JPS63142543A - Optical reversible memory - Google Patents

Optical reversible memory

Info

Publication number
JPS63142543A
JPS63142543A JP61289278A JP28927886A JPS63142543A JP S63142543 A JPS63142543 A JP S63142543A JP 61289278 A JP61289278 A JP 61289278A JP 28927886 A JP28927886 A JP 28927886A JP S63142543 A JPS63142543 A JP S63142543A
Authority
JP
Japan
Prior art keywords
molecules
nonlinear
light
polymer material
shg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61289278A
Other languages
Japanese (ja)
Inventor
Yoshikazu Shudo
美和 首藤
Koji Ujiie
氏家 孝二
Toshiharu Inoue
井上 俊春
Takeo Yamaguchi
剛男 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP61289278A priority Critical patent/JPS63142543A/en
Publication of JPS63142543A publication Critical patent/JPS63142543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To realize an optical reversible memory by dispersing org. compd. molecules exhibiting nonlinear optical responsiveness into a high-polymer material and controlling the orientation of the nonlinear org. compd. molecules in the high-polymer material to create a difference in the generation intensity of SHG. CONSTITUTION:A recording layer 15 and an upper electrode 17 are provided on a substrate 11 on which a lower electrode 13 is formed. The memory is so formed that a voltage is impressed between the electrode 13 and the electrode 17. The layer 15 is formed by dispersing the org. compd. molecules exhibiting the nonlinear responsiveness as a guest particle into the high-polymer material as a host matrix. Recording and reproduction of information are executed by heating the substrate to the glass transition temp. of the high-polymer material or above in, for example, a selected position and impressing an electric field to the electrodes at this time to increase the orientability of the molecules and to create the two different states of the oriented part and nonoriented part. The oriented part and nonoriented part are fixed when the substrate is cooled down to the glass transition point or below. The two different states are read out fro the difference in the intensity of the SHG.

Description

【発明の詳細な説明】 艮亙分互 本発明は、非線形光学材料を利用した光可逆メモリに関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optically reversible memory using a nonlinear optical material.

従来艮監 有機の非線形光学材料が高い非線形性能をもつことが発
見されてから、今日まで様々な有機分子が非線形光学材
料として提案され、物性値が測定されてきており、周波
数変換など各種の光機能素子への応用が提案されてきた
(雑誌「機能材料封985年10月号p21〜34)。
Ever since it was discovered that organic nonlinear optical materials have high nonlinear performance, various organic molecules have been proposed as nonlinear optical materials and their physical properties have been measured. Application to functional devices has been proposed (magazine "Functional Materials Enclosure" October 19985 issue, pages 21-34).

非線形応答は、系外からの入力光に対して、入力光以外
の成分の光を発生する現象である。
Nonlinear response is a phenomenon in which light components other than the input light are generated in response to input light from outside the system.

中でも、2次の光高調波発生(S HG :Secon
dHarmonic Generation)は、結晶
構造に中心対称性がある場合に巨視的には観測されなく
なる等、分子の配向が非線形応答に大きな依存性を示す
ことが知られている。そこで、非線形光学応答を示す有
機分子をゲスト分子、配向制御可能な透明性分子をホス
ト分子とし、ゲスト−ホスト複合材料とすることでゲス
ト分子の配向を制御する方法が知られている(Appl
、Phys、Lett、Vol。
Among them, second-order optical harmonic generation (SHG: Second
dHarmonic Generation), it is known that the orientation of molecules shows a large dependence on the nonlinear response, such as when the crystal structure has central symmetry, it is no longer observed macroscopically. Therefore, a method is known in which the orientation of the guest molecules is controlled by forming a guest-host composite material using an organic molecule exhibiting a nonlinear optical response as a guest molecule and a transparent molecule whose orientation can be controlled as a host molecule (Appl.
, Phys., Lett., Vol.

49、Nα5 (1986)p248−250、特開昭
61−186942号公報)。
49, Nα5 (1986) p248-250, JP-A-61-186942).

見匪支且煎 本発明は、非線形光学材料を利用して光可逆メモリを実
現するものである。
Summary of the Invention The present invention realizes an optical reversible memory using nonlinear optical materials.

見匪互鼠双 本発明の光可逆メモリは、非線形光学応答を示す有機化
合物分子を高分子物質中に分散させ、該高分子物質中で
の非線形有機化合物分子の配向を制御し、配向部と非配
向部とで第2次高調波の発生強度差を作り出すようにし
たことを特徴とする。
The optically reversible memory of the present invention disperses organic compound molecules exhibiting a nonlinear optical response in a polymeric material, controls the orientation of the nonlinear organic compound molecules in the polymeric material, and forms an alignment part and It is characterized by creating a difference in the second harmonic generation intensity between the non-oriented portion and the non-oriented portion.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

分子内に非屈在電子をもつ多くの有機分子は高い非線形
応答を示すことが知られている。しかし、分子状態で非
線形応答を示す材料でも、中心対称性をもつ配置に分子
が並ぶと、2次の非線形応答は巨視的には観測されない
等、巨視的な非線形光学応答は分子の配向による所が大
きい。本発明はその性質を利用し、分子の配向を制御す
ることで配向部と非配向部とを任意に作成し、SHGの
強度比が異なる2つの状態を作り出し、これを読み出す
ことにより可逆メモリを実現したものである。
It is known that many organic molecules with unbounded electrons exhibit highly nonlinear responses. However, even for materials that exhibit a nonlinear response in the molecular state, if the molecules are arranged in a centrally symmetrical arrangement, the second-order nonlinear response will not be observed macroscopically, and the macroscopic nonlinear optical response depends on the orientation of the molecules. is large. The present invention makes use of this property to arbitrarily create oriented regions and non-oriented regions by controlling the orientation of molecules, creating two states with different SHG intensity ratios, and by reading these states, a reversible memory is created. This has been achieved.

本発明の光可逆メモリを用いて情報の記録再生を行うに
は、例えば、非線形有機化合物分子を高分子物質中に分
散させた状態で、選択した位置で該高分子物質のガラス
転移点 (g183g−rubber転移温度)以上に加熱し、
コノとき電界を印加することにより分子の配向性を高め
、一方、加熱しない部分は分子の配向性が低いままであ
り、この結果、配向部と非配向部との2つの異なる状態
を作る。ガラス転移点温度以下に冷却することにより、
配向部と非配向部が固定され、SHGの強度の差から異
なる2つの状態を読み出すことができる。
In order to record and reproduce information using the optically reversible memory of the present invention, for example, nonlinear organic compound molecules are dispersed in a polymeric material, and the glass transition point (g183g) of the polymeric material is placed at a selected position. -rubber transition temperature) or higher;
By applying an electric field at this time, the orientation of the molecules is increased, while the orientation of the molecules remains low in the unheated part, resulting in two different states: an oriented part and a non-oriented part. By cooling below the glass transition temperature,
The oriented part and the non-oriented part are fixed, and two different states can be read out from the difference in SHG intensity.

第1図は、本発明の光可逆メモリの構成例を示す断面図
であり、下部電極13が形成された基板11上に記録層
15が形成され、さらにその上に上部電極17が設けら
れている。下部電極13と上部電極17の間には電圧が
印加されるようになっている。
FIG. 1 is a sectional view showing an example of the structure of the optically reversible memory of the present invention, in which a recording layer 15 is formed on a substrate 11 on which a lower electrode 13 is formed, and an upper electrode 17 is further provided thereon. There is. A voltage is applied between the lower electrode 13 and the upper electrode 17.

記録層15は、ゲスト分子としての非線形応答を示す有
機化合物分子が、ホストマトリックスとしての高分子物
質中に分散されて形成されている。この段階ではホスト
マトリックス−ゲスト分子はアモルファス状態であり(
第1A図)、ゲスト分子のダイポールは図中矢印で示し
たように無秩序で存在する。そこで、仮りに光が入射し
ても巨視的な非線形応答は観察されない。
The recording layer 15 is formed by dispersing organic compound molecules exhibiting a nonlinear response as guest molecules in a polymeric substance as a host matrix. At this stage, the host matrix-guest molecules are in an amorphous state (
(Fig. 1A), the dipole of the guest molecule exists in a disordered manner as indicated by the arrow in the figure. Therefore, even if light were incident, no macroscopic nonlinear response would be observed.

次に、書込みのプロセスについて説明する(第1B図)
。上部電極17−下部電極13間に電圧を印加する。電
圧の印加のみではホストマトリックス−ゲスト分子は固
定されて動くことができないが、パワー密度の高い光が
照射され、それが照射部の温度の上昇を促すと、ホスト
マトリックスはガラス転移温度点以上に上昇する。
Next, the writing process will be explained (Figure 1B).
. A voltage is applied between the upper electrode 17 and the lower electrode 13. The host matrix-guest molecules are fixed and cannot move when voltage is applied alone, but when high-power density light is irradiated and this promotes a rise in the temperature of the irradiated area, the host matrix rises above the glass transition temperature point. Rise.

ホストマトリックスがゴム状態となると、ゲスト分子は
ホストマトリックス中で自由に動くことが可能となり、
第1B図に示す通り、照射部のみのゲスト分子の配向が
電解の向きに揃う。
When the host matrix becomes rubbery, guest molecules can move freely within the host matrix.
As shown in FIG. 1B, the orientation of the guest molecules only in the irradiated area is aligned in the direction of electrolysis.

このとき、記録層15に印加される電圧の方向は特に限
定されない。但し、図中に示した電圧方向と逆のバイア
スがかかったときは、ゲスト分子のダイポールが逆にな
るように配向が揃う。
At this time, the direction of the voltage applied to the recording layer 15 is not particularly limited. However, when a bias opposite to the voltage direction shown in the figure is applied, the orientations of the guest molecules are aligned so that the dipoles are opposite.

その後、光の照射を停止し、ガラス転移点温度以下に照
射部が冷却した後に印加電圧を取り除いても、配向部は
そのままの状態で保存される(第1C図)。
Thereafter, even if the applied voltage is removed after the light irradiation is stopped and the irradiated part is cooled to below the glass transition point temperature, the oriented part is preserved as it is (FIG. 1C).

読み出しは、高分子物質のガラス転移温度以上の温度上
昇を伴わない程度の弱い光を照射することにより行われ
、書込みに利用した光源を衰弱させて利用することをで
きる。読み出し用の光照射を行うと、非配向部21では
入射光31がそのまま透過(あるいは反射)するだけで
あるが、配向部23では非線形応答の1つである第2次
高調波発生(SHG)が透過光(あるいは反射光)の中
に観測される。なお、この間に電極13.17間に電圧
を印加する必要は特にない(第1D図)。
Reading is performed by irradiating weak light that does not cause a temperature rise above the glass transition temperature of the polymeric material, and the light source used for writing can be weakened. When light is irradiated for reading, the incident light 31 is simply transmitted (or reflected) in the non-aligned portion 21, but in the aligned portion 23, second harmonic generation (SHG), which is one of the nonlinear responses, is generated. is observed in transmitted light (or reflected light). Note that there is no particular need to apply a voltage between the electrodes 13 and 17 during this time (FIG. 1D).

メモリーを消去するときは、電圧を印加しない状態で光
を照射し、ガラス転移点温度以上に記録層15を加熱し
て、配向部の配向を崩せばよい(第1E図)。このとき
、メモリの状態は始状態(第1A図)に戻るので、この
メモリを再度書き込むことができる。
When erasing the memory, the recording layer 15 may be heated to a temperature above the glass transition temperature by irradiating light without applying a voltage to break the orientation of the oriented portion (FIG. 1E). At this time, the state of the memory returns to the initial state (FIG. 1A), so that this memory can be written to again.

照射光に関しては、単一波長のコヒーレント光が望まし
いので、レーザー光が良い。特に、メモリ材料等の光透
過領域を考えた場合に、適する発信波長を有するレーザ
ー、例えば、半導体レーザー、Nd”: YAGレーザ
−、Nd”ニガラスレーザー、He −N eレーザー
等が挙げられる。
Regarding the irradiation light, coherent light with a single wavelength is desirable, so laser light is preferable. In particular, when considering the light transmission region of memory materials, etc., lasers having suitable emission wavelengths, such as semiconductor lasers, Nd'':YAG lasers, Nd'' Nigaras lasers, He-Ne lasers, etc., can be used.

また、ゲスト分子の配向は、電極に関して垂直に並ぶの
で、ゲスト−ホストマトリックス層、即ち記録層15内
にx、y軸を取り、ゲスト−ホストマトリックス層に垂
直に2軸をとると、配向部のSHOテンソルはd 3’
Jが最大となる。よって、読み出し時の入射光は、Z軸
に対して適当な入射角θをもつP波であることが望まし
い。
In addition, since the orientation of guest molecules is perpendicular to the electrode, if the x and y axes are taken in the guest-host matrix layer, that is, the recording layer 15, and the two axes are taken perpendicular to the guest-host matrix layer, the orientation region The SHO tensor of is d 3'
J becomes maximum. Therefore, it is desirable that the incident light at the time of reading be a P wave having an appropriate incident angle θ with respect to the Z axis.

なお、以上の説明では、パワー密度の高い光により選択
的に加熱することについては、加熱方法は特に限定され
ない。
In addition, in the above description, the heating method is not particularly limited in selectively heating with high power density light.

次に本発明の光可逆メモリの構成要素について説明する
Next, the components of the optical reversible memory of the present invention will be explained.

ゲスト分子は有機の非線形光学材料であれば、特に限定
されるものではないが、通常の結晶状態のSHGテンソ
ルであるdとは無関係に、分子の2次の非線形感受率で
あるβが特に大きいものが望ましい。なぜなら、本発明
においては非線形材料が高分子中に個々に独立した分子
状態で存在するため、βの値が重要だからである。
The guest molecule is not particularly limited as long as it is an organic nonlinear optical material, but β, which is the second-order nonlinear susceptibility of the molecule, is particularly large, regardless of d, which is the SHG tensor in the normal crystalline state. Something is desirable. This is because, in the present invention, the value of β is important because the nonlinear material exists in the polymer in an individually independent molecular state.

これに対し、通常の結晶状態では1分子の配列、充填密
度を分子間の相互作用が決定するため、βが大きい分子
でも、結晶状態で中心対称性をもつとdが小さくなり、
2次の非線形応答を巨視的に示さず、今までは利用でき
なかった材料もあった。本発明は、このように結晶状態
で中心対称性を有する材料も有効に利用することができ
る。
On the other hand, in a normal crystalline state, the arrangement and packing density of a single molecule are determined by interactions between molecules, so even if a molecule has a large β, if it has central symmetry in the crystalline state, d will be small.
There were also materials that did not macroscopically exhibit a second-order nonlinear response and could not be used until now. In this way, the present invention can also effectively utilize materials that have central symmetry in the crystalline state.

βが大きく本発明に好適な非線形有機化合物の具体例を
以下に示す。
Specific examples of nonlinear organic compounds having a large β and suitable for the present invention are shown below.

H2N+N0234.5 UH3(以下余白) ホストマトリックスとして用いられる高分子物質として
は、記録時の加熱温度と保存時の安定性から適度のガラ
ス転移点温度を有する透光性の高分子材料が用いられる
。このような高分子物質の具体例としては、ポリメタク
リル酸メチル、ポリアクリル酸、ポリアクリル酸−2−
ナフチル、ポリメタクリル酸フェニル、ポリメタクリル
酸−t−ブチル、ポリアクリルアミド、ポリモルホリル
アクリルアミド、ポリ−4−カルボキシフェニルメタク
リルアミド、ポリメチルクロロアクリレート、ポリビニ
ルアルコール、ポリ塩化ビニル、ポリ−4−トリメチル
シリルベンゾイルオキシエチレン、ポリスチレン、ポリ
フェニルアセチレン、ポリ−1,4−フェニレンエチレ
ン、ポリエチレンテレフタレート、ビスフェノールAポ
リカーボネート、ポリオキシエチレンオキシカルボニル
イミノ−1,4−フェニレンテトラメチレンー1,4−
フェニレンイミノカルボニル等が例示される。
H2N+N0234.5 UH3 (hereinafter blank) As the polymer substance used as the host matrix, a translucent polymer material having an appropriate glass transition point temperature is used from the standpoint of heating temperature during recording and stability during storage. Specific examples of such polymeric substances include polymethyl methacrylate, polyacrylic acid, and polyacrylic acid-2-
Naphthyl, polyphenyl methacrylate, polyt-butyl methacrylate, polyacrylamide, polymorpholyl acrylamide, poly-4-carboxyphenylmethacrylamide, polymethylchloroacrylate, polyvinyl alcohol, polyvinyl chloride, poly-4-trimethylsilyl Benzoyloxyethylene, polystyrene, polyphenylacetylene, poly-1,4-phenyleneethylene, polyethylene terephthalate, bisphenol A polycarbonate, polyoxyethyleneoxycarbonylimino-1,4-phenylenetetramethylene-1,4-
Examples include phenyleneiminocarbonyl.

記録層15は、非線形有機分子を高分子物質中に分散さ
せたものを、下部電極13上に塗布することにより形成
される。塗布の方法は、スピンコード法、ディップ法、
ブレードコート法など、ホスト分子とゲスト分子が均一
に混合されて塗布される方法であれば特に限定されない
。塗布後、乾燥などの適切な処理を施すことにより、記
録層15が成膜される。
The recording layer 15 is formed by coating the lower electrode 13 with nonlinear organic molecules dispersed in a polymer material. Application methods include spin code method, dip method,
The method is not particularly limited as long as it is a method such as a blade coating method in which host molecules and guest molecules are uniformly mixed and applied. After coating, the recording layer 15 is formed by performing appropriate processing such as drying.

ゲスト分子−ホストマトリックスの分散比率は、記録層
の膜厚、ゲスト分子の特性により、最適比率が決定され
、例えばアゾ色素では、重量比50 : 50が適当で
ある。
The optimal guest molecule-host matrix dispersion ratio is determined depending on the thickness of the recording layer and the characteristics of the guest molecules; for example, for an azo dye, a weight ratio of 50:50 is appropriate.

記録層の膜厚は、ゲスト分子−ホストマトリックスの屈
折率特性により最適な膜厚が選ばれるが、通常は良好な
解像度を得るためにも数十μm〜0.1μm程度が望ま
しい。
The optimal thickness of the recording layer is selected depending on the refractive index characteristics of the guest molecule-host matrix, but it is usually desirable to have a thickness of several tens of micrometers to about 0.1 micrometer in order to obtain good resolution.

第2A図に示すように、光を照射し透過光のSHGを検
知するようにした透過読取方式においては、上部電極1
7および記録層15は、照射光波長で透光性が高く、記
録層15、下部電極13および基板11は第2次高調波
(SH)の波長において透光性が高いことが望ましい。
As shown in FIG. 2A, in the transmission reading method in which light is irradiated and SHG in the transmitted light is detected, the upper electrode 1
It is desirable that the recording layer 7 and the recording layer 15 have high translucency at the wavelength of the irradiated light, and the recording layer 15, the lower electrode 13, and the substrate 11 have high translucency at the wavelength of the second harmonic (SH).

また、第2B図に示したように反射光のSHGを検知す
る反射読取方式においては、上部電極17および記録層
15は照射波長とSH波長おいて透光性が高いことが好
ましく、下部電極13または基板11でSH波が反射さ
れることが必要である。また、別途、反射層を設けるこ
ともできる。
In addition, in the reflection reading method that detects SHG in reflected light as shown in FIG. Alternatively, it is necessary that the SH wave be reflected by the substrate 11. Moreover, a reflective layer can also be provided separately.

書込みに関しては、入射光を吸収して発熱し記録層を加
熱することが必要である。これは、例えば、下部電極1
3として照射光を選択的に吸収しSH光を透過するもの
を用いたり、照射光を選択的に吸収し、SH光を透過(
または反射)する吸収層を設けるなどすればよい。第3
図は、このような光可逆メモリの構成例を示す断面図で
あり、下部電極13と記録層15の間に、吸収層19が
設けられている。
Regarding writing, it is necessary to absorb incident light and generate heat to heat the recording layer. This is, for example, the lower electrode 1
As 3, a material that selectively absorbs the irradiation light and transmits the SH light is used, or a material that selectively absorbs the irradiation light and transmits the SH light (
Alternatively, an absorbing layer for reflection) may be provided. Third
The figure is a cross-sectional view showing an example of the configuration of such an optical reversible memory, in which an absorption layer 19 is provided between the lower electrode 13 and the recording layer 15.

また、下部電極として機能する基板材料を用いれば、下
部電極を省略することもできる。
Furthermore, if a substrate material that functions as a lower electrode is used, the lower electrode can be omitted.

見肌列羞米 本発明によれば、非線形光学応答を示す有機=11− 化合物分子を高分子物質中に分散させ、該高分子物質中
での非線形有機化合物分子の配向を制御し、配向部と非
配向部とでSHGの強度差を作り出すことにより、SH
Gの強度比から異なる2つの状態を読出すことができ、
光メモリとして用いることができる。
According to the present invention, organic compound molecules exhibiting a nonlinear optical response are dispersed in a polymeric material, the orientation of the nonlinear organic compound molecules in the polymeric material is controlled, and the orientation portion By creating a difference in SHG strength between the
Two different states can be read from the G intensity ratio,
It can be used as an optical memory.

実施例1 ガラス基板の上にIT○(Indium Tio 0x
ide)からなる下部透明電極を形成し、その上に4μ
m程度の厚さに記録層を形成した。
Example 1 IT○ (Indium Tio 0x) was placed on a glass substrate.
A lower transparent electrode consisting of ide) is formed, and a 4μ
A recording layer was formed to have a thickness of about 1.0 m.

記録層は、ゲスト分子として2−メチル−4−ニトロア
ニリン(MNA)と、ホスト分子としてポリメチルメタ
アクリレート (PMMA)とをそれぞれ等量用い、テトラヒドロフラ
ンに溶解させて塗布したのち、熱処理してテトラヒドロ
フランを蒸発させて作成した。
The recording layer uses equal amounts of 2-methyl-4-nitroaniline (MNA) as a guest molecule and polymethyl methacrylate (PMMA) as a host molecule, which are dissolved in tetrahydrofuran and coated, then heat-treated to form tetrahydrofuran. It was created by evaporating.

次に、記録層上に金を蒸着して上部透明電極を形成し、
本発明の光可逆メモリを作成した。
Next, gold is deposited on the recording layer to form an upper transparent electrode,
An optical reversible memory according to the present invention was created.

光源としては、発信波長1.5μm、出力5mWの連続
発振半導体レーザを用いた。
As a light source, a continuous wave semiconductor laser with an emission wavelength of 1.5 μm and an output of 5 mW was used.

上で作成した始状態の光可逆メモリに、レーザー光を約
1μmφにレンズで集光し、波長1.5μmで透過率2
.6%の減衰フィルターを通過。
Laser light is focused on the optically reversible memory in the initial state created above using a lens to a diameter of approximately 1 μm, and the transmittance is 2 at a wavelength of 1.5 μm.
.. Passed through a 6% attenuation filter.

させて照射したところ、透過光中に波長750nmのS
HGは観測されなかった。
When the light was irradiated, S with a wavelength of 750 nm was detected in the transmitted light.
No HG was observed.

次に、上部電極間に240Vの電圧を印加し、レーザ光
を減衰フィルターを通過させずに照射した(書込み)。
Next, a voltage of 240 V was applied between the upper electrodes, and laser light was irradiated without passing through the attenuation filter (writing).

IT○は波長1.5μm領域に吸収をもつので、強いレ
ーザー光を吸収し熱を発生してPMMAの温度上昇を促
し、電界によりPMMA中の配向が揃った部分が形成さ
れた。
Since IT○ has absorption in the wavelength region of 1.5 μm, it absorbs strong laser light and generates heat, promoting a rise in temperature of PMMA, and the electric field forms a portion of PMMA with uniform orientation.

配向部の存在は、後に印加電圧を断ち、再び減衰フィル
ターを通過させたレーザー光を照射すると、透過光に波
長750nmのSHGが観測されたことで確められた。
The existence of the alignment region was confirmed by the observation of SHG with a wavelength of 750 nm in the transmitted light when the applied voltage was later cut off and the laser light that had passed through the attenuation filter was irradiated again.

印加電圧を断った後、数日間放置して再び減衰させたレ
ーザー光を照射したところ、SHGが観測された。
After cutting off the applied voltage, the sample was left for several days and then irradiated with attenuated laser light again, and SHG was observed.

印加電圧を断った状態で減衰させないレーザー光を照射
したところ、SHG強度は減衰し、ついにはゼロレベル
に達し、消去が行われたことが確認できた。
When an unattenuated laser beam was irradiated with the applied voltage cut off, the SHG intensity attenuated and finally reached the zero level, confirming that erasing had taken place.

実施例2 実施例1においてゲスト分子とジメチルアミノニトロス
チルベンを用いる他は同様にして。
Example 2 The same procedure as in Example 1 was performed except that the guest molecule and dimethylaminonitrostilbene were used.

光可逆メモリを作成した。Created optical reversible memory.

この光可逆メモリについて実施例1と同様にして、書込
み、保存、読出し、消去処理を施したところ、同様の効
果が確認された。
When this optically reversible memory was subjected to writing, storage, readout, and erasure processing in the same manner as in Example 1, similar effects were confirmed.

ジメチルアミノニトロスチルベンは結晶状態で中心対称
性をもつもので、通常SHGは全く観察されない材料で
あるが、分子の配向を並べることにより、強いSHGが
観察されるようになった。
Dimethylaminonitrostilbene has central symmetry in its crystalline state, and is a material in which no SHG is normally observed, but strong SHG has been observed by arranging the orientation of the molecules.

実施例3 実施例1においてゲスト分子としてメロシニアンを用い
る他は同様にして光可逆メモリを作成し、書込み、保存
、読出し、消去処理を施したところ、同様の効果が確認
された。
Example 3 A photoreversible memory was prepared in the same manner as in Example 1 except that merosinian was used as a guest molecule, and writing, storage, reading, and erasing processes were performed, and similar effects were confirmed.

メロシアニンも、実施例2で用いたジメチルアミノニト
ロスチルベンと同様に通常の結晶状態では中心対称性を
もつためSHGが観測されない材料である。
Like the dimethylaminonitrostilbene used in Example 2, merocyanine is also a material in which SHG is not observed because it has central symmetry in a normal crystalline state.

実施例4 実施例1において下部電極としてアルミニウム蒸着膜を
用い、その上に吸収層を設ける以外は同様にして光可逆
メモリを作成した。
Example 4 A photoreversible memory was produced in the same manner as in Example 1 except that an aluminum vapor deposition film was used as the lower electrode and an absorption layer was provided thereon.

吸収層は、ポリイミド樹脂と1′ 1−ジエチル−6′
6−ジクロロ−4−41−キノトリカルボシアニンをN
−メチル−ピロリドンに溶解、塗布して作成した。
The absorbent layer is made of polyimide resin and 1'1-diethyl-6'
6-dichloro-4-41-quinotricarbocyanine
- It was prepared by dissolving it in methyl-pyrrolidone and applying it.

光源として発振波長1.2μm、出カフn+Wの連続発
信半導体を用い、読出しは反射光を観察して行ったとこ
ろ、実施例1と同様の結果が確認された
A continuous emission semiconductor with an oscillation wavelength of 1.2 μm and an output of n+W was used as a light source, and reading was performed by observing the reflected light, and the same results as in Example 1 were confirmed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図〜第18図は、本発明の光可逆メモ八 りの構成例およびその作様を示す説明図であり、それぞ
れ始状態(第1A図)、書込み(第1B図)、保存(第
1C図)、読出しく第1D図)および消去(第1E図)
を示す。 第2A図および第2B図は、透過型および反射型の読出
し状態を示す説明図である。 第3図は、本発明の光可逆メモリの構成例を示す断面図
である。 11・・・基板    13・・・下部電極15・・・
記録層   17・・・上部電極19・・・吸収層 キ グ 第1A図 第8図 第1D図 第2A図 第2B図 第3図 第旧図
FIGS. 1A to 18 are explanatory diagrams showing an example of the configuration of the optical reversible memo of the present invention and its operation, and respectively show the initial state (FIG. 1A), writing (FIG. 1B), and storage (FIG. 1B). 1C), reading (Fig. 1D) and erasing (Fig. 1E)
shows. FIGS. 2A and 2B are explanatory diagrams showing transmission type and reflection type readout states. FIG. 3 is a sectional view showing an example of the structure of the optical reversible memory of the present invention. 11... Substrate 13... Lower electrode 15...
Recording layer 17... Upper electrode 19... Absorption layer Figure 1A Figure 8 Figure 1D Figure 2A Figure 2B Figure 3 Old figure

Claims (1)

【特許請求の範囲】[Claims] 1、非線形光学応答を示す有機化合物分子を高分子物質
中に分散させ、該高分子物質中での非線形有機化合物分
子の配向を制御し、配向部と非配向部とで第2次高調波
の発生強度差を作り出すようにしたことを特徴とする光
可逆メモリ。
1. Disperse organic compound molecules exhibiting a nonlinear optical response in a polymeric material, control the orientation of the nonlinear organic compound molecules in the polymeric material, and generate second-order harmonics between oriented and non-oriented regions. An optical reversible memory characterized by creating a difference in generated intensity.
JP61289278A 1986-12-04 1986-12-04 Optical reversible memory Pending JPS63142543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61289278A JPS63142543A (en) 1986-12-04 1986-12-04 Optical reversible memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61289278A JPS63142543A (en) 1986-12-04 1986-12-04 Optical reversible memory

Publications (1)

Publication Number Publication Date
JPS63142543A true JPS63142543A (en) 1988-06-14

Family

ID=17741099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61289278A Pending JPS63142543A (en) 1986-12-04 1986-12-04 Optical reversible memory

Country Status (1)

Country Link
JP (1) JPS63142543A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191340A (en) * 1987-06-11 1989-04-11 Canon Inc Recording method and device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191340A (en) * 1987-06-11 1989-04-11 Canon Inc Recording method and device therefor

Similar Documents

Publication Publication Date Title
JP2961126B2 (en) Recording medium comprising three-dimensional optical memory glass element and recording method thereof
JP2001006208A (en) Optical recording medium, recording and reproducing method using the same and recording and reproducing device
JPH0497242A (en) Information recording and reproducing method
JP4988826B2 (en) Optical memory, method for reading and writing optical memory, and apparatus for reading and writing optical memory
US20030165105A1 (en) Data memory
JPS63142543A (en) Optical reversible memory
JP2662024B2 (en) Polarization multiplex recording method
JP2840224B2 (en) Liquid crystal polarization control element
JPH03284988A (en) Reversible recording medium
JP2004535036A (en) Multilayer composite liquid crystal optical memory system with information recording and reading means
JPS5994734A (en) Optical recording medium
JPS61280046A (en) Optical recording system
JP2702570B2 (en) Thermoreversible optical recording medium
JP3675696B2 (en) Optical recording medium
JPH02308423A (en) Reproducing method for optical recording medium
RU2710389C1 (en) Information recording method in nanoporous quartzic glass
JP3042247B2 (en) Manufacturing method of nonlinear optical element
JPH08297298A (en) Near infrared optical modulator
JP2004079121A (en) Optical information recording method and optical information recorder
JPH04167227A (en) Erasing method for optical recording medium
Kamanina et al. Optical limiting of laser radiation in dispersed liquid-crystal structures with fullerenes
JPH0319063Y2 (en)
JPH0319064Y2 (en)
JP2001344836A (en) Ferroelectric memory and optical information processing device
JPH0441916B2 (en)