JPS631426A - Wet exhaust gas desulfurizing method - Google Patents

Wet exhaust gas desulfurizing method

Info

Publication number
JPS631426A
JPS631426A JP61142908A JP14290886A JPS631426A JP S631426 A JPS631426 A JP S631426A JP 61142908 A JP61142908 A JP 61142908A JP 14290886 A JP14290886 A JP 14290886A JP S631426 A JPS631426 A JP S631426A
Authority
JP
Japan
Prior art keywords
slurry
absorption
limestone
calcium sulfite
gypsum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61142908A
Other languages
Japanese (ja)
Other versions
JPH0683777B2 (en
Inventor
Naoharu Shinoda
篠田 直晴
Atsushi Tatani
多谷 淳
Masakazu Onizuka
鬼塚 雅和
Toru Takashina
徹 高品
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61142908A priority Critical patent/JPH0683777B2/en
Publication of JPS631426A publication Critical patent/JPS631426A/en
Publication of JPH0683777B2 publication Critical patent/JPH0683777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance separability by carrying out an absorption process and an adjusting process of adsorbing slurry and separating process to separate the same into plaster slurry and line stone. calcium sulfite slurry, and irradiating ultrasonic waves to slurry in the separating process. CONSTITUTION:Combustion exhaust gas 102 and absorbing slurry coming from a spray pipe 105 are contacted in an adsorption tower 101 to adsorb SO2, and exhaust gas is exhaust in the from of purified gas 107. On the other hand, limestone slurry is fed from a limestone feeding tube 109 into absorbing slurry to form calcium sulfite. Calcium sulfite is oxidized by oxygen in exhaust gas and turned into plaster. Part of adsorbing slurry comes into a separator 12, being irradiated with supersonic waves coming from a supersonic wave oscillator 114, and recovers plaster 116 into a tank 119, while calcium sulfite. limestone slurry 115 is brought back to an adsorption tower tank 103, circulated and used as adsorbing slurry.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は湿式石灰石・石膏法による排煙脱硫方法に関し
吸収スラリーに超音波を照射することによってSO,吸
収能を高め、効率良く石膏を回収することを可能とした
排煙脱硫方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a flue gas desulfurization method using a wet limestone/gypsum method, and improves the SO absorption capacity by irradiating the absorption slurry with ultrasonic waves to efficiently recover gypsum. This invention relates to a flue gas desulfurization method that makes it possible to

〔従来の技術〕[Conventional technology]

第3図によって従来技術(実開昭59−10855号公
報)を説明する。排煙脱硫装置の吸収塔201で燃焼排
ガス202を洗浄する。亜硫酸カルシウム粒子と石膏粒
子と石灰石粒子を懸濁した吸収スラリーを渫有する吸収
塔タンク205から吸収塔循環ポ/プ204によってス
プレーパイプ205から吸収スラリーをスプレーするこ
とにより、排ガス中のso,6吸収する。
The prior art (Japanese Utility Model Application Publication No. 10855/1983) will be explained with reference to FIG. Combustion exhaust gas 202 is cleaned in an absorption tower 201 of a flue gas desulfurization device. By spraying the absorption slurry from the spray pipe 205 by the absorption tower circulation pop/p 204 from the absorption tower tank 205 containing an absorption slurry in which calcium sulfite particles, gypsum particles, and limestone particles are suspended, SO,6 absorption in the exhaust gas is performed. do.

排ガス中に散布された吸収スラリーはミスト状になって
排ガスと接融し同伴されるので、ミストエリミネータ−
206でミストを除去し、浄化ガス207として系外へ
放出する。ミストエ+7 ミネーター206は石膏粒子
、石灰石粒子、亜硫酸カルシウム粒子、フライアッシュ
粒子などが付着して閉塞し易いので、洗浄ノズル208
から水を散布して洗浄する。
The absorption slurry dispersed in the exhaust gas becomes a mist, melts with the exhaust gas, and is entrained, so the mist eliminator
At step 206, the mist is removed and released as purified gas 207 to the outside of the system. Mistoe+7 The cleaning nozzle 208 is easily clogged with gypsum particles, limestone particles, calcium sulfite particles, fly ash particles, etc. attached to the Minator 206.
Spray water and wash.

一方SO,吸収剤である石灰石スジリーを石灰石供給管
209から供給し吸収されたSO,と反応させて亜硫酸
カルシウムとするが、排ガス中に含まれる酸素によって
亜硫酸カルシウムの一部が酸化し石膏となる。又、吸収
スラリーのSo,吸収能を高める為にSO,吸収量より
過剰の石灰石を供給するので、結局、吸収塔タンク20
5に保有される吸収スラリ・一は亜硫酸カルシウム粒子
と石膏粒子と石灰石粒子を混合した水性スラリーとなっ
ている。
On the other hand, SO and limestone sujiri, which is an absorbent, are supplied from the limestone supply pipe 209 and reacted with the absorbed SO to form calcium sulfite, but a part of the calcium sulfite is oxidized by the oxygen contained in the exhaust gas and becomes gypsum. . In addition, in order to increase the So and absorption capacity of the absorption slurry, limestone is supplied in excess of the amount of SO and absorption, so in the end, the absorption tower tank 20
Absorption slurry 1 held in No. 5 is an aqueous slurry containing calcium sulfite particles, gypsum particles, and limestone particles.

石膏を副生品として回収する為に、吸収スラリーをパル
プ211から抜出して分離器212へ導き、石膏スラリ
−215と亜硫酸カルシウム・石灰石スラリ−214に
分離し亜硫酸カルシウム・石灰石スラリ−214は吸収
塔タンク205へ戻すと共に石膏スラIJ−215は石
膏スラリータンク215を経由して副生石膏分離機(図
示せず)へ送られる。
In order to recover gypsum as a by-product, the absorption slurry is extracted from the pulp 211 and guided to a separator 212, where it is separated into a gypsum slurry 215 and a calcium sulfite/limestone slurry 214. The calcium sulfite/limestone slurry 214 is sent to an absorption tower. While returning to the tank 205, the gypsum slurry IJ-215 is sent to a by-product gypsum separator (not shown) via the gypsum slurry tank 215.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

吸収スラリーから石膏スラリーを分離する分離器212
には次のような問題がある。
Separator 212 for separating gypsum slurry from absorbent slurry
has the following problems:

(1)亜硫酸カルシウム粒子及び石灰石粒子が凝集する
性質を有している為、石膏粒子を包含してしまい、ハイ
ドロサイクロンやシツクナーの従来の分離方式では石膏
スラリーと亜硫酸カルシウム・石灰石スラリーに2分別
することは困難である。
(1) Calcium sulfite particles and limestone particles have the property of agglomerating, so they contain gypsum particles, and conventional separation methods such as hydrocyclones and thickeners separate them into gypsum slurry and calcium sulfite/limestone slurry. That is difficult.

(2)亜硫酸カルシウムが吸収塔タンクへ戻される為吸
収塔タンク内の吸収スラIJ−中の亜硫酸カルシウム粒
子が石膏粒子よυ多くなり、マスバランス上明らか々よ
うに連続的に安定して石膏を回収することは出米ない。
(2) Since calcium sulfite is returned to the absorption tower tank, the number of calcium sulfite particles in the absorption slug IJ- in the absorption tower tank becomes larger than the gypsum particles, and as is clear from the mass balance, gypsum is continuously and stably produced. There is no point in collecting it.

即ち亜硫酸カルシウムの一部を酸化して石膏にする割合
(酸化率)を高めないと安定して石膏を回収することは
出来ない。
In other words, gypsum cannot be recovered stably unless a portion of calcium sulfite is oxidized to gypsum (oxidation rate).

本発明は上記の問題点を解消するために吸収スラリーに
超音波根動を与えることによって、凝集した亜硫酸カル
シウム粒子と石灰石粒子を分散させ、石膏粒子との分離
を容易にすると共に亜硫酸カルシウム粒子と石灰石粒子
の反応性を活性化して酸化率の向上と脱硫性能を向上さ
せた湿式排煙脱硫方法を提供しようとするものである。
In order to solve the above-mentioned problems, the present invention disperses aggregated calcium sulfite particles and limestone particles by applying ultrasonic root motion to the absorption slurry, thereby facilitating separation from gypsum particles and dispersing the calcium sulfite particles. The present invention aims to provide a wet flue gas desulfurization method that improves the oxidation rate and desulfurization performance by activating the reactivity of limestone particles.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は燃焼排ガスを吸収スラリーと気液接触させて排
ガス中の硫黄酸化物を吸収する吸収工程と、該吸収工程
から流出する吸収スラIJ一に吸収剤である石灰石を加
えて混合する吸収スラリー調整工程と、調整された吸収
スラリーを前記吸収工程に循環するとともに、循環する
吸収スラリーの一部を抜き出して分離工程に導き、沈降
する石膏スラリーと浮上する石灰石・亜硫酸カルシウム
スラリーに分離して石膏スラリーは石膏回収工程へ、石
灰石・亜硫酸カルシウムスラリーは前記吸収スラリー調
整工程へそれぞれ移送する湿式排煙脱硫方法において、
前記分離工程で吸収スラリーに対して超音波分照射する
ことを特徴とする湿式排煙脱硫方法である。
The present invention comprises an absorption process in which combustion exhaust gas is brought into gas-liquid contact with an absorption slurry to absorb sulfur oxides in the exhaust gas, and an absorption slurry in which limestone as an absorbent is added to and mixed with the absorption sludge IJ flowing out from the absorption process. A conditioning process and the adjusted absorption slurry are circulated to the absorption process, and a part of the circulating absorption slurry is extracted and guided to a separation process, where it is separated into a settling gypsum slurry and a floating limestone/calcium sulfite slurry. In a wet flue gas desulfurization method in which the slurry is transferred to the gypsum recovery process and the limestone/calcium sulfite slurry is transferred to the absorption slurry preparation process,
The wet flue gas desulfurization method is characterized in that the absorption slurry is irradiated with ultrasonic waves in the separation step.

〔作用〕[Effect]

本発明は亜硫酸カルシウム粒子と石灰石粒子と石膏粒子
が混在する吸収スラリーに対して超音波撮動を与えるこ
とによシ、石膏スラリーの分離特性を向上させ更に超音
波照射で亜硫酸カルシウム粒子と石灰石粒子の反応活性
を向上させ、石膏への酸化率と80,吸収能を高める様
にした脱硫方法を見い出したことにある。
The present invention improves the separation characteristics of the gypsum slurry by applying ultrasonic imaging to an absorption slurry containing a mixture of calcium sulfite particles, limestone particles, and gypsum particles. The aim is to discover a desulfurization method that improves the reaction activity of gypsum and increases the oxidation rate and absorption capacity of gypsum.

本発明の重要な要素を占める超音波去動による石膏粒子
と亜硫酸カルシウム・石灰石粒子の分離効果を第2図に
よシ説明する。平均40μの石膏粒子約1 0 0 f
/K1?馬0と平均10μの亜硫酸カルシウム・石灰石
粒子約1 5 5’ /’K9 HzOを含む吸収スラ
リーを分離器に供給し、オーバー 7 o − トアン
ダー7ローの液体流量がほソ等しくなる様に常に調整し
乍ら、吸収スラリーの分離器への供給量を変化させた。
The effect of separating gypsum particles and calcium sulfite/limestone particles by ultrasonic ablation, which is an important element of the present invention, will be explained with reference to FIG. Approximately 100 f of gypsum particles with an average size of 40μ
/K1? An absorption slurry containing calcium sulfite/limestone particles of average size 10μ and about 155'/'K9 HzO was fed to the separator, and the liquid flow rate of over 7 o - tounder 7 low was always maintained to be approximately equal. While adjusting, the amount of absorption slurry fed to the separator was varied.

即ち、分離器への供給スラリー流量を変えることはオー
バーフロー流量が変わることであり、(常にアンダーフ
ロ一流量モオーバーフロー流量トほソ等しくなる様に変
えた。)オーバーフロー液の分離器内での平均上昇速度
の変化として捕えることが出来る訳である。
That is, changing the slurry flow rate fed to the separator will change the overflow flow rate (always changing the underflow flow rate and overflow flow rate to be approximately equal). This can be seen as a change in the rate of rise.

超音波照射なしの場合は、第2図中黒塗シ印を破線で結
んだ通り、亜硫酸カルシウム・石灰石粒子が凝集してい
る為、石膏粒子と同等の挙動を示し、オーバーフロー液
の上昇速度が4m/h以下ではオーバーフロー液は清澄
液になってし寸っている。第2図より明らかに石膏粒子
と亜硫酸カルシウム・石灰石粒子とは凝集した状態にあ
ってほy同じ沈降速度を有している為、各々の粒子を分
離することは困難であった。
In the case of no ultrasonic irradiation, as shown by the broken lines connecting the black circles in Figure 2, the calcium sulfite/limestone particles aggregate, exhibiting the same behavior as gypsum particles, and the rising speed of the overflow liquid decreases. At speeds below 4 m/h, the overflow liquid becomes clear liquid. It is clear from FIG. 2 that the gypsum particles and the calcium sulfite/limestone particles were in an aggregated state and had almost the same sedimentation rate, so it was difficult to separate each particle.

ところが超音波を照射すると、白印を実線で結んだ通り
亜硫酸カルシウム・石灰石粒子と石膏粒子は分離し易く
なる。更に分離された亜硫酸カルシウム・石灰石粒子は
その粒子表面が分散時に活性化される為、亜硫酸カルシ
ウムは酸化され易くなって好ましい石膏になり又、石灰
石は中和能力が向上するのでB○2吸収性能が向上する
,, 脱硫率と酸化率に及ぼす超音波の効果は表−1の通りで
−あった。
However, when irradiated with ultrasonic waves, the calcium sulfite/limestone particles and the gypsum particles become easier to separate, as shown by the solid line connecting the white marks. Furthermore, since the particle surface of the separated calcium sulfite/limestone particles is activated during dispersion, calcium sulfite becomes easily oxidized and becomes preferred gypsum, and limestone improves its neutralization ability, resulting in improved B○2 absorption performance. The effects of ultrasonic waves on the desulfurization rate and oxidation rate are shown in Table 1.

表−1 排煙脱硫性能に及ぼす超音波の効果尚第2図の
データ及び表−1のデータは、第1図に示すフローから
なる小型ラボ試験装置(排ガス量200s”N/h石炭
焚き排ガス処理湿式石灰石・石膏法脱硫装置)に於いて
得られたもので分離器は容積10l1超音波は400W
出力、周波数2 8 Klzの条件で照射したものであ
る。
Table 1 Effect of ultrasonic waves on flue gas desulfurization performance The data in Figure 2 and the data in Table 1 are based on a small laboratory test device consisting of the flow shown in Figure 1 (exhaust gas amount 200 s”N/h coal-fired exhaust gas The separator has a volume of 10 liters and an ultrasonic wave of 400 W.
Irradiation was performed under conditions of output and frequency of 2 8 Klz.

〔実施例〕〔Example〕

,第1図によって本発明の実施態様を説明する。 , an embodiment of the present invention will be explained with reference to FIG.

排煙脱硫装置の吸収塔101で鮎焼排ガス102を洗浄
する所の石膏粒子と亜硫酸カルシウム粒子と石灰石粒子
を懸濁した吸収スラリ−を保有する吸収塔タンク103
から吸収塔循環ポンプ104によってスプレーパイプ1
05から吸収スラリーをスプレーすることにより、排ガ
ス中のSO,は吸収される。排ガス中に散布された吸収
スラリーはミスト状になって排ガスに同伴するのでミス
トエリミネータ−106でミストを除去し、浄化ガス1
07として系外へ放出する。ミストエリミネータ−10
6は石灰石・亜硫酸カルシウム、石膏、フライアツシュ
の各粒子が付着して閉塞し易いので洗浄ノズル108か
ら水を散布して洗浄する。
An absorption tower tank 103 holding an absorption slurry in which gypsum particles, calcium sulfite particles, and limestone particles are suspended, which is used to clean the sweetfish grilling exhaust gas 102 in the absorption tower 101 of the flue gas desulfurization equipment.
from the absorption tower circulation pump 104 to the spray pipe 1
By spraying absorption slurry from 05, SO in the exhaust gas is absorbed. The absorption slurry dispersed in the exhaust gas becomes a mist and accompanies the exhaust gas, so the mist is removed by the mist eliminator 106 and purified gas 1
It is released outside the system as 07. Mist Eliminator-10
6 is easily clogged by particles of limestone, calcium sulfite, gypsum, and fly ash, so it is cleaned by spraying water from the cleaning nozzle 108.

一方80!吸収剤である石灰石スラリーを石灰石供給管
109から供給し吸収され九S○,と反応させて亜硫酸
カルシウムとする。吸収スラリー〇E[l,吸収能を高
める為にSO,吸収量より過剰の石灰石を供給するので
吸収スラリー中には石灰石粒子が常に存在する。
80 on the other hand! Limestone slurry, which is an absorbent, is supplied from the limestone supply pipe 109, and is absorbed and reacted with 9SO to form calcium sulfite. Absorption slurry〇E [l, SO is supplied in order to increase the absorption capacity, and limestone particles are always present in the absorption slurry because limestone is supplied in excess of the absorption amount.

又亜硫酸カルシウムは排ガス中の酸素によって酸化され
石膏となるので吸収塔タンク103に保有されるスラリ
ーは石膏粒子と亜硫酸カルシウム粒子と石灰石粒子を含
む。
Moreover, since calcium sulfite is oxidized by oxygen in the exhaust gas and becomes gypsum, the slurry held in the absorption tower tank 103 contains gypsum particles, calcium sulfite particles, and limestone particles.

吸収スラリーの一部はバルプ111を介して分離器11
2へ導かれる。分離器112内へ入った吸収スラリーに
超音波振動を与えて、凝集している亜硫酸カルシウム・
石灰石粒子を分散させる為に超音波振動子113と超音
波発娠器114が設けてある。これによって10μ前後
の亜硫酸カルシウム・石灰石粒子と40μ前後の石膏粒
子とが分散するので、石膏粒子と亜硫酸カルシウム・石
灰石粒子の沈降速度差を利用した分離が効率良く行われ
る。
A portion of the absorption slurry is passed through the valve 111 to the separator 11.
Leads to 2. Ultrasonic vibration is applied to the absorption slurry that has entered the separator 112 to remove the aggregated calcium sulfite and
An ultrasonic vibrator 113 and an ultrasonic generator 114 are provided to disperse the limestone particles. As a result, calcium sulfite/limestone particles of around 10 μm and gypsum particles of around 40 μm are dispersed, so that separation using the difference in sedimentation speed between the gypsum particles and calcium sulfite/limestone particles can be efficiently performed.

亜硫酸カルシウム・石灰石粒子をオーバーフロー側に運
ぶ様に、そして石膏粒子はアンダーフロー側に運ばれる
様に流体の移動速度を調整することによって、亜硫酸カ
ルシウム・石灰石スラリ−115と石膏スラIJ−11
6が得られる。
Calcium sulfite/limestone slurry 115 and gypsum slurry IJ-11 are mixed by adjusting the fluid movement speed so that calcium sulfite/limestone particles are carried to the overflow side and gypsum particles are carried to the underflow side.
6 is obtained.

分離器112の底流である石膏スラIJ−116の抜出
し量は吸収塔タンク105に保有される吸収スラリーの
スラリー濃度検出器117(比重計)からの信号を受け
てバルブ118の開閉によって調整する。これにより、
吸収スラIJ +中の石膏粒子をスケール防止の種晶と
して必要な濃度に管理することが出来る。石膏スラリー
116は石膏スラリータンク119を経由して副生石膏
分離機110へ送られる。又、分離器112の溢流であ
る亜硫酸カルシウム・石灰石スラリ−115は吸収塔タ
ンク103へ戻される。超音波照射によって活性化され
た亜硫酸カルシウム粒子及び石灰石粒子は各々排ガス中
の酸素で酸化され易く又、So,吸収能が増大する。
The amount of gypsum slurry IJ-116 drawn out as the bottom stream of the separator 112 is adjusted by opening and closing a valve 118 in response to a signal from a slurry concentration detector 117 (hydrometer) of the absorption slurry held in the absorption tower tank 105. This results in
The gypsum particles in the absorption slurry IJ+ can be controlled to the required concentration as seed crystals for scale prevention. Gypsum slurry 116 is sent to by-product gypsum separator 110 via gypsum slurry tank 119. Further, calcium sulfite/limestone slurry 115, which is an overflow from the separator 112, is returned to the absorption tower tank 103. Calcium sulfite particles and limestone particles activated by ultrasonic irradiation are easily oxidized by oxygen in exhaust gas, and their So absorption capacity increases.

即ち、SO,吸収性能並びに石膏への酸化性能が向上す
る効果が得られるので、物質収支上、吸収されたSO,
が全て石膏として回収出来る様になるすぐれた効果をも
たらす。
In other words, since the effect of improving SO, absorption performance and oxidation performance to gypsum is obtained, in terms of material balance, the absorbed SO,
This has an excellent effect in that all of it can be recovered as gypsum.

〔発明の効果〕〔Effect of the invention〕

本発明は上記構成を採用することにより、特に、吸収ス
ラリーに対する超音波照射により、石膏粒子とともに凝
縮している亜硫酸カルシウム・石灰石粒子を分離活性化
し、亜硫酸力ルシウムを酸化して石IFト生成する酸化
率t向上させるとともに、石灰石の脱硫能力を向上せし
め、他方、亜硫酸カルシウムと石灰石粒子から分離され
る石膏粒子の分離効率を向上させることができた。
By employing the above configuration, the present invention, in particular, separates and activates calcium sulfite and limestone particles condensed together with gypsum particles by irradiating the absorption slurry with ultrasonic waves, oxidizes lucium sulfite, and generates stone IF. It was possible to improve the oxidation rate t and the desulfurization ability of limestone, and on the other hand, it was possible to improve the separation efficiency of gypsum particles separated from calcium sulfite and limestone particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成と示す湿式排煙脱硫方法のフロー
図 第2図は本発明による超音波照射効果を示すグラフ 第3図は従来の湿式排煙脱硫方法のフロー図である。 復代理人  内 田   明 復代理人  萩 原 亮 一 復代理人  安 西 篤 夫 第2図 ロー口亜4i邸カルシウム石灰石粒丑(1!1m?L唖
射冫o−o石膏粒ろ(超g汲明劃)
FIG. 1 is a flow diagram of a wet flue gas desulfurization method showing the structure of the present invention. FIG. 2 is a graph showing the ultrasonic irradiation effect according to the present invention. FIG. 3 is a flow diagram of a conventional wet flue gas desulfurization method. Sub-agent Akifuku Uchida Agent Ryo Hagiwara Kazuo Atsushi Anshi汲明劃)

Claims (1)

【特許請求の範囲】[Claims] 燃焼排ガスを吸収スラリーと気液接触させて排ガス中の
硫黄酸化物を吸収する吸収工程と、該吸収工程から流出
する吸収スラリーに吸収剤である石灰石を加えて混合す
る吸収スラリー調整工程と、調整された吸収スラリーを
前記吸収工程に循環するとともに、循環する吸収スラリ
ーの一部を抜き出して分離工程に導き、沈降する石膏ス
ラリーと浮上する石灰石・亜硫酸カルシウムスラリーに
分離して石膏スラリーは石膏回収工程へ、石灰石・亜硫
酸カルシウムスラリーは前記吸収スラリー調整工程へそ
れぞれ移送する湿式排煙脱硫方法において、前記分離工
程で吸収スラリーに対して超音波を照射することを特徴
とする湿式排煙脱硫方法。
An absorption process in which combustion exhaust gas is brought into gas-liquid contact with an absorption slurry to absorb sulfur oxides in the exhaust gas, an absorption slurry adjustment process in which limestone as an absorbent is added to and mixed with the absorption slurry flowing out from the absorption process, and adjustment. The absorbed slurry is circulated to the absorption process, and a part of the circulating absorption slurry is extracted and guided to the separation process, where it is separated into settling gypsum slurry and floating limestone/calcium sulfite slurry, and the gypsum slurry is passed through the gypsum recovery process. A wet flue gas desulfurization method in which the limestone/calcium sulfite slurry is each transferred to the absorption slurry preparation step, the wet flue gas desulfurization method comprising irradiating the absorption slurry with ultrasonic waves in the separation step.
JP61142908A 1986-06-20 1986-06-20 Wet Flue Gas Desulfurization Method Expired - Lifetime JPH0683777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61142908A JPH0683777B2 (en) 1986-06-20 1986-06-20 Wet Flue Gas Desulfurization Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61142908A JPH0683777B2 (en) 1986-06-20 1986-06-20 Wet Flue Gas Desulfurization Method

Publications (2)

Publication Number Publication Date
JPS631426A true JPS631426A (en) 1988-01-06
JPH0683777B2 JPH0683777B2 (en) 1994-10-26

Family

ID=15326411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61142908A Expired - Lifetime JPH0683777B2 (en) 1986-06-20 1986-06-20 Wet Flue Gas Desulfurization Method

Country Status (1)

Country Link
JP (1) JPH0683777B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372323A (en) * 1986-09-16 1988-04-02 Mitsubishi Heavy Ind Ltd Exhaust gas desulfurizing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372323A (en) * 1986-09-16 1988-04-02 Mitsubishi Heavy Ind Ltd Exhaust gas desulfurizing method

Also Published As

Publication number Publication date
JPH0683777B2 (en) 1994-10-26

Similar Documents

Publication Publication Date Title
US6303083B1 (en) Method and system for SO2 and SO3 control by dry sorbent/reagent injection and wet scrubbing
US5192517A (en) Gas reacting method
JP3035624B2 (en) Exhaust gas treatment method and apparatus
PL169155B1 (en) Method of and apparatus for removing sulfur compounds, in particular sulfur oxides, from combustion gas
US4915920A (en) Dry method of purifying flue gas
ATE26545T1 (en) METHOD AND DEVICE FOR REMOVING SULFUR OXIDES FROM HOT EXHAUST GASES.
US4388283A (en) SO2 removal
CA1107037A (en) Process for treating combustion gases
KR950010795B1 (en) Process and apparatus for desulfurization
JPH08332345A (en) Activated carbon-based catalyst reaction apparatus and waste gas desulfurization apparatus using same and method of desulfurization
JPS631426A (en) Wet exhaust gas desulfurizing method
JPS6372322A (en) Method of removing sulfur dioxide from flue gas
JPS6372323A (en) Exhaust gas desulfurizing method
JPH0810643A (en) Flue gas desulfurization method
JPH07241441A (en) Method for desulfurizing sulfur dioxide-containing gas as gas to be treated
EP0226863A1 (en) Method for scrubbing sulfur oxides and nitrogen oxides in a flue gas duct
CN205815455U (en) Furnace flue gas desulfurizer
JPH03154611A (en) Gas cleaning method
RU2281148C1 (en) Impingement scrubber
JP4156089B2 (en) Simultaneous desulfurization and dust removal method of exhaust gas
JPH0526525B2 (en)
JPS59230620A (en) Slurry concentration control method of wet waste gas desulfurization apparatus
JPH06165912A (en) High performance stack gas desulfurizing method
SU1142151A1 (en) Method of removing sulfur oxides from gases
JPH0957040A (en) Dust removing method and device therefor