JPS6314119Y2 - - Google Patents

Info

Publication number
JPS6314119Y2
JPS6314119Y2 JP13789282U JP13789282U JPS6314119Y2 JP S6314119 Y2 JPS6314119 Y2 JP S6314119Y2 JP 13789282 U JP13789282 U JP 13789282U JP 13789282 U JP13789282 U JP 13789282U JP S6314119 Y2 JPS6314119 Y2 JP S6314119Y2
Authority
JP
Japan
Prior art keywords
gear
driven
torque
driven gear
crankshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13789282U
Other languages
Japanese (ja)
Other versions
JPS5942335U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13789282U priority Critical patent/JPS5942335U/en
Publication of JPS5942335U publication Critical patent/JPS5942335U/en
Application granted granted Critical
Publication of JPS6314119Y2 publication Critical patent/JPS6314119Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vibration Dampers (AREA)
  • Gears, Cams (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、内燃機関の回転速度の変動による慣
性トルクを消去する慣性トルク消去機能を備えた
動力伝達装置に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a power transmission device having an inertial torque canceling function for canceling inertial torque caused by variations in the rotational speed of an internal combustion engine.

従来技術 自動二輪車において、クランク軸を車体の前後
方向に配置したいわゆる縦置式エンジンにあつて
は、エンジンの急加減速に伴ないその回転角加速
度が大きくなり、車体を左右に揺動させる慣性ト
ルクが生ずる。
Prior Art In motorcycles, in the case of so-called vertical engines in which the crankshaft is placed in the longitudinal direction of the vehicle body, the rotational angular acceleration increases as the engine rapidly accelerates and decelerates, causing inertia torque that causes the vehicle body to swing from side to side. occurs.

この慣性トルクを打消すために、クランク軸に
駆動歯車を直結するとともに慣性モーメントの大
きな例えば発電機ロータの軸に被動歯車を直結
し、同両歯車を噛合わさせて、発電機のロータ軸
をクランク軸と逆方向へ回転させ、クランク軸の
慣性トルクと逆方向の慣性トルクを発電機ロータ
の如き慣性モーメントの大きな回転体に発生させ
る慣性トルク消去機構付き動力伝達装置がある。
In order to cancel this inertial torque, a driving gear is directly connected to the crankshaft, and a driven gear is directly connected to the shaft of a generator rotor, which has a large moment of inertia. There is a power transmission device with an inertia torque elimination mechanism that rotates in the opposite direction to the crankshaft and generates inertia torque in the opposite direction to the inertia torque of the crankshaft in a rotating body having a large moment of inertia, such as a generator rotor.

しかしながら、往復動型エンジンにおいては、
各行程に応じピストンに作用するガス圧力が大幅
に変化するとともに、往復動部分の慣性力が生ず
るため周期的なトルク変動が生じ、このトルク変
動により強制捩り振動力が発生する。
However, in reciprocating engines,
The gas pressure acting on the piston changes significantly with each stroke, and the inertial force of the reciprocating portion causes periodic torque fluctuations, and this torque fluctuation generates forced torsional vibration force.

またクランク軸と一体の駆動歯車および発電機
のロータ軸と一体の被動歯車は噛合状態となつて
いるため、前記クランク軸の強制捩り振動力によ
り駆動歯車の歯から被動歯車の歯に衝撃的な力が
加わつて同被動歯車に大きな歯車打音が生ずる。
In addition, since the drive gear integrated with the crankshaft and the driven gear integrated with the rotor shaft of the generator are in mesh, the forced torsional vibration force of the crankshaft causes an impact from the teeth of the drive gear to the teeth of the driven gear. The applied force causes a loud gear rattling sound to be generated in the driven gear.

このような衝撃的な力を緩和するために、発電
機のロータ軸にスプリングの如き緩衝部材を介在
させた慣性トルク消去機構付き動力伝達装置があ
るが、同発電機のロータ軸系の慣性モーメントと
このロータ軸およびスプリングの合成ばね常数と
で定まる固有振動数が前記クランク軸の強制捩り
振動数に一致しまたは接近すると、共振を起し、
所期の目的を達成しえない。
In order to alleviate such an impact force, there is a power transmission device with an inertia torque canceling mechanism in which a buffer member such as a spring is interposed on the rotor shaft of the generator, but the moment of inertia of the rotor shaft system of the generator When the natural frequency determined by the rotor shaft and the composite spring constant of the spring matches or approaches the forced torsional frequency of the crankshaft, resonance occurs,
Unable to achieve desired goal.

これを解決するために、第1図ないし第2図に
図示するような慣性トルク消去機構付き動力伝達
装置(特願昭56−193999号参照)があつた。
In order to solve this problem, a power transmission device with an inertial torque elimination mechanism as shown in FIGS. 1 and 2 (see Japanese Patent Application No. 56-193999) was developed.

即ち図示されない発電機ロータと一体のロータ
軸01にフランジ02をスプライン嵌合し、同フ
ランジ02に周方向へ亘り3個の長溝03を形成
し、同フランジ02に回転自在に遊嵌される歯車
04にも前記長溝03に相対した個所で切欠き0
5を形成し、前記長溝03および切欠き05にダ
ンパーコイルスプリング06を嵌装し、円板07
で前記長溝03を塞ぎ、ピン08で同円板07を
歯車04に取付け、同歯車04を挟み左右一対の
係合部材09,010を配設し、一方の係合部材
09をロータ軸01に一体に固定し、他方の係合
部材010をロータ軸01にスプライン嵌合し、
同係合部材010内に傾斜板011と球状重錘0
12を配設し、前記係合部材010より外方でロ
ータ軸01に嵌着されたサークリツプ013と係
合部材010とに皿ばね014を介装している。
That is, a flange 02 is spline-fitted to a rotor shaft 01 that is integral with a generator rotor (not shown), three long grooves 03 are formed in the flange 02 in the circumferential direction, and a gear is loosely fitted to the flange 02 so as to be freely rotatable. 04 also has a notch 0 at a location opposite to the long groove 03.
A damper coil spring 06 is fitted into the long groove 03 and the notch 05, and a disc 07 is formed.
The long groove 03 is closed, the circular plate 07 is attached to the gear 04 with the pin 08, and a pair of left and right engaging members 09, 010 are arranged with the gear 04 in between, and one engaging member 09 is attached to the rotor shaft 01. are fixed together, and the other engaging member 010 is spline-fitted to the rotor shaft 01,
An inclined plate 011 and a spherical weight 0 are included in the engaging member 010.
12, and a disc spring 014 is interposed between the engagement member 010 and a circlip 013 fitted to the rotor shaft 01 outwardly from the engagement member 010.

第1図ないし第2図に図示された従来の慣性ト
ルク消去機構付き動力伝達装置において、停止お
よび低速回転状態では、皿ばね014のばね力に
より係合部材010の摺接面015は歯車04に
圧接されて、歯車04と係合部材09,010と
は摩擦係合され、同歯車04に加わるトルクの大
部分はダンパーコイルスプリング06を介さずに
係合部材09,010を介してロータ軸01に直
接伝達され、ダンパーコイルスプリング06は不
作動状態に設定される。
In the conventional power transmission device with an inertial torque canceling mechanism shown in FIGS. 1 and 2, when stopped and rotating at low speed, the sliding surface 015 of the engagement member 010 is moved against the gear 04 by the spring force of the disc spring 014. The gear 04 and the engagement members 09 and 010 are brought into frictional engagement, and most of the torque applied to the gear 04 is transferred to the rotor shaft 01 through the engagement members 09 and 010 without going through the damper coil spring 06. , and the damper coil spring 06 is set to an inoperative state.

また高速回転状態では、球状重錘012がその
遠心力により傾斜板011に沿つて半径方向へ移
動し、係合部材010が皿ばね014のばね力に
抗して左方へ移動してその摺接面015は歯車0
4より離れ、歯車04と係合部材09,010と
の摩擦係合は解除され、ダンパーコイルスプリン
グ06が有効に働き、図示されないエンジンのク
ランク軸と一体の歯車より歯車04に加えられる
衝撃的な力が前記ダンパーコイルスプリング06
で吸収され、歯車04における大きな応力と騒音
の発生が未然に阻止される。
In addition, in a high-speed rotation state, the spherical weight 012 moves in the radial direction along the inclined plate 011 due to its centrifugal force, and the engagement member 010 moves to the left against the spring force of the disc spring 014, causing its sliding. Contact surface 015 is gear 0
4, the frictional engagement between the gear 04 and the engagement members 09, 010 is released, and the damper coil spring 06 works effectively to reduce the impact applied to the gear 04 by the gear integrated with the crankshaft of the engine (not shown). The force is the damper coil spring 06
This prevents large stress and noise from occurring in the gear 04.

考案が解決しようとする問題点 しかしながら、前記慣性トルク消去機構付き動
力伝達装置では、ダンパーコイルスプリング06
が有効に働いている高速回転域で、回転数の上昇
または下降時の回転速度の変化に対して、図示さ
れないロータの回転速度は、歯車04が速度変化
しこれに続いてダンパコイルスプリング06が弾
性変形した後に、変化するので、慣性トルク吸収
に対し時間遅れが生じ、慣性トルク消去慣性体と
してロータが有効に作用しない場合がある。
Problems to be Solved by the Invention However, in the power transmission device with the inertia torque elimination mechanism, the damper coil spring 06
In a high-speed rotation range where the rotation speed is effectively working, the rotation speed of the rotor (not shown) changes as the rotation speed increases or decreases. Since the rotor changes after being elastically deformed, there is a time delay in absorbing inertial torque, and the rotor may not function effectively as an inertial body for eliminating inertial torque.

そこで、第7図に図示するようにダンパーコイ
ルスプリング06のばね特性をXからYに変える
と、ダンパコイルスプリング06のばね常数とロ
ータの慣性モーメントとで定まる固有振動数が増
大して、ダンパーコイルスプリング06が有効に
働いている高速回転域での強制捩り振動数に接近
し、高速回転域で共振を起す惧れがあつた。
Therefore, when the spring characteristic of the damper coil spring 06 is changed from X to Y as shown in FIG. 7, the natural frequency determined by the spring constant of the damper coil spring 06 and the moment of inertia of the rotor increases, and the damper coil The frequency approached the forced torsional vibration frequency in the high-speed rotation range where the spring 06 is working effectively, and there was a risk that resonance would occur in the high-speed rotation range.

さらに歯車04と図示されないクランク軸と一
体の駆動歯車とにバツクラツシユが存在するため
にクランク軸に回転むらがある場合には、前記駆
動歯車と歯車04とに相互に衝撃力が加わり、騒
音が発生する。
Furthermore, if there is uneven rotation of the crankshaft due to bumps between the gear 04 and a drive gear (not shown) that is integrated with the crankshaft, impact force is applied to the drive gear and gear 04, causing noise. do.

問題点を解決するための手段および作用 本考案はこのような難点を克服した慣性トルク
消去機構付き動力伝達装置の改良に係り、内燃機
関のクランク軸と一体的に回転する駆動歯車と噛
合して逆方向へ回転する慣性モーメントの大きな
回転体を備え、前記内燃機関の回転速度の変動に
よる慣性トルクを消去する慣性トルク消去機構付
き動力伝達装置において、前記駆動歯車と噛合す
る被動歯車と、該被動歯車と同一歯数を有し、か
つ前記駆動歯車と噛合する被動補助歯車とを、前
記慣性回転体と一体的に回転する従動軸上にそれ
ぞれ緩衝部材を介在して装着するとともに、所定
回転速度以下で前記駆動歯車と従動軸とを直接動
力伝達するクラツチ機構を設け、かつ前記被動歯
車と被動補助歯車とを前記従動軸を中心として互
いに反対方向に付勢し前記被動歯車の歯と被動補
助歯車の歯との歯の位相を変位可能に構成したこ
とを特徴とするものである。
Means and Effects for Solving the Problems The present invention relates to an improvement of a power transmission device with an inertial torque canceling mechanism that overcomes the above-mentioned difficulties, and is designed to mesh with a drive gear that rotates integrally with the crankshaft of an internal combustion engine. A power transmission device including a rotating body having a large moment of inertia that rotates in the opposite direction and having an inertia torque elimination mechanism that eliminates inertia torque due to fluctuations in the rotational speed of the internal combustion engine, a driven gear that meshes with the driving gear; A driven auxiliary gear having the same number of teeth as the gear and meshing with the drive gear is mounted on the driven shaft rotating integrally with the inertial rotating body with a buffer member interposed therebetween, and the drive gear is rotated at a predetermined rotational speed. Below, a clutch mechanism for directly transmitting power between the driving gear and the driven shaft is provided, and the driven gear and the driven auxiliary gear are biased in mutually opposite directions centering on the driven shaft, so that the teeth of the driven gear and the driven auxiliary gear are biased in opposite directions. It is characterized in that the phase of the teeth of the gear can be changed.

本考案は前記したように構成されているため、
前記内燃機関のクランク軸の回転速度が所定回転
速度以下の状態では、前記緩衝部材のばね常数と
前記回転体の慣性モーメントで定まる捩り固有振
動数に前記被動歯車の強制捩り振動数が一致しま
たは接近しても、前記緩衝部材の不作動により、
慣性トルク消去機構の共振を阻止することがで
き、また前記クランク軸の回転速度が所定回転速
度以上の状態では、該クランク軸の回転速度の変
動に追従させて前記回転体を回転させて慣性トル
クを消去させるとともに、前記緩衝部材により内
燃機関のトルク変動を吸収させることができる。
Since the present invention is configured as described above,
When the rotational speed of the crankshaft of the internal combustion engine is below a predetermined rotational speed, the forced torsional frequency of the driven gear matches the natural torsional frequency determined by the spring constant of the buffer member and the moment of inertia of the rotating body, or Even if approached, due to the non-operation of the buffer member,
Resonance of the inertia torque elimination mechanism can be prevented, and when the rotational speed of the crankshaft is higher than a predetermined rotational speed, the rotating body is rotated to follow fluctuations in the rotational speed of the crankshaft to eliminate inertia torque. In addition, the buffer member can absorb torque fluctuations of the internal combustion engine.

また本考案では、前記被動歯車と被動補助歯車
とを前記従動軸を中心とし互いに反対方向に付勢
し前記被動歯車の歯と被動補助歯車の歯との歯の
位相を変位可能に構成したため、前記駆動歯車と
前記被動歯車および被動補助歯車とのバツクラツ
シユを除去し、クランク軸に回転むらがあつて
も、前記駆動歯車と前記被動歯車および被動補助
歯車とが相互に衝突することを防止できる。
Further, in the present invention, the driven gear and the driven auxiliary gear are biased in mutually opposite directions around the driven shaft, and the phase of the teeth of the driven gear and the driven auxiliary gear can be displaced. Collision between the drive gear and the driven gear and the auxiliary driven gear is eliminated, and even if the crankshaft has uneven rotation, it is possible to prevent the drive gear, the driven gear, and the auxiliary driven gear from colliding with each other.

実施例 以下第3図ないし第6図に図示された本考案の
一実施例について説明する。
Embodiment An embodiment of the present invention illustrated in FIGS. 3 to 6 will be described below.

1は自動二輪車に搭載された水平対向型縦置式
エンジンで、同エンジン1のクランク軸2上にフ
ライホイール3、変速機用歯車4および発電機用
歯車5が一体に嵌合されている。
Reference numeral 1 denotes a horizontally opposed vertically mounted engine mounted on a motorcycle, and a flywheel 3, a transmission gear 4, and a generator gear 5 are integrally fitted onto a crankshaft 2 of the engine 1.

また変速機用歯車4はチエン6を介して変速機
側の歯車7に連結され、発電機用歯車5は発電機
ロータ8のロータ軸9上に配設された発電機駆動
用歯車10,11に噛合されている。
Further, the transmission gear 4 is connected to a gear 7 on the transmission side via a chain 6, and the generator gear 5 is connected to generator drive gears 10 and 11 disposed on the rotor shaft 9 of the generator rotor 8. is engaged with.

しかして歯車10,11の相対する面10a,
11aには、周方向に亘り等間隔に位置して3個
のピン孔10b,11bが形成させるとともに、
その反対面10c,11cには、前記ピン孔10
b,11bの中間に位置して3個の凹部10d,
11dが形成されており、同各凹部10d,11
dにゴム製緩衝材12がそれぞれ2個ずつ計12個
嵌装されるようになつている。
Therefore, the opposing surfaces 10a of the gears 10 and 11,
11a, three pin holes 10b, 11b are formed at equal intervals in the circumferential direction, and
The pin holes 10 are provided on the opposite surfaces 10c and 11c.
three recesses 10d located between the
11d is formed, and each recessed portion 10d, 11
A total of 12 rubber cushioning materials 12, two of which are fitted in each of the holes d, are fitted.

またロータ軸9にプレツシヤプレートを兼ねた
係合部材13が一体に嵌着され、同係合部材13
にはこれより直角でかつ放射方向に係止片13a
が突設され、同係止片13aは前記歯車10の各
凹部10d内のゴム製緩衝材12間に挿入されて
おり、歯車10に加えられた回転トルクはゴム製
緩衝材12およびプレツシヤプレート13を介し
てロータ軸9に伝達されるようになつている。
Further, an engaging member 13 that also serves as a pressure plate is integrally fitted to the rotor shaft 9.
The locking piece 13a is perpendicular to this and extends in the radial direction.
The locking piece 13a is inserted between the rubber cushioning materials 12 in each recess 10d of the gear 10, and the rotational torque applied to the gear 10 is transmitted through the rubber cushioning materials 12 and the pressure. The signal is transmitted to the rotor shaft 9 via the plate 13.

さらに歯車10,11間においてストツパー円
板14がロータ軸9にスプライン嵌合され、同ス
トツパー円板14に一体に嵌着されたストツパー
ピン15は前記歯車10,11のピン孔10b,
11bに遊嵌されるようになつている。
Furthermore, a stopper disk 14 is spline-fitted to the rotor shaft 9 between the gears 10 and 11, and a stopper pin 15, which is integrally fitted to the stopper disk 14, is connected to the pin hole 10b of the gears 10 and 11.
11b.

さらにまたロータ軸9にプレツシヤプレート1
6がスプライン嵌合され、同プレツシヤプレート
16より直角でかつ放射方向に突出された係止片
16aは前記歯車11の各凹部11d内のゴム製
緩衝材12間に挿入されており、歯車11に加え
られた回転トルクはゴム製緩衝材12およびプレ
ツシヤプレート16を介してロータ軸9に伝達さ
れるようになつている。
Furthermore, a pressure plate 1 is attached to the rotor shaft 9.
6 is spline-fitted, and a locking piece 16a protruding perpendicularly and radially from the pressure plate 16 is inserted between the rubber cushioning materials 12 in each recess 11d of the gear 11, and The rotational torque applied to rotor 11 is transmitted to rotor shaft 9 via rubber cushioning material 12 and pressure plate 16.

しかして歯車10と歯車11との歯では、極く
僅かな相対的角度差が存するように、両歯車1
0,11はロータ軸9に嵌合されており、両歯車
10,11は発電機用歯車5に対しバツクラツシ
ユがないように噛合されている。
Therefore, the teeth of the gears 10 and 11 are arranged such that there is a very slight relative angle difference between the teeth of the gears 10 and 11.
0 and 11 are fitted to the rotor shaft 9, and both gears 10 and 11 are meshed with the generator gear 5 so that there is no backlash.

なお17はプレツシヤプレート16を外方へ移
動させないようにしたサークリツプである。
Note that 17 is a circlip that prevents the pressure plate 16 from moving outward.

またプレツシヤプレトー16の外側に位置して
傾斜板18および係合部材19がロータ軸9にス
プライン嵌合され、同傾斜板18および係合部材
19間に球状重錘20が介装されている。
Further, an inclined plate 18 and an engaging member 19 are spline-fitted to the rotor shaft 9 located outside the pressure plate 16, and a spherical weight 20 is interposed between the inclined plate 18 and the engaging member 19. ing.

さらに係合部材19の外側に位置してロータ軸
9にサークリツプ21が嵌着され、同係合部材1
9およびサークリツプ21間に皿ばね22が介装
されている。
Further, a circlip 21 is fitted onto the rotor shaft 9 at an outside of the engaging member 19.
A disc spring 22 is interposed between the circlip 9 and the circlip 21.

第3図ないし第6図に図示の実施例は前記した
ように構成されているので、エンジン1が停止し
または低速回転している場合には、球状重錘20
はロータ軸9の中心寄りに位置し、第5図に図示
されるように、皿ばね22のばね力により係合部
材19の摺接面19aは歯車11の側面に押圧さ
れて、歯車10および係合部材14と、歯車11
および係合部材19とは摩擦係合され、歯車1
0,11に加わるトルクの大部分はゴム製緩衝材
12を介さずに係合部材13,17を介してロー
タ軸9に直接伝達される。
Since the embodiment shown in FIGS. 3 to 6 is configured as described above, when the engine 1 is stopped or rotating at a low speed, the spherical weight 20
is located near the center of the rotor shaft 9, and as shown in FIG. Engagement member 14 and gear 11
and the engagement member 19 are frictionally engaged, and the gear 1
0 and 11 is directly transmitted to the rotor shaft 9 via the engaging members 13 and 17 without passing through the rubber cushioning material 12.

このため、エンジン低速回転時におけるクラン
ク軸2の強制捩り振動数が、ロータ軸9およびゴ
ム製緩衝材12の合成ばね常数と発電機ロータ8
の慣性モーメントで定まる捩り固有振動数に一致
しても、前記ゴム製緩衝材12の不作動により前
記発電機ロータ8およびロータ軸9の共振を阻止
することができる。
Therefore, the forced torsional vibration frequency of the crankshaft 2 when the engine rotates at low speed is equal to the composite spring constant of the rotor shaft 9 and the rubber cushioning material 12 and the generator rotor 8.
Even if the torsional natural frequency is determined by the moment of inertia of , the resonance of the generator rotor 8 and the rotor shaft 9 can be prevented by the non-operation of the rubber cushioning material 12 .

またエンジン1が所定の回転数を越えて高速回
転状態になると、第6図に図示されるように、そ
の遠心力により球状重錘20が斜面18aに沿つ
て半径方向へ移動して皿ばね22が弾性変形し、
係合部材19の摺接面19aは歯車11の側面よ
り離れ、歯車10,11と係合部材13,19と
は摩擦係合されない。従つてゴム製緩衝材12は
有効に働き、発電機用歯車5より発電機駆動用歯
車10,11に加えられる衝撃的な力が前記ゴム
製緩衝材12で吸収され、前記歯車5,10,1
1における大きな応力と騒音の発生が未然に阻止
される。
Further, when the engine 1 exceeds a predetermined rotational speed and enters a high-speed rotation state, the centrifugal force causes the spherical weight 20 to move in the radial direction along the slope 18a, causing the disc spring 22 to move. deforms elastically,
The sliding surface 19a of the engagement member 19 is separated from the side surface of the gear 11, and the gears 10, 11 and the engagement members 13, 19 are not frictionally engaged. Therefore, the rubber cushioning material 12 works effectively, and the impact force applied from the generator gear 5 to the generator drive gears 10, 11 is absorbed by the rubber cushioning material 12, and the 1
The generation of large stress and noise at 1 is obviated.

さらに高速回転状態において、エンジン1の速
度変化が大きい即ち回転角加速度が大きい時に
は、第7図のZ線に図示されるように歯車10,
11と係止片13a,16aの相対角度、換言す
ればゴム製緩衝材12の弾性変形量が増大するに
つれて、ゴム製緩衝材12の伝達トルクが大幅に
増加し、歯車10,11の回転速度の変化に対し
ロータ軸9が時間遅れなく直ちに追従してロータ
軸9が駆動され、慣性トルク消去慣性体としてロ
ータ8が有効に作用しうる。従つてこのような状
態においても、有効なトルク吸収を遂行しうる。
Further, in a high-speed rotation state, when the speed change of the engine 1 is large, that is, the rotational angular acceleration is large, the gear 10,
11 and the locking pieces 13a, 16a, in other words, as the amount of elastic deformation of the rubber cushioning material 12 increases, the transmission torque of the rubber cushioning material 12 increases significantly, and the rotational speed of the gears 10, 11 increases. The rotor shaft 9 is driven by immediately following the change without time delay, and the rotor 8 can effectively act as an inertial torque canceling inertial body. Therefore, even in such a state, effective torque absorption can be achieved.

考案の効果 このように本考案においては、前記内燃機関の
クランク軸の回転速度が所定回転速度以下の状態
では、前記緩衝部材のばね常数と前記回転体の慣
性モーメントで定まる捩り固有振動数に前記被動
歯車の強制捩り振動数が一致しまたは接近して
も、前記緩衝部材の不作動により、慣性トルク消
去機構の共振を阻止することができ、また前記ク
ランク軸の回転速度が所定回転速度以上の状態で
は、該クランク軸の回転速度の変動に追従させて
前記回転体を回転させて慣性トルクを消去させる
とともに、前記緩衝部材により内燃機関のトルク
変動を吸収させることができる。
Effects of the Invention As described above, in the present invention, when the rotational speed of the crankshaft of the internal combustion engine is below a predetermined rotational speed, the torsional natural frequency determined by the spring constant of the buffer member and the moment of inertia of the rotating body is Even if the forced torsional vibration frequencies of the driven gears match or approach each other, the inactivation of the buffer member can prevent resonance of the inertial torque canceling mechanism, and the rotational speed of the crankshaft is greater than or equal to a predetermined rotational speed. In this state, the rotating body can be rotated to follow fluctuations in the rotational speed of the crankshaft to eliminate inertial torque, and torque fluctuations of the internal combustion engine can be absorbed by the buffer member.

また本考案では、前記駆動歯車と前記被動歯車
および被動補助歯車とのバツクラツシユを除去し
たため、クランク軸に回転むらがあつても、前記
駆動歯車と前記被動歯車および被動補助歯車と相
互衝突を阻止して、歯車打音の発生を未然に防止
することができる。
Furthermore, in the present invention, since the collision between the drive gear and the driven gear and the driven auxiliary gear is eliminated, even if there is uneven rotation of the crankshaft, the drive gear, the driven gear, and the driven auxiliary gear can be prevented from colliding with each other. This makes it possible to prevent gear rattling noise from occurring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の反トルクバランサーの縦断側面
図、第2図は第1図の−矢視図、第3図は本
考案に係る反トルクバランサーの一実施例を図示
した平面図、第4図は同実施例の要部分解斜視
図、第5図および第6図は低速回転および高速回
転時における前記実施例の縦断側面図、第7図は
ダンパーコイルスプリングおよびゴム製緩衝材の
ばね特性図である。 1……水平対向型縦置式エンジン、2……クラ
ンク軸、3……フライホイール、4……変速機用
歯車、5……発電機用歯車、6……チエン、7…
…歯車、8……発電機ロータ、9……ロータ軸、
10,11……発電機駆動用歯車、12……ゴム
製緩衝材、13……係合部材、14……ストツパ
ー円板、15……ストツパーピン、16……プレ
ツシヤプレート、17……サークリツプ、18…
…傾斜板、19……係合部材、20……球状重
錘、21……サークリツプ、22……皿ばね。
FIG. 1 is a vertical sectional side view of a conventional anti-torque balancer, FIG. 2 is a view taken along the - arrow in FIG. 1, FIG. 3 is a plan view illustrating an embodiment of the anti-torque balancer according to the present invention, The figure is an exploded perspective view of essential parts of the same embodiment, Figures 5 and 6 are longitudinal cross-sectional side views of the embodiment during low-speed rotation and high-speed rotation, and Figure 7 is the spring characteristics of the damper coil spring and rubber cushioning material. It is a diagram. 1... Horizontally opposed vertical engine, 2... Crankshaft, 3... Flywheel, 4... Transmission gear, 5... Generator gear, 6... Chain, 7...
... Gear, 8 ... Generator rotor, 9 ... Rotor shaft,
DESCRIPTION OF SYMBOLS 10, 11... Gear for driving a generator, 12... Rubber cushioning material, 13... Engaging member, 14... Stopper disk, 15... Stopper pin, 16... Pressure plate, 17... Circlip , 18...
... inclined plate, 19 ... engaging member, 20 ... spherical weight, 21 ... circlip, 22 ... disc spring.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model claims] 内燃機関のクランク軸と一体的に回転する駆動
歯車と噛合して逆方向へ回転する慣性モーメント
の大きな回転体を備え、前記内燃機関の回転速度
の変動による慣性トルクを消去する慣性トルク消
去機構付き動力伝達装置において、前記駆動歯車
と噛合する被動歯車と、該被動歯車と同一歯数を
有し、かつ前記駆動歯車と噛合する被動補助歯車
とを、前記慣性回転体と一体的に回転する従動軸
上にそれぞれ緩衝部材を介在して装着するととも
に、所定回転速度以下で前記駆動歯車と従動軸と
を直接動力伝達するクラツチ機構を設け、かつ前
記被動歯車と被動補助歯車とを前記従動軸を中心
として互いに反対方向に付勢し前記被動歯車の歯
と被動補助歯車の歯との歯の位相を変位可能に構
成したことを特徴とする慣性トルク消去機構付き
動力伝達装置。
It is equipped with a rotating body with a large moment of inertia that rotates in the opposite direction by meshing with the drive gear that rotates integrally with the crankshaft of the internal combustion engine, and is equipped with an inertia torque elimination mechanism that eliminates inertia torque due to fluctuations in the rotational speed of the internal combustion engine. In the power transmission device, a driven gear that meshes with the driving gear and a driven auxiliary gear that has the same number of teeth as the driven gear and meshes with the driving gear are connected to a driven gear that rotates integrally with the inertial rotating body. A clutch mechanism is provided on each shaft with a buffer member interposed therebetween, and a clutch mechanism is provided to directly transmit power between the driving gear and the driven shaft at a rotational speed below a predetermined speed, and the driven gear and the auxiliary driven gear are connected to the driven shaft. 1. A power transmission device with an inertial torque canceling mechanism, characterized in that the gears are biased in mutually opposite directions at the center, and the phase of the teeth of the driven gear and the teeth of the driven auxiliary gear can be displaced.
JP13789282U 1982-09-11 1982-09-11 Power transmission device with inertia torque elimination mechanism Granted JPS5942335U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13789282U JPS5942335U (en) 1982-09-11 1982-09-11 Power transmission device with inertia torque elimination mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13789282U JPS5942335U (en) 1982-09-11 1982-09-11 Power transmission device with inertia torque elimination mechanism

Publications (2)

Publication Number Publication Date
JPS5942335U JPS5942335U (en) 1984-03-19
JPS6314119Y2 true JPS6314119Y2 (en) 1988-04-20

Family

ID=30309579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13789282U Granted JPS5942335U (en) 1982-09-11 1982-09-11 Power transmission device with inertia torque elimination mechanism

Country Status (1)

Country Link
JP (1) JPS5942335U (en)

Also Published As

Publication number Publication date
JPS5942335U (en) 1984-03-19

Similar Documents

Publication Publication Date Title
US4589296A (en) Power transmission mechanism
CN102822562B (en) Arrangement for damping oscillations
JP2594426B2 (en) Torsional damping device
US3514974A (en) Noise prevention device in torsional vibration
US7303479B2 (en) Frictional resistance generation mechanism
US6398655B1 (en) Torsional vibration damper with movable masses
JP3558462B2 (en) Flywheel assembly
JP2920667B2 (en) Torque fluctuation absorber
JPH01220744A (en) Split flywheel
JPH0792114B2 (en) Flywheel assembly
US8167728B2 (en) Damper disk assembly and flywheel assembly
CN212028426U (en) Vehicle damper and vehicle
JPH05106688A (en) Shock absorption tupe double flywheel for automobile
JPS6314119Y2 (en)
JP3638620B2 (en) Torque fluctuation absorber
US6484860B1 (en) Friction torque device with improved damper
US4989713A (en) Torisonal damping mechanism
JPH026285Y2 (en)
JPS6311406Y2 (en)
US6443284B1 (en) Torsion bar isolator
JPS6314118Y2 (en)
KR101043554B1 (en) Dual mass flywheel, in particular for a motor vehicle
JPH056440Y2 (en)
JPH0310432Y2 (en)
JPS5947558A (en) Power transmission apparatus