JPS63142639A - Formation of film - Google Patents

Formation of film

Info

Publication number
JPS63142639A
JPS63142639A JP28933686A JP28933686A JPS63142639A JP S63142639 A JPS63142639 A JP S63142639A JP 28933686 A JP28933686 A JP 28933686A JP 28933686 A JP28933686 A JP 28933686A JP S63142639 A JPS63142639 A JP S63142639A
Authority
JP
Japan
Prior art keywords
film
temperature
substrate
thickness
treatment furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28933686A
Other languages
Japanese (ja)
Inventor
Yasuo Nakamura
安男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP28933686A priority Critical patent/JPS63142639A/en
Publication of JPS63142639A publication Critical patent/JPS63142639A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To form a film whose thickness is highly uniform and to form a thin film with good controllability by a method wherein the ambient temperature of a substrate is set at a value which is higher than the temperature for the formation of the film while a reaction gas is supplied after the ambient temperature has been lowered from the high temperature to the temperature value for the formation of the film. CONSTITUTION:Prior to an oxidation process, the temperature inside a heat- treatment furnace is set at a value which is higher than the temperature for the oxidation process. After the temperature inside the heat-treatment furnace has been lowered to the value for the oxidation process, the process is executed. If the oxidation process is executed for 5 min by supplying O2 at the rate of 9l/min, the thickness of a film in the central part of an Si substrate is almost uniform. The thickness of the film at the peripheral region of the Si substrate is thin. Accordingly, the uniformity of the film is good.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基板の環境温度を所定の温度にした状態で前
記基板に反応ガスを供給し、この反応ガスによる反応で
前記基板上に膜を形成する膜形成方法に関するものであ
る。
Detailed Description of the Invention [Industrial Application Field] The present invention supplies a reactive gas to the substrate while the ambient temperature of the substrate is at a predetermined temperature, and forms a film on the substrate by a reaction caused by the reactive gas. The present invention relates to a film forming method for forming a film.

〔発明の概要〕[Summary of the invention]

本発明は、上記の様な膜形成方法において、反応ガスの
供給に先立って基板の環境温度を膜形成時の温度よりも
高くすることによって、厚さの均一性が高い膜を形成す
ることができ、また薄い膜でも制御性よく形成すること
ができる様にしたものである。
In the film forming method as described above, the present invention makes it possible to form a film with highly uniform thickness by raising the environmental temperature of the substrate higher than the temperature during film formation prior to supplying the reaction gas. Furthermore, even thin films can be formed with good controllability.

〔従来の技術〕[Conventional technology]

半導体装置の製造等に際しては、比較的薄い膜を形成す
ることが要求される。例えば、集積回路装置の素子同士
を分離するためのフィールド酸化膜の形成時には、Si
基板とSi3N4膜との間に100Å以下のSiO□膜
を形成しておく。
When manufacturing semiconductor devices, it is required to form relatively thin films. For example, when forming a field oxide film to separate elements of an integrated circuit device, Si
A SiO□ film of 100 Å or less is formed between the substrate and the Si3N4 film.

このSi0g膜は熱酸化によって形成されるが、熱酸化
の方法には、熱処理炉の温度を一定に保持して処理を行
う方法や、第5図に示す様に基板の挿人及び排出時の熱
処理炉の温度を酸化時の温度よりも低くして巻き込み酸
化を防止するランピング方式と呼ばれる方法等が従来か
らある。
This Si0g film is formed by thermal oxidation, and thermal oxidation methods include a method in which the temperature of the heat treatment furnace is held constant, and a method in which the temperature is maintained during the insertion and removal of the substrate as shown in Figure 5. There has conventionally been a method called a ramping method in which the temperature of the heat treatment furnace is lowered than the temperature during oxidation to prevent entrainment oxidation.

なお第5図中の矢印は、この時間範囲内でのみ酸化剤で
ある0□やN z / Q を等を熱処理炉内へ供給し
て熱酸化を行い、これ以外の時間範囲ではN2等のみを
熱処理炉内へ供給して熱酸化を行わないことを示してい
る。
Note that the arrows in Figure 5 indicate that thermal oxidation is performed by supplying oxidizers such as 0□ and Nz/Q into the heat treatment furnace only within this time range, and only N2, etc. is supplied to the heat treatment furnace during other time ranges. This indicates that thermal oxidation is not carried out by supplying the gas into the heat treatment furnace.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで熱酸化膜の膜厚の均一性は、一般に膜厚が薄く
なるにつれて低下する。熱処理炉の温度を一定に保持し
て処理を行う方法では、膜厚が200〜100人の場合
には±5%程度の均一性が得られるが、膜厚が100Å
以下の場合には均一性が急激に低下する。
However, the uniformity of the thickness of a thermal oxide film generally decreases as the film thickness becomes thinner. In a method in which the temperature of the heat treatment furnace is held constant, uniformity of about ±5% can be obtained when the film thickness is 200 to 100 people, but when the film thickness is 100 Å
Uniformity decreases rapidly in the following cases.

ランピング方式を用いても、極薄膜では膜厚の均一性が
やはり低い、第6図は、直径5インチのSi基板に対し
て第5図の様にして3分間の熱酸化を行った場合と6分
間の熱酸化をけった場合との、Si基板の直径上の81
1間隔の各点における熱酸化膜の厚さを示している。こ
の第6図から明らかな様に、膜厚の均一性は非常に低い
Even if a ramping method is used, the uniformity of the film thickness is still low for extremely thin films. Figure 6 shows the case where thermal oxidation is performed for 3 minutes as shown in Figure 5 on a 5-inch diameter Si substrate. 81 on the diameter of the Si substrate after 6 minutes of thermal oxidation
The thickness of the thermal oxide film at each point of one interval is shown. As is clear from FIG. 6, the uniformity of the film thickness is very low.

第7図は、円筒状の熱処理炉内の軸心方向の複数の位置
にSi基板を配し第5図の様にして6分間の熱酸化を行
った場合の、熱酸化膜の厚さと炉内位置との関係を示し
ている。第7図の横軸は、熱処理炉の奥から測った位置
である。反応ガスは熱処理炉の奥から供給され、Si基
板の挿入及び排出は熱処理炉の手前の位置で行われる。
Figure 7 shows the thickness of the thermal oxide film and the furnace temperature when Si substrates are placed at multiple positions in the axial direction in a cylindrical heat treatment furnace and thermal oxidation is performed for 6 minutes as shown in Figure 5. It shows the relationship with the internal position. The horizontal axis in FIG. 7 is the position measured from the back of the heat treatment furnace. The reaction gas is supplied from the back of the heat treatment furnace, and the Si substrate is inserted and discharged at a position before the heat treatment furnace.

第7図中の白丸は第7図中に示したSi基板上の中央点
2における膜厚を示しており、縦線は点1〜5における
膜厚の平均値±3σの範囲を示している。この第7図か
ら明らかな様に、膜厚の均一性は全体的に低く特に熱処
理炉の端部で低い。
The white circle in FIG. 7 indicates the film thickness at the center point 2 on the Si substrate shown in FIG. 7, and the vertical line indicates the range of the average value of the film thickness at points 1 to 5 ±3σ. . As is clear from FIG. 7, the uniformity of the film thickness is low overall and particularly at the ends of the heat treatment furnace.

一方、800〜1000℃の熱処理炉にSi基板を挿入
及び排出するだけで酸化剤を供給しない場合でも、25
〜40人と薄い熱酸化膜が形成される。
On the other hand, even if the Si substrate is inserted into and discharged from a heat treatment furnace at 800 to 1000°C and no oxidizing agent is supplied, 25°C
~40 people and a thin thermal oxide film is formed.

この場合は、膜厚の均一性は高いが、膜厚を所望の値に
制御することが困難である。膜厚の制御は酸化剤の供給
時間を制御することによって行われるが、酸化剤を供給
すると今度は上述の様に膜厚の均一性が低下する。
In this case, although the uniformity of the film thickness is high, it is difficult to control the film thickness to a desired value. The film thickness is controlled by controlling the supply time of the oxidizing agent, but when the oxidizing agent is supplied, the uniformity of the film thickness decreases as described above.

第4図中の白丸は、第5図の様にして熱酸化を行った場
合の、Si基板の中央部の熱酸化膜の厚さと熱酸化時間
との関係を示している。この第4図中の白丸から明らか
な様に、特に膜厚が薄い場合には、膜厚は熱酸化時間の
1/2乗に比例するという理論式に合致していない。従
ってこのことからも、膜厚が薄い場合には膜厚の制御性
の低いことが分る。
The white circles in FIG. 4 indicate the relationship between the thickness of the thermal oxide film at the center of the Si substrate and the thermal oxidation time when thermal oxidation is performed as shown in FIG. As is clear from the white circles in FIG. 4, especially when the film thickness is thin, the film thickness does not match the theoretical formula that the film thickness is proportional to the 1/2 power of the thermal oxidation time. Therefore, this also shows that when the film thickness is small, the controllability of the film thickness is low.

以上の様な問題点の原因は、本願の発明者の考察によれ
ば、Si基板自体の温度が均一でないことや、Si基板
に初期自然酸化膜が不均一に形成されていること、つま
りSi基板が汚染されていること等によるものと考えら
れる。そしてこの様な問題点は、酸化前の熱処理時間を
長くしても、十分には改善されない。
According to the inventors of this application, the causes of the above problems are that the temperature of the Si substrate itself is not uniform, and that the initial natural oxide film is formed non-uniformly on the Si substrate. This is thought to be due to the substrate being contaminated. Such problems cannot be sufficiently improved even if the heat treatment time before oxidation is lengthened.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による膜形成方法は、基板の環境温度を膜形成時
の温度よりも高い温度にする工程と、前記環境温度を前
記高い温度から前記膜形成時の温度へ下げた後に反応ガ
スの供給を行う工程とを夫々具備している。
The film forming method according to the present invention includes a step of increasing the environmental temperature of the substrate to a temperature higher than the temperature at the time of film formation, and supplying a reaction gas after lowering the environmental temperature from the high temperature to the temperature at the time of film formation. Each process has its own steps.

〔作用〕[Effect]

本発明による膜形成方法では、反応ガスの供給に先立っ
て、基板の環境温度を膜形成時の温度よりも高い温度に
している。このために、膜形成時には基板自体の温度の
均一性が高いと考えられる。
In the film forming method according to the present invention, the environmental temperature of the substrate is made higher than the temperature during film formation prior to supplying the reaction gas. For this reason, it is considered that the temperature of the substrate itself is highly uniform during film formation.

また、基板が汚染されたりしていても、この汚染等が上
記の高い温度のために除去され、膜の形成に対する基板
の汚染等の影響が少ないと考えられる。
Further, even if the substrate is contaminated, this contamination is removed due to the above-mentioned high temperature, and it is considered that the influence of contamination of the substrate on film formation is small.

〔実施例〕〔Example〕

以下、Si基板上への酸化膜の形成に適用した本発明の
一実施例を第1図〜第4図を参照しながら説明する。
Hereinafter, an embodiment of the present invention applied to the formation of an oxide film on a Si substrate will be described with reference to FIGS. 1 to 4.

第1図が、本実施例を示している。この第1図から明ら
かな様に、本実施例は、酸化に先立って熱処理炉の温度
を酸化時の温度である850℃よりも高い900℃とし
、その後に熱処理炉の温度を酸化時の温度まで下げてか
ら酸化を行うことを除いて、第5図に示した既述の従来
例と実質的に同様の構成を有している。
FIG. 1 shows this embodiment. As is clear from FIG. 1, in this example, the temperature of the heat treatment furnace is set to 900°C, which is higher than the oxidation temperature of 850°C, prior to oxidation, and then the temperature of the heat treatment furnace is set to the oxidation temperature of 850°C. The structure is substantially the same as that of the previously described conventional example shown in FIG. 5, except that the oxidation is performed after the temperature has been lowered to a certain temperature.

第2図は、第1図の様にして02を9ffi/分の割合
で供給する5分間の熱酸化を行った場合の、第6図に対
応する結果を示している。第2図の値と第6図中の白丸
の値とを比較すると、Si4板の中央部における膜厚同
士は略等しい。しかしSi基板の周辺部における膜厚は
、本実施例の方が薄い。
FIG. 2 shows the results corresponding to FIG. 6 when thermal oxidation was carried out for 5 minutes by supplying 02 at a rate of 9ffi/min as shown in FIG. Comparing the values in FIG. 2 and the values marked by white circles in FIG. 6, the film thicknesses at the center of the Si4 plate are approximately equal. However, the film thickness at the periphery of the Si substrate is thinner in this embodiment.

従って膜厚の均一性は、本実施例の方が高い。Therefore, the uniformity of the film thickness is higher in this example.

第3図は、熱酸化時間を5分とし1周期を約90分とし
て第1図の様に熱酸化を行った場合の、第7図に対応す
る結果を示している。本実施例では、総てのSi基板に
対する平均値±3σの範囲が39.07±4.30人で
あった。そしてこの第3図と第7図との比較からも明ら
かな様に、本実施例の方が全体的に膜厚の均一性が高い
FIG. 3 shows the results corresponding to FIG. 7 when thermal oxidation was performed as shown in FIG. 1 with a thermal oxidation time of 5 minutes and one cycle of about 90 minutes. In this example, the average value ±3σ range for all Si substrates was 39.07±4.30 people. As is clear from the comparison between FIG. 3 and FIG. 7, the uniformity of the film thickness is higher overall in this example.

第4図中の黒丸は、第1図の様にしてOtを91/分の
割合で供給する熱酸化を行った場合の、第4図中の白丸
に対応する結果を示している。これらの黒丸と白丸との
比較からも明らかな様に、本実施例では、膜厚が薄い場
合にも・、膜厚は熱酸化時間の1/2乗に比例するとい
う理論式によく合致している。従って本実施例では、膜
厚が薄い場合にも膜厚の制御性が高い。
The black circles in FIG. 4 indicate the results corresponding to the white circles in FIG. 4 when thermal oxidation was performed in which Ot was supplied at a rate of 91/min as shown in FIG. As is clear from the comparison between these black circles and white circles, in this example, even when the film thickness is thin, the film thickness is in good agreement with the theoretical equation that the film thickness is proportional to the 1/2 power of the thermal oxidation time. ing. Therefore, in this embodiment, the controllability of the film thickness is high even when the film thickness is small.

また本願の発明者は、既述の考察を実証するために、以
下の様な実験を行った。即ち、表面をライトエッチした
直後のSt基基板色ライトエッチ後に1日間放置して初
期自然酸化膜を10Å以上の厚さに形成したSi基基板
色に対して、実験1と実験2とを行って、下表の様な熱
酸化膜の厚さく人)を得た。
Further, the inventor of the present application conducted the following experiment in order to verify the above-mentioned consideration. That is, Experiment 1 and Experiment 2 were conducted on a St base substrate immediately after light etching the surface and a Si base substrate color on which an initial natural oxide film was formed to a thickness of 10 Å or more after being left for 1 day after light etching. The thickness of the thermal oxide film was obtained as shown in the table below.

実験1では、Si基板を800℃の熱処理炉へ挿入し、
炉温を1000℃まで上昇させ、850℃の炉温でSi
基板を熱処理炉から排出した。実験2では、炉温の上昇
を950℃までとし、他の条件は実験1と同じとした。
In experiment 1, a Si substrate was inserted into a heat treatment furnace at 800°C.
The furnace temperature was raised to 1000℃, and Si was heated to 850℃.
The substrate was discharged from the heat treatment furnace. In Experiment 2, the furnace temperature was raised to 950° C., and the other conditions were the same as in Experiment 1.

なお、実験l、2の何れにおいても、酸化剤は供給して
いない。
Note that no oxidizing agent was supplied in either Experiments 1 and 2.

実験結果の表より明らかな様に、熱処理前には10Å以
上も存在していた膜厚の差が、熱処理後には殆どなくな
っている。この結果から、初期自然酸化膜つまり汚染は
高温の不活性ガス中で蒸発して除去され、Si基板の清
浄面が露出したものと考えられる。
As is clear from the table of experimental results, the difference in film thickness, which existed by more than 10 Å before the heat treatment, almost disappeared after the heat treatment. From this result, it is considered that the initial native oxide film, that is, the contamination, was removed by evaporation in the high-temperature inert gas, and the clean surface of the Si substrate was exposed.

なお、以上の実施例及び実験はSi基板上への熱酸化膜
の形成に本発明を適用したものであるが、本発明は、S
i基板以外の基板への膜の形成にも適用可能であり、ま
た熱酸化以外のCVD等による窒化膜やエピタキシャル
膜等の形成にも適用可能である。
Note that although the above examples and experiments apply the present invention to the formation of a thermal oxide film on a Si substrate, the present invention
It can be applied to the formation of films on substrates other than i-substrates, and can also be applied to the formation of nitride films, epitaxial films, etc. by CVD or the like other than thermal oxidation.

〔発明の効果〕〔Effect of the invention〕

本発明による膜形成方法では、膜形成時には基板自体の
温度の均一性が高いと考えられ、厚さの均一性も高い膜
を形成することができる。
In the film forming method according to the present invention, it is considered that the temperature of the substrate itself is highly uniform during film formation, and a film can also be formed that has a highly uniform thickness.

また、膜の形成に対する基板の汚染等の影響が少ないと
考えられ、薄い膜でも制御性よく形成することができる
Further, it is thought that the influence of contamination of the substrate on film formation is small, and even thin films can be formed with good controllability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の工程を示すグラフ、第2図
は一実施例による熱酸化膜の厚さと基板上の位置との関
係を示すグラフ、第3図は一実施例による熱酸化膜の厚
さと炉内位置との関係を示すグラフ、第4図は一実施例
及び本発明の一従来例による基板の中央部の熱酸化膜の
厚さと酸化時間との関係を示すグラフである。 第5図は一従来例の工程を示しており第1図に対応する
グラフ、第6図は一従来例による熱酸化膜の厚さと基板
上の位置との関係を示しており第2図に対応するグラフ
、第7図は一従来例による熱酸化膜の厚さと炉内位置と
の関係を示しており第3図に対応するグラフである。
FIG. 1 is a graph showing the process of one embodiment of the present invention, FIG. 2 is a graph showing the relationship between the thickness of the thermal oxide film and the position on the substrate according to one embodiment, and FIG. FIG. 4 is a graph showing the relationship between the thickness of the oxide film and the position in the furnace. FIG. be. Figure 5 shows the process of a conventional example and is a graph corresponding to Figure 1, and Figure 6 shows the relationship between the thickness of the thermal oxide film and the position on the substrate in a conventional example, and Figure 2 The corresponding graph, FIG. 7, shows the relationship between the thickness of the thermal oxide film and the position in the furnace according to a conventional example, and is a graph corresponding to FIG. 3.

Claims (1)

【特許請求の範囲】 基板の環境温度を所定の温度にした状態で前記基板に反
応ガスを供給し、この反応ガスによる反応で前記基板上
に膜を形成する膜形成方法において、 前記環境温度を前記所定の温度よりも高い温度にする工
程と、 前記環境温度を前記高い温度から前記所定の温度へ下げ
た後に前記供給を行う工程とを夫々具備する膜形成方法
[Claims] A film forming method in which a reactive gas is supplied to the substrate while the environmental temperature of the substrate is at a predetermined temperature, and a film is formed on the substrate by a reaction caused by the reactive gas, comprising: A film forming method comprising the steps of: raising the temperature to a temperature higher than the predetermined temperature; and supplying the supply after lowering the environmental temperature from the high temperature to the predetermined temperature.
JP28933686A 1986-12-04 1986-12-04 Formation of film Pending JPS63142639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28933686A JPS63142639A (en) 1986-12-04 1986-12-04 Formation of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28933686A JPS63142639A (en) 1986-12-04 1986-12-04 Formation of film

Publications (1)

Publication Number Publication Date
JPS63142639A true JPS63142639A (en) 1988-06-15

Family

ID=17741877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28933686A Pending JPS63142639A (en) 1986-12-04 1986-12-04 Formation of film

Country Status (1)

Country Link
JP (1) JPS63142639A (en)

Similar Documents

Publication Publication Date Title
KR101005953B1 (en) Insulating film forming method
KR940007587B1 (en) Manufacturing method of semiconductor device
JPH10107018A (en) Semiconductor wafer heat treatment apparatus
JPS6142145A (en) Method of treating wafer
JPS63289813A (en) Heat treatment of semiconductor wafer
JPH1167757A (en) Formation of thin oxide film
JPS63142639A (en) Formation of film
JP2870231B2 (en) Method for diffusing boron into semiconductor substrate
JP2000232222A (en) Manufacture of semiconductor device
JPH05152236A (en) Manufacture of semiconductor device
JPH07130675A (en) Boron diffusion into semiconductor wafer
JP2578880B2 (en) Method for manufacturing semiconductor device
JP2519207B2 (en) Method for manufacturing semiconductor device
JP2003520431A (en) Method for performing plasma warm-up on a semiconductor wafer
JPH07130676A (en) Boron diffusion into semiconductor wafer
JP3089669B2 (en) Method for manufacturing semiconductor device
JP2001313265A (en) Method for manufacturing semiconductor device
JP2880993B1 (en) Method of forming semiconductor oxide film
JP3173712B2 (en) Method for manufacturing semiconductor device
JPH0645320A (en) Manufacture of semiconductor device and manufacturing device thereof
JPS55111125A (en) Method for manufacture of semiconductor device
JPH0453127A (en) Method for diffusing impurity of semiconductor element
JPH02129914A (en) Heat treatment of compound semiconductor wafer
JP2007243085A (en) Filming method and method of manufacturing semiconductor device
KR100256264B1 (en) Semiconductor elenent field oxidation layer manufacturing method