JPS6314285Y2 - - Google Patents

Info

Publication number
JPS6314285Y2
JPS6314285Y2 JP1982044292U JP4429282U JPS6314285Y2 JP S6314285 Y2 JPS6314285 Y2 JP S6314285Y2 JP 1982044292 U JP1982044292 U JP 1982044292U JP 4429282 U JP4429282 U JP 4429282U JP S6314285 Y2 JPS6314285 Y2 JP S6314285Y2
Authority
JP
Japan
Prior art keywords
heat
working fluid
radiator
vacuum glass
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982044292U
Other languages
Japanese (ja)
Other versions
JPS58148554U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1982044292U priority Critical patent/JPS58148554U/en
Publication of JPS58148554U publication Critical patent/JPS58148554U/en
Application granted granted Critical
Publication of JPS6314285Y2 publication Critical patent/JPS6314285Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Description

【考案の詳細な説明】 この考案は可変コンダクタンス形ヒートパイプ
を使用した真空ガラス管形太陽熱集熱器に係り、
とくにヒートパイプに封入される作動液に関す
る。
[Detailed description of the invention] This invention relates to a vacuum glass tube solar collector using a variable conductance heat pipe.
In particular, it relates to the working fluid sealed in the heat pipe.

この種の太陽熱集熱器としては第1図に示す構
造のものが本願と同一の出願人により出願されて
いるので、まず構造を図面に基づいて説明する。
As this type of solar heat collector, one having the structure shown in FIG. 1 has been filed by the same applicant as the present application, so the structure will first be explained based on the drawings.

第1図は可変コンダクタンス形ヒートパイプを
使用した真空ガラス管形太陽熱集熱器の断面図、
第2図は第1図におけるX−X′断面図で、放熱
筒、連結管、放熱器内における作動液、作動液の
蒸発気体、および非凝縮性ガスの分布を示すもの
である。図において1は透光性の真空ガラス管
で、一端は閉塞され、他端には封止金具2が設け
てあつて、この個所をヒートパイプ3の一方側が
軸封貫通して突出している。3aはヒートパイプ
3の集熱部で閉塞された先端部(図示せず)は図
示しないサポートにて真空ガラス管1の内壁に支
持されている。真空ガラス管1の封止金具2より
突出せるヒートパイプ3の先端は放熱筒4に連通
接続されている。そして放熱筒4は集熱部3aよ
り上位の位置にあるように構成され、ヒートパイ
プ3、集熱部3a内には作動液5が封入されてい
る。また放熱筒4の内部には熱媒管6が収納さ
れ、その両端は放熱筒4の両端面を軸封貫通して
突出しており、図示されない熱媒循環系に接続さ
れている。そしてこの放熱筒4には連結管7を介
して、外周に放熱フイン8を有する放熱器9が連
通接続されており、放熱器9の内部には常温大気
圧下で非凝縮性ガス(たとえば窒素ガス)10が
封入され、放熱筒4より上部位置に設置されてい
る。なお前記非凝縮性ガス10は、集熱部3aが
受熱していない時には、放熱筒4の内部にも充満
している。11は放熱筒4を外気と熱絶縁する断
熱材、12は真空ガラス管1より突出せるヒート
パイプ3を外気と熱絶縁する断熱材、13は作動
液5、非凝縮性ガス10を封入するときに使用す
る封止チツプである。かかる構造の太陽熱集熱器
では真空ガラス管1を透して太陽光の照射を受け
た集熱部3aは受熱し、内部の作動液5が加熱さ
れてその一部は蒸発する。この蒸発気体5′は放
熱筒4に移動し、その蒸気圧により放熱筒4内に
充満していた非凝縮性ガス10を放熱筒4と連通
している放熱器9内に押し上げる。その結果蒸発
気体5′それ自身は放熱器9内に進入することな
く、従つて受熱した太陽熱を無駄に放熱器9で放
出することなく蒸発潜熱の全てを放熱筒4内で放
出して熱媒管6を流通する熱媒を加熱する。これ
により凝縮して液化された作動液5は重力により
落下し、放熱筒4よりヒートパイプ3、集熱部3
aに環流され、再び太陽光により加熱される。こ
のような作動液の蒸発→凝縮サイクルの繰り返し
により熱媒は加熱されて熱媒循環系に流れる。以
上は正常運転時(熱媒管6に熱媒が流通している
時)の動作であるが、何らかの理由で熱媒管6に
熱媒が流通しないでしかも真空ガラス管1内の集
熱部3aが受熱しているとき、いわゆる空焚き状
態にあるときは集熱部3a内の作動液5が蒸発し
つづけ、これにより放熱筒4の内部圧力が過大上
昇するが、この蒸発気体5′は放熱筒4に連通し
ている放熱器9の中へ非凝縮性ガス10を圧縮し
て入り込む。ここで蒸発気体5′は蒸発潜熱を放
出し凝縮する。これにより凝縮して液化された作
動液5は重力により落下し、連結管7、放熱筒4
を経てヒートパイプ3、集熱部3aに環流され
る。そして蒸発気体5′の蒸発潜熱の放出、凝縮
により放熱筒4内の異常圧力上昇、ヒートパイプ
3の異常温度上昇が吸収され、放熱筒の破損や作
動液の変質が防止される。
Figure 1 is a cross-sectional view of a vacuum glass tube solar collector using variable conductance heat pipes.
FIG. 2 is a cross-sectional view taken along the line X-X' in FIG. 1, showing the distribution of the working fluid, the evaporated gas of the working fluid, and the non-condensable gas in the heat sink, connecting pipe, and radiator. In the figure, reference numeral 1 denotes a translucent vacuum glass tube, one end of which is closed, and a sealing fitting 2 provided at the other end, through which one side of a heat pipe 3 passes through the shaft seal and protrudes. 3a, a distal end portion (not shown) of the heat pipe 3 which is closed by a heat collecting portion is supported on the inner wall of the vacuum glass tube 1 by a support (not shown). The tip of the heat pipe 3 that protrudes from the sealing fitting 2 of the vacuum glass tube 1 is connected to a heat radiation tube 4 . The heat dissipation tube 4 is configured to be located above the heat collecting section 3a, and a working fluid 5 is sealed within the heat pipe 3 and the heat collecting section 3a. Further, a heat medium pipe 6 is housed inside the heat radiation cylinder 4, and both ends of the heat medium pipe 6 protrude through shaft seals through both end surfaces of the heat radiation cylinder 4, and are connected to a heat medium circulation system (not shown). A heat radiator 9 having heat radiating fins 8 on the outer periphery is connected to the heat radiator 4 through a connecting pipe 7, and a non-condensable gas (for example, nitrogen A gas) 10 is sealed in the heat dissipation cylinder 4, and the heat dissipation cylinder 4 is installed at an upper position. Note that the non-condensable gas 10 also fills the inside of the heat sink 4 when the heat collecting section 3a is not receiving heat. 11 is a heat insulating material that thermally insulates the heat sink 4 from the outside air; 12 is a heat insulating material that thermally insulates the heat pipe 3 protruding from the vacuum glass tube 1 from the outside air; 13 is a material for sealing the working fluid 5 and non-condensable gas 10; This is a sealing chip used for In a solar heat collector having such a structure, the heat collecting portion 3a receives sunlight through the vacuum glass tube 1 and receives heat, and the working fluid 5 inside is heated and a portion of it evaporates. This evaporated gas 5' moves to the heat sink 4, and its vapor pressure pushes up the non-condensable gas 10 filling the heat sink 4 into the heat radiator 9 communicating with the heat sink 4. As a result, the evaporated gas 5' itself does not enter the radiator 9, and therefore, the received solar heat is not wasted in the radiator 9, but all of the latent heat of vaporization is released in the radiator tube 4, and the heat is transferred to the heat radiator 9. The heating medium flowing through the tube 6 is heated. As a result, the condensed and liquefied working fluid 5 falls due to gravity and is transferred from the heat sink 4 to the heat pipe 3 and the heat collecting section 3.
a and is heated again by sunlight. By repeating such a cycle of evaporation and condensation of the working fluid, the heating medium is heated and flows into the heating medium circulation system. The above is the operation during normal operation (when the heat medium is flowing through the heat medium tube 6), but for some reason the heat medium does not flow through the heat medium tube 6 and the heat collecting part When 3a is receiving heat, in a so-called dry firing state, the working fluid 5 in the heat collecting section 3a continues to evaporate, which causes the internal pressure of the heat sink 4 to rise excessively, but this evaporated gas 5' The non-condensable gas 10 is compressed and enters the heat radiator 9 which is in communication with the heat radiator cylinder 4. Here, the evaporated gas 5' releases latent heat of vaporization and condenses. As a result, the condensed and liquefied working fluid 5 falls due to gravity to the connecting pipe 7 and the heat sink 4.
The heat is circulated through the heat pipe 3 and the heat collecting section 3a. The release and condensation of the latent heat of vaporization of the evaporated gas 5' absorbs the abnormal pressure rise in the heat sink 4 and the abnormal temperature rise in the heat pipe 3, thereby preventing damage to the heat sink and deterioration of the working fluid.

ところでこのような構造の太陽熱集熱器におい
ては、ヒートパイプに封入された作動液の特性が
極めて重要である。
By the way, in a solar heat collector having such a structure, the characteristics of the working fluid sealed in the heat pipe are extremely important.

すなわち集熱効率に影響する作動液の沸点は、
太陽熱集熱器の必要作動温度条件に適合すること
が好ましい。今作動液として水を使用した場合を
考えると、水は周知のように大気圧下では沸点
は、100℃という高温度のため太陽熱集熱器の必
要作動温度(たとえば40〜50℃)条件よりはるか
に高い、このため適合した条件とするためには減
圧して(0.1Kg/cm3abs以下)沸点(40℃以下)を
下げるようにしてヒートパイプに封入しなければ
ならない。しかし乍らヒートパイプに減圧封入す
る作業は困難で、ヒートパイプ内の減圧状態を安
定させることは容易ではない。
In other words, the boiling point of the working fluid, which affects heat collection efficiency, is
Preferably, it meets the required operating temperature conditions of the solar collector. If we consider the case where water is used as a working fluid, as is well known, the boiling point of water under atmospheric pressure is as high as 100°C, which is higher than the required operating temperature of a solar collector (for example, 40 to 50°C). Therefore, in order to meet the conditions, it is necessary to reduce the pressure (below 0.1Kg/cm 3 abs) and lower the boiling point (below 40℃) before sealing it in the heat pipe. However, it is difficult to seal the heat pipe under reduced pressure, and it is not easy to stabilize the reduced pressure state inside the heat pipe.

本考案は上述した点に鑑み、なされたもので作
動液を安定した状態、つまり大気圧で封入しよう
というもので、このため本考案では作動液として
その沸点が大気圧下において20℃〜50℃の範囲の
液体を使用し、大気圧下で封入することを提案す
るものである。
The present invention was developed in view of the above-mentioned points, and the purpose is to seal the working fluid in a stable state, that is, at atmospheric pressure.For this reason, in this invention, the working fluid has a boiling point of 20°C to 50°C under atmospheric pressure. It is proposed that a liquid in the range of

以下この考案の実施例を横軸に温度(℃)、縦
軸に絶対圧力(Kg/cm3)をとつた第3図(沸点−
気圧)に基づいて説明する。第3図におけるAは
前述した水の沸点−気圧の関係を示す曲線、Bは
フロンR−113の曲線、CはフロンR−11の曲線
である。図で明らかなように水を作動液として使
用する場合、その沸点は大気圧下において100℃
なるがため太陽熱集熱器のヒートパイプの作動液
としては不適当であり、そのため減圧して使用し
なければならないことは前述した通りである。こ
れに対しフロンR−113(B曲線)、フロンR−11
(C曲線)の場合は大気圧下で前者の沸点は約48
℃、後者の沸点は約24℃であるのでこれらを作動
液として使用すれば20℃〜50℃以内で集熱が開始
されるので太陽熱集熱器の必要作動温度条件に適
合し好都合である。したがつてヒートパイプに作
動液としてフロンR−113またはフロンR−11を
封入すればその封入作業は大気圧下で安定して行
なえ、しかも放熱器に封入すべき非凝縮性ガス
(たとえば窒素ガス)と同時に封入することもで
きるので、水を作動液として減圧封入する場合に
比べて、作動液封入作業が非常に簡単になる効果
がある。
The following is an example of this invention shown in Figure 3 (boiling point -
The explanation will be based on atmospheric pressure). In FIG. 3, A is a curve showing the above-described relationship between the boiling point of water and the atmospheric pressure, B is a curve for Freon R-113, and C is a curve for Freon R-11. As is clear from the figure, when water is used as a working fluid, its boiling point is 100℃ at atmospheric pressure.
As mentioned above, it is therefore unsuitable as a working fluid for heat pipes in solar heat collectors, and therefore must be used under reduced pressure. On the other hand, Freon R-113 (B curve), Freon R-11
In the case of (C curve), the boiling point of the former is approximately 48 at atmospheric pressure.
The boiling point of the latter is about 24°C, so if these are used as working fluids, heat collection will start within 20°C to 50°C, which is convenient as it meets the required operating temperature conditions for solar heat collectors. Therefore, if the heat pipe is filled with Freon R-113 or Freon R-11 as a working fluid, the filling operation can be carried out stably under atmospheric pressure, and it is also possible to fill the heat pipe with non-condensable gas (such as nitrogen gas) to be filled in the radiator. ) can be sealed at the same time, which has the effect of greatly simplifying the work of filling the hydraulic fluid, compared to the case where water is sealed under reduced pressure as the hydraulic fluid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は可変コンダクタンス形ヒートパイプを
使用した真空ガラス管形太陽熱集熱器の断面図、
第2図は第1図におけるX−X′断面図、第3図
は作動液として使用される熱媒の沸点−圧力曲線
図である。 1……真空ガラス管、3……ヒートパイプ、4
……放熱筒、5……作動液、6……熱媒管、7…
…連結管、9……放熱器。
Figure 1 is a cross-sectional view of a vacuum glass tube solar collector using variable conductance heat pipes.
2 is a sectional view taken along the line X-X' in FIG. 1, and FIG. 3 is a boiling point-pressure curve diagram of a heating medium used as a working fluid. 1... Vacuum glass tube, 3... Heat pipe, 4
... Heat sink, 5 ... Working fluid, 6 ... Heat medium pipe, 7 ...
...Connecting pipe, 9...Radiator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 透光性の真空ガラス管内にそれぞれ配設され一
端が真空ガラス管外に突出する作動液入りヒート
パイプと、これらヒートパイプに接続されて熱媒
管の外周を包囲する放熱筒とを有し、該放熱筒に
連結管を介して非凝縮性ガスを封入した放熱器を
連通接続した太陽熱集熱器において;前記作動液
入りヒートパイプに作動液としてその沸点が大気
圧下において20℃〜50℃の範囲の液体を大気圧下
で非凝縮性ガスとともに封入したことを特徴とす
る太陽熱集熱器。
It has heat pipes containing a working fluid each disposed inside a light-transmitting vacuum glass tube and having one end protruding outside the vacuum glass tube, and a heat dissipation tube connected to these heat pipes and surrounding the outer periphery of the heat medium tube, In a solar heat collector in which a radiator filled with a non-condensable gas is connected to the heat radiator through a connecting pipe; A solar heat collector characterized in that a liquid in the range of 100 to 100% is sealed together with a non-condensable gas under atmospheric pressure.
JP1982044292U 1982-03-29 1982-03-29 solar heat collector Granted JPS58148554U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1982044292U JPS58148554U (en) 1982-03-29 1982-03-29 solar heat collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1982044292U JPS58148554U (en) 1982-03-29 1982-03-29 solar heat collector

Publications (2)

Publication Number Publication Date
JPS58148554U JPS58148554U (en) 1983-10-05
JPS6314285Y2 true JPS6314285Y2 (en) 1988-04-21

Family

ID=30055352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1982044292U Granted JPS58148554U (en) 1982-03-29 1982-03-29 solar heat collector

Country Status (1)

Country Link
JP (1) JPS58148554U (en)

Also Published As

Publication number Publication date
JPS58148554U (en) 1983-10-05

Similar Documents

Publication Publication Date Title
JPH0612370Y2 (en) Double tube heat pipe type heat exchanger
JP3037414B2 (en) Heat pipe equipment
JPS5928839B2 (en) Thermosiphon type heat pipe with heat storage function
JPS6314285Y2 (en)
JPS6125570Y2 (en)
JPH07324826A (en) Vacuum duplex glass tube
US4454864A (en) Solar collector comprising a heat exchanger
EP0015017A1 (en) Heat transport tube solar collector and system comprising at least such a collector
CN208011831U (en) A kind of heat-pipe apparatus having heat storage capacity
JPS59161692A (en) Variable conductance type heat pipe
JPS6350625B2 (en)
KR20190081998A (en) Heat Accumulation System
JPS608273Y2 (en) solar collector
GB2578041A (en) Capillary pressure pump
JPS6028914Y2 (en) solar heat collector
JPS6250758B2 (en)
JPS5869362A (en) Solar heat collector
JPS644044Y2 (en)
JPH0115783B2 (en)
JPS58182054A (en) Solar heat collector
JPS5930866Y2 (en) solar heat collector
JPS5919248Y2 (en) solar heat collector
JPS5627891A (en) Radiator
JPS6012996Y2 (en) solar heat collector
JPS6124943A (en) Temperature difference solar heat collector