JPS6314215A - Reduction system for current consumption - Google Patents

Reduction system for current consumption

Info

Publication number
JPS6314215A
JPS6314215A JP61156069A JP15606986A JPS6314215A JP S6314215 A JPS6314215 A JP S6314215A JP 61156069 A JP61156069 A JP 61156069A JP 15606986 A JP15606986 A JP 15606986A JP S6314215 A JPS6314215 A JP S6314215A
Authority
JP
Japan
Prior art keywords
frequency
clock
switching
circuit
current consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61156069A
Other languages
Japanese (ja)
Inventor
Takamasa Suzuki
孝昌 鈴木
Makoto Tachikawa
真 立川
Tetsuya Nagayama
長山 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61156069A priority Critical patent/JPS6314215A/en
Publication of JPS6314215A publication Critical patent/JPS6314215A/en
Pending legal-status Critical Current

Links

Landscapes

  • Power Sources (AREA)

Abstract

PURPOSE:To maintain system timing almost at the time of switching and reduce the current consumption of a circuit by supplying a clock signal of frequency corresponding to an execution speed in synchronism with the leading or trailing edge of a clock signal before the switching. CONSTITUTION:A programmable frequency dividing circuit 4 opens and closes a gate with a switching signal 5 from a synchronous binary counter and an MPU 7 and consists of a decoding circuit which decodes the output of the counter and an FF circuit which converts the decoding output into pulses with a 50% duty factor. Then, 2<1>-2<4> are counted firstly with signals (a-d) 5, and 1/2 frequency division is carried out by the FF circuit, so the frequency of a basic clock 3 can be varied up to 1/4-1/32 in synchronism with its clock. Further, frequency switching is postphoned until the trailing edge of the clock 3 appears after the application of the signals 5, so the switching is performed smoothly. Further, an IC group 8 decreases in current consumption proportionally according to a decrease in operating frequency, so the current consumption is reduced when the frequency is lowered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子機器の低消費電流化に係り、特にCMO
S型能動素子に・て構成された電子機器のバッテリー駆
動に好適な消費電流低減方式に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to reducing the current consumption of electronic equipment, and in particular to CMO.
The present invention relates to a current consumption reduction method suitable for battery driving of electronic equipment configured with S-type active elements.

〔従来の技術〕[Conventional technology]

電子機器において、要求される処理速度に応じてクロッ
ク信号の周波数を切換え、低消費電流化を図る方法は、
特開昭59−62933号公報に見られるように、分周
回路にマルチプレクサ等を備えた回路で具現化されてい
た。しかし、クロック信号の周波数切換に際し、同期を
とってシステム全体のタイミングを維持するという点に
ついては考慮されていなかった。
In electronic equipment, the method of switching the clock signal frequency according to the required processing speed and reducing current consumption is as follows.
As seen in Japanese Unexamined Patent Publication No. 59-62933, the frequency dividing circuit has been realized by a circuit including a multiplexer and the like. However, when switching the frequency of the clock signal, no consideration was given to synchronizing and maintaining the timing of the entire system.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、クロック信号の周波数切換に際し、ク
ロック信号分局後の複数のクロックのうち1つをマルチ
プレクサで選択するという方法をとっており、切換前後
のクロック信号の周期化については、配慮がなされてい
なかった。すなわち、クロック信号の切換え時にクロッ
ク信号が不連続となりシステム全体の動作タイミングが
悪影響を受けるという問題があった。また同期化を行な
う場合には、それに応じた回路(同期回路)の付加が必
要となりシステムが複雑化するという問題もあった。
In the above conventional technology, when switching the frequency of the clock signal, a multiplexer selects one of the multiple clocks after the clock signal is divided, and no consideration is given to the periodization of the clock signal before and after switching. It wasn't. That is, there is a problem in that the clock signal becomes discontinuous when the clock signal is switched, and the operation timing of the entire system is adversely affected. Furthermore, when performing synchronization, it is necessary to add a corresponding circuit (synchronization circuit), complicating the system.

本発明の目的は、特に同期化のための回路を必要とせず
、クロック信号の周波数切換を切換前後で同期化して行
なうことにより、システム全体の動作タイミングを維持
しながら消費電流を低減する方法を提示することにある
An object of the present invention is to provide a method of reducing current consumption while maintaining the operating timing of the entire system by synchronizing the frequency switching of a clock signal before and after the switching without requiring any particular synchronization circuit. It's about presenting.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は機器の各処理に要求される実行速度に見合っ
た周波数のクロック信号を供給する際、切換前に供給さ
れていたクロック信号の立上り、または立下りに同期し
たクロック信号を提供することにより達成される。
The above purpose is to provide a clock signal with a frequency that matches the execution speed required for each processing of the device, by providing a clock signal that is synchronized with the rising or falling edge of the clock signal that was being supplied before switching. achieved.

具体策の一例として、従来分周回路の出力に付加されて
いたマルチプレクサを除去し、プログラマブルな分周回
路を用いればよい。
As an example of a concrete measure, the multiplexer conventionally attached to the output of the frequency divider circuit may be removed and a programmable frequency divider circuit may be used.

〔作用〕[Effect]

システムクロック供給回路は、ハード的あるいはソフト
的に、その機器の要求されている実行速度に応じた周波
数のシステムクロックを供給する。
The system clock supply circuit supplies a system clock of a frequency corresponding to the required execution speed of the device, either by hardware or software.

ただし、クロック周波数切換は、切換前のクロックの立
上り、または立下りに同期して行なわれる。
However, the clock frequency switching is performed in synchronization with the rising or falling edge of the clock before switching.

C−MO5回路の消費電流は動作周波数に比例するので
クロック周波数が低下するに従って機器の消費電流は比
例的に減少する。また、クロックの切換が、切換前のク
ロックに同期して行なわれるため、システム全体のタイ
ミング確保が保償される。
Since the current consumption of the C-MO5 circuit is proportional to the operating frequency, as the clock frequency decreases, the current consumption of the device decreases proportionally. Furthermore, since the clock is switched in synchronization with the clock before switching, the timing of the entire system is guaranteed.

〔実施例〕〔Example〕

以下に本発明の一実施例を説明する。第1図は、一実施
例のブロック構成図を示している。
An embodiment of the present invention will be described below. FIG. 1 shows a block diagram of one embodiment.

本実施例1は、内部に基本クロック発生回路2゜マイク
ロプロセッサ(以下MPU)からの指令5によって基本
クロック3を指定された分周比のクロック6をMPU7
に供給するプログラマブル分周回路4、MPU周辺のT
TLおよびC−MO5IC群8、MPUによって統括さ
れる処理回路A−C(9〜11)より成っている。なお
処理回路A〜Cは、それぞれ動作周波数がf^〜fcで
ある。
In the first embodiment, a basic clock generation circuit 2 has an internal basic clock generating circuit 2. A clock 6 having a frequency division ratio specified by a basic clock 3 is sent to an MPU 7 by a command 5 from a microprocessor (hereinafter referred to as MPU).
Programmable frequency divider circuit 4, T around MPU
It consists of a TL and C-MO5 IC group 8, and processing circuits A-C (9 to 11) controlled by an MPU. Note that the processing circuits A to C have operating frequencies of f^ to fc, respectively.

第2図は本実施例1の基本クロック3と分周後のクロッ
ク61〜63(それぞれ周波数f^、fB。
FIG. 2 shows the basic clock 3 of the first embodiment and the divided clocks 61 to 63 (frequency f^ and fB, respectively).

fc)非同期切換時のMPU印加クロック64、および
同期切換時のMPU印加クロック6の波形を示す。従来
の非同期方式で周波数を切換えた場合、切換信号5を印
加すると同時に周波数が切換わるため切換前後でクロッ
クの伸縮が発生しシステム全体のタイミングが維持でき
ない。(クロック64)−六本実施例によれば切換信号
5印加後、基本クロックの立下がりエツジ30が出現す
るまで周波数の切換が延期されるため、スムーズな周波
数の切換ができる。(クロック6) 第3図は、ICの動作周波数−消費電流特性を、C−M
O5IC10とTTLIC20について示したものであ
る。C−MO5IC10は動作周波数の減少とともに消
費電流が比例的に減少する特性を有しているため、同期
切換方式により周波数を下げた場合にはC−MO3回路
における消費電流を低減できる。
fc) Waveforms of the MPU applied clock 64 during asynchronous switching and the MPU applied clock 6 during synchronous switching are shown. When the frequency is switched using the conventional asynchronous method, the frequency is switched at the same time as the switching signal 5 is applied, so the clock expands and contracts before and after switching, making it impossible to maintain the timing of the entire system. (Clock 64)-6 According to this embodiment, after the switching signal 5 is applied, frequency switching is postponed until the falling edge 30 of the basic clock appears, so that smooth frequency switching is possible. (Clock 6) Figure 3 shows the operating frequency vs. current consumption characteristics of the IC.
This is shown for O5IC10 and TTLIC20. Since the C-MO5 IC 10 has a characteristic that the current consumption decreases proportionally as the operating frequency decreases, when the frequency is lowered by the synchronous switching method, the current consumption in the C-MO3 circuit can be reduced.

第4図は1重力式の具体的な実施例を示したものである
FIG. 4 shows a concrete example of a single gravity type.

プログラマブル分周回路4は、同期式パイナリイカウン
タ46(Q^〜Qoはカウント出力)MPU7からの切
換信号a = dによってゲートの開閉を行ないカウン
タのデコードを行なうデコード回路(41〜45)およ
びデコード出力をデユーティ50%のパルスに変換する
フリップ・フロップ回路より成っている。本実施例の場
合、a”dの切換信号により、まず21〜24のカウン
トが成され、さらにフリップ・フロップ回路で1/2に
分周されるため、全体の分周比は1/4〜1/32とな
る。すなわち基本クロック3の周波数は、そのクロック
に同期して1/4〜1/32 (ただし分母は整数)ま
で変化させることができる。
The programmable frequency dividing circuit 4 includes a synchronous pinary counter 46 (Q^ to Qo are count outputs) and a decoding circuit (41 to 45) that opens and closes the gate and decodes the counter in response to a switching signal a=d from the MPU 7. It consists of a flip-flop circuit that converts the output into a pulse with a duty of 50%. In the case of this embodiment, a count of 21 to 24 is first made by the switching signal a"d, and the frequency is further divided into 1/2 by the flip-flop circuit, so the overall frequency division ratio is 1/4 to 24. In other words, the frequency of the basic clock 3 can be changed from 1/4 to 1/32 (the denominator is an integer) in synchronization with that clock.

第5図は本方式の別の実施例を示したものである。FIG. 5 shows another embodiment of this system.

プログラマブル分周回路4は同期プリセット方式の分周
器40(D^〜DDはプリセット入力)および分周8力
をデユーティ50%のパルスに変換するフリップフロッ
プ回路より成っており第4図の実施域に比ベデコードゲ
ートが不要となっている。
The programmable frequency divider circuit 4 consists of a synchronous preset type frequency divider 40 (D^ to DD are preset inputs) and a flip-flop circuit that converts the frequency division 8 power into a pulse with a duty of 50%, and is implemented in the implementation area shown in Fig. 4. Compared to this, a decoding gate is not required.

本実施例の場合もa ” dの切換信号によって1/2
1〜1/2番の分周が成され、さらにフリップフロップ
で1/2に分周されるため、基本クロック3の周波数は
そのクロックに同期して1/4〜1/32(ただし分母
は整数)まで変化させることができる。
In the case of this embodiment as well, 1/2 is determined by the switching signal a ” d.
Since the frequency is divided from 1 to 1/2 and further divided by 1/2 by a flip-flop, the frequency of basic clock 3 is synchronized with that clock and is 1/4 to 1/32 (however, the denominator is can be changed up to an integer).

第6図は、本方式を実施する際のプログラムフローチャ
ートの一例である6処理回路A−Cを動作させる際に、
そのプログラムの先頭で処理回路に応じた動作周波数を
設定し、処理を実行する。
FIG. 6 is an example of a program flowchart when implementing this method, and when operating six processing circuits A to C,
At the beginning of the program, an operating frequency is set according to the processing circuit, and processing is executed.

待機時はクロック周波数を最低(ここではf^)にして
次の処理に備えるようにしている。
During standby, the clock frequency is set to the lowest (here, f^) in preparation for the next process.

これにより、処理待機時における消費電流を最低にでき
る。
This makes it possible to minimize current consumption during processing standby.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、MPUに対する印加クロックの周波数
を切換える際に基本クロックに同期して切換えることが
できるため、切換前後でのシステムクロックがスムーズ
に切換わリシステム全体のタイミングを維持しつつ、回
路の消費電流を低減できる。また、同期をとるための特
別の回路が不要なため、回路の簡略化が図れる。
According to the present invention, when switching the frequency of the clock applied to the MPU, it is possible to switch the frequency in synchronization with the basic clock, so that the system clock before and after switching can be switched smoothly, while maintaining the timing of the entire system. The current consumption can be reduced. Furthermore, since no special circuit is required for synchronization, the circuit can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例のブロック図、第2図は、
本発明および従来方式によるMPUへの印加クロック波
形図、第3図は、C−MO5IC,TTLICの動作周
波数−消費電流特性図、第4図、第5図は1本発明の具
体的実施例の系統図、第6図は、本発明の一実施例を用
いる際のプログラムフローチャートである。 2・・・基本クロック発生回路、4・・・プログラマブ
ル分周回路、6・・・MPUへの印加クロック、7・・
・MPU、40・・・同期式プログラマブルデバイダ、
筋1図 5−−− Ml’U ff1辺1C石ヤ摺2図 11シtフイ下局皮tシ;ン二 Io−−−c−M?)S IC 2O−−−TTL  IC 高6図
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a block diagram of an embodiment of the present invention.
FIG. 3 is a diagram of clock waveforms applied to the MPU according to the present invention and the conventional method. FIG. 3 is an operating frequency-current consumption characteristic diagram of C-MO5IC and TTLIC. FIGS. 4 and 5 are diagrams of a specific embodiment of the present invention. The system diagram, FIG. 6, is a program flowchart when using one embodiment of the present invention. 2... Basic clock generation circuit, 4... Programmable frequency dividing circuit, 6... Clock applied to MPU, 7...
・MPU, 40...Synchronous programmable divider,
Line 1 Figure 5 --- Ml'U ff 1 side 1C stone sanding 2 Figure 11 Shit ffi lower local skin t Shi;n 2 Io --- c-M? ) S IC 2O---TTL IC High 6th figure

Claims (1)

【特許請求の範囲】[Claims] 1、C−MOS型能動素子およびそれらの動作タイミン
グを司るクロック発生回路を含み、クロック周波数を切
換可能とした電子機器において、クロック周波数切換を
基本クロックの立上りまたは立下りに同期して行なう機
能を備えた周波数切換回路を設けたことを特徴とする消
費電流低減方式。
1. In electronic equipment that includes C-MOS type active elements and a clock generation circuit that controls their operation timing, and is capable of switching the clock frequency, a function that allows the clock frequency to be switched in synchronization with the rising or falling edge of the basic clock. A current consumption reduction method characterized by the provision of a frequency switching circuit.
JP61156069A 1986-07-04 1986-07-04 Reduction system for current consumption Pending JPS6314215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61156069A JPS6314215A (en) 1986-07-04 1986-07-04 Reduction system for current consumption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61156069A JPS6314215A (en) 1986-07-04 1986-07-04 Reduction system for current consumption

Publications (1)

Publication Number Publication Date
JPS6314215A true JPS6314215A (en) 1988-01-21

Family

ID=15619621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61156069A Pending JPS6314215A (en) 1986-07-04 1986-07-04 Reduction system for current consumption

Country Status (1)

Country Link
JP (1) JPS6314215A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221734A (en) * 1989-02-21 1990-09-04 Mitsuboshi Belting Ltd Toothed belt
CN1050614C (en) * 1994-03-22 2000-03-22 旭化成工业株式会社 Method of stabilizing molecular ends of oxymethylene copolymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221734A (en) * 1989-02-21 1990-09-04 Mitsuboshi Belting Ltd Toothed belt
CN1050614C (en) * 1994-03-22 2000-03-22 旭化成工业株式会社 Method of stabilizing molecular ends of oxymethylene copolymer

Similar Documents

Publication Publication Date Title
US5448193A (en) Normalization of apparent propagation delay
WO2003044996A2 (en) Glitch free clock selection switch
US6118314A (en) Circuit assembly and method of synchronizing plural circuits
JPH0292012A (en) Pulse generating circuit
JPH0292021A (en) Digital pll circuit
US3651414A (en) Variable frequency system
JPS6314215A (en) Reduction system for current consumption
JPH11205293A (en) Inner clock synchronizing method/circuit
JPH07115362A (en) Phase-adjustable and programmable frequency timing generator
JPS62261216A (en) Clock distribution circuit
JPS6163111A (en) Digital pll circuit
JP2527263B2 (en) Phase synchronization circuit
JPS59221031A (en) Frequency dividing circuit
JPS63181018A (en) Microprocessor
JPS634673B2 (en)
JPH0786889A (en) Pulse signal generating circuit
JPS63101919A (en) Clock control circuit
JP2754566B2 (en) Staff synchronization method
JPS605622A (en) Clock signal generator
JP2729286B2 (en) Altitude change rate meter
JPH04160818A (en) Frequency divider
JPS63106029A (en) Synchronization control circuit
JPH01231103A (en) Programmable controller
JPS62160519A (en) Clock phase control circuit
JP2002314405A (en) Pll circuit adopting pulse swallower system