、これらの不良が全く認められない場合をO
1少しでも認められる場合を△、著しく認められる場合
を×、と評価した。
In order to investigate the properties of each of the alloy powder sheets of Examples 1 to 3 and Comparative Examples 1 to 4 after sintering, each sheet was
It was cut into a size of 20 nm and heated and sintered in vacuum at 1.100° C. for 30 minutes. The density and appearance of the obtained sintered body were examined and the results were as shown in the table below. In addition to the appearance of uneven thickness and cracks, we also comprehensively judge the appearance of any blisters and pores that occur during sintering, and find that no defects are observed. Case O
1. Cases where it was observed even slightly were evaluated as △, and cases where it was markedly observed were evaluated as ×.

上記の表から明らかなように、この発明の方法により得
られた金属粉末成形体によれば、高密度でかつ外観良好
な焼結体を形成しうるちのであることが判る。
As is clear from the above table, it is possible to form a sintered body with high density and good appearance according to the metal powder compact obtained by the method of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)金属粉末100重量部に有機高分子結合剤1〜5
重量部および沸点が120℃以上の高沸点溶剤5〜50
重量部を含ませてなる粉末成形用組成物を、上記溶剤の
一部もしくは全部を残存させた状態でシート状などの所
定の形状に成形することを特徴とする金属粉末成形体の
製造法。
(1) 1 to 5 parts of organic polymer binder to 100 parts by weight of metal powder
5 to 50 parts by weight and high boiling point solvent with a boiling point of 120°C or higher
1. A method for producing a metal powder molded body, which comprises molding a powder molding composition containing parts by weight into a predetermined shape, such as a sheet, with some or all of the solvent remaining.
(2)金属粉末の平均粒子径が100μm以下である特
許請求の範囲第(1)項記載の金属粉末成形体の製造法
(2) The method for producing a metal powder compact according to claim (1), wherein the metal powder has an average particle diameter of 100 μm or less.
(3)高沸点溶剤の沸点が250℃以下である特許請求
の範囲第(1)項または第(2)項記載の金属粉末成形
体の製造法。
(3) The method for producing a metal powder compact according to claim (1) or (2), wherein the boiling point of the high boiling point solvent is 250°C or less.
JP29099786A 1986-12-06 1986-12-06 Production of metal powder molding Pending JPS63143206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29099786A JPS63143206A (en) 1986-12-06 1986-12-06 Production of metal powder molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29099786A JPS63143206A (en) 1986-12-06 1986-12-06 Production of metal powder molding

Publications (1)

Publication Number Publication Date
JPS63143206A true JPS63143206A (en) 1988-06-15

Family

ID=17763122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29099786A Pending JPS63143206A (en) 1986-12-06 1986-12-06 Production of metal powder molding

Country Status (1)

Country Link
JP (1) JPS63143206A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107993786A (en) * 2016-10-26 2018-05-04 胜美达集团株式会社 Magnetic mixture, the intermediate of magnetic element, the manufacture method of magnetic element and magnetic element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107993786A (en) * 2016-10-26 2018-05-04 胜美达集团株式会社 Magnetic mixture, the intermediate of magnetic element, the manufacture method of magnetic element and magnetic element

Similar Documents

Publication Publication Date Title
US4596746A (en) Powder sheet for sintering
DE2115358C2 (en) Process for the production of layers from finely dispersed filler material dispersed in a metal matrix
CN109338137B (en) Method for producing chromium nitride-containing spray powders
WO2012176509A1 (en) Rare earth permanent magnet and production method for rare earth permanent magnet
WO2004080914A1 (en) Heat sink having a high thermal conductivity
WO2020200426A1 (en) Sinterable feedstock for use in 3d printing devices
US11377358B2 (en) Method for producing porous carbon material
DE3327101A1 (en) METHOD FOR PRODUCING A COMPOSITE MATERIAL REINFORCED BY SIC-WHISKERS
EP0276381B1 (en) Method for producing hard material coatings on metal substrates
Kan et al. 316L FFF binder development and debinding optimization
DE3515164C2 (en)
JPH0125804B2 (en)
JP2011042828A (en) Method for producing titanium thin sheet
JPS63143206A (en) Production of metal powder molding
US4797251A (en) Process for fixing metal powder molding at sintering
JP2680819B2 (en) Method for producing tabular products from granular materials
DE4139421C2 (en) Process for covering a substrate surface with a sintered layer and powdered starting material therefor
DE102007047874B4 (en) Porous shaped body of metal oxides and process for its preparation
JP3531040B2 (en) Manufacturing method of cemented carbide and hard material
DE102008014355A1 (en) Composite based on transition metal diborides, process for its preparation and its use
DE3220559A1 (en) SHAPED BODY OF THE SILICON NITRIDE TYPE AND METHOD FOR THE PRODUCTION THEREOF
US5571348A (en) Method and apparatus for improving alloy property and product produced thereby
KR20200065570A (en) Fe-cu alloy powder, method for manufacturing of the same, and sintered product using the same
JPS58193357A (en) Method for surface hardening of metal
JP2000144248A (en) Production of rolled silicon steel sheet