JPS6314066B2 - - Google Patents

Info

Publication number
JPS6314066B2
JPS6314066B2 JP16862282A JP16862282A JPS6314066B2 JP S6314066 B2 JPS6314066 B2 JP S6314066B2 JP 16862282 A JP16862282 A JP 16862282A JP 16862282 A JP16862282 A JP 16862282A JP S6314066 B2 JPS6314066 B2 JP S6314066B2
Authority
JP
Japan
Prior art keywords
metal
stamper
layer
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16862282A
Other languages
Japanese (ja)
Other versions
JPS5959892A (en
Inventor
Akio Hori
Norio Ozawa
Takashi Koizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP16862282A priority Critical patent/JPS5959892A/en
Publication of JPS5959892A publication Critical patent/JPS5959892A/en
Publication of JPS6314066B2 publication Critical patent/JPS6314066B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 この発明は光デイスクメモリに利用されるアク
リル基材またはガラス基材からなるデイスク基板
に幅0.2〜1.5μm、深さ0.03〜0.2μm、間隔1.2〜3μ
m程度の微細パターンを形成すること可能にした
スタンパーの製造方法に関する。 〔発明の技術的背景とその問題点〕 従来のスタンパーの製造方法として、レコード
原盤のNi電着方法を応用した例がある。第1図
イ〜ニにこの方法に係るスタンパーの半成品断面
図を工程順に示す。まず第一工程でCr薄膜2を
表面に蒸着したガラス板1に液状のポジタイプフ
オトレジストをスピンナーで塗布しベーキングす
る。このガラス板を回転させレザービームを移動
させながら照射して露光させる。次に現像エツチ
ングを行なうと、イ図に示すようにスパイラル状
の凹部から成る微細パターン3を備えた原盤が出
来る。次に第二工程で、Ni電着に必要な導電化
と微細パターンの転写を兼ねて銀鏡反応により厚
さ0.05〜0.5μmの銀被膜4を原盤面に付着させ
る。この時に原盤側面および裏面の一部にも銀被
膜4′が付着する。この薄い銀被膜に対しては高
い電流密度でNi電着が行なわれていないために
銀被膜を陰電極としてカソードロツカ方式のNi
浴槽中で1〜3A/dm2の電流密度で厚さ2〜5μ
mの下地Ni層5を形成してとりだす。ロ図はこ
の状態を示している。Ni層が表面にも5′として
分布している。第三工程は原盤を、その裏面に付
着された銀被膜4′、下地Ni層5′を回転陰電極
6の卓面6′に機械的な接触をさせて合成樹脂製
ネジ7でとりつける。電流集中防止カバー8を被
せたのち、高速Ni電着浴槽中で、2〜4A/dm2
の電流密度にて厚さ5〜20μmの予備Ni層9を形
成し、さらに8〜20A/dm2の高電流密度にて厚
さ180〜350μmの本Ni層10を形成する。この状
態をハに示す。次に第四工程で形成した銀被膜
4、Ni層5,9,10をガラス板から分離する。
この時に微細パターンを形成したフオトレジスト
の一部または全部が銀被膜に残る為に、レジスト
剥離液によりレジストのエツチングを行ない、微
細パターンが転写された表面を有するAg被膜4
とNi層5,9,10とから成るスタンパーを作
成する。ニにこの状態を示す。 このスタンパーのAg被膜を表面酸化させるか、
またはAg被膜をエツチングしてからNi面にCrメ
ツキを施しマスター盤として表面にNi電着を行
ない分離させるとマザー盤が得られ、同様にマザ
ー盤からスタンパーを製作することができるし、
マザー盤をマザースタンパーとしても使用でき
る。 このような製造方法の欠点として (1) Cr薄膜2を蒸着されたガラス板であつても
フオトレジストの密着性は悪い。まして基板側
面及び裏面に回り込んでいるフオトレジスト個
所での密着性は著しく悪い。 (2) フオトレジストの最大欠点は、塵埃を付着し
やすく、且つこの塵埃がとりにくい点にある。
また凹部の深さを変化させる塗布むらや凹部が
なくなる現像むらなどの欠陥の多い原盤にす
る。 (3) 銀鏡反応によるAg被膜は反応速度の制御が
むずかしく膜厚のむらを生じやすい、またAg
がつぶ状結晶になり微細パターンの転写性を劣
化させる。さらにAgの表面は塩化銀、硫化銀
になりやすく同様に転写性を劣化させる。 (4) 裏面に回り込んだAg被膜4′、下地Ni層
5′は、ガラス板1との密着性が弱く、機械的
に電気的接触をさせると、通電不良または剥離
を引きおこす。 (5) 下地Ni層4形成のあとにNi浴槽から取り出
したり、予備Ni層9から本Ni層10を形成す
るときに急に電流密度を変化させるために、
Niの結晶整合性が悪く、Ni層間の剥離または
電着応力によるソリなどを発生させる。 などが数えられる。 〔発明の目的〕 この発明は、このような従来の原盤を用いず、
微細パターンの優れた原盤を製作し、この微細パ
ターンを損うことなく転写させる導電性薄膜を原
盤上に形成し、陰電極と確実な通電を行なわせて
Ni電着スタンパーを形成するスタンパーの製造
方法を提供するにある。 〔発明の概要〕 即ちこの発明は(1)中心を開孔した円形のガラス
基板上にエネルギー吸収性とガス放出性の両性質
を備える低融点金属反応膜を形成し、膜面にエネ
ルギービームを照射してスパイラル状もしくは同
心円状の凸凹からなる微細パターンを形成するこ
とにより原盤を作成し、この原盤上に微細パター
ンを損うことなく金属薄膜を形成した後、回転す
る陰電極端面に原盤を原盤開孔を通してねじ込ま
れるボルトによりフランジつき円筒金具を介して
脱着自在に保持させ、この金属薄膜を陰極として
Ni電着層を積層するに際し、金属薄膜と金具の
フランジとの間に金属ドーナツ板を介在させるこ
とにより、金属薄膜、金属ドーナツ板、Ni電着
層を一体化させ、密着性、転写性、耐久性を良好
にするスタンパーを得るスタンパーの製造方法、
又は(2)金属薄膜が厚さ0.03〜0.2μmのAu,Cr,
Ir,Pd,Pt,Rh,Ru,Ti,Zr,Taのいずれか
少くとも一種から成る前記1項に記載のスタンパ
ーの製造方法、又は、(3)金属ドーナツ板が厚さ
0.02〜0.2mmのNi,Fe,Co、リン青銅、黄銅、ス
テンレスのいずれか板体に厚さ5μm以下のAg,
Au,Pd,Pt,Rhのメツキ層または蒸着層の何れ
か層を被着させたものである前記1項に記載のス
タンパーの製造方法(4)金属ドーナツ板がAg,
Au,Pd,Pt,Rh,Ni、ステンレスとする前記
1項に記載のスタンパーの製造方法、又は(5)Ni
電着層は同一浴槽内で順次連続またはステツプ状
に電流を増加させて形成されたものである1項に
記載のスタンパー製造方法にある。 このようなこの発明のスタンパー製造方法では
まずガラス基板に真空中でTe,Bi,Zn,Sbのよ
うな低融点金属のターゲツトをC,H,N,Oな
どの成分を持つガスプラズマで反応性スパツタリ
ングすることにより、密着性に優れ膜厚むらがな
く、かつエネルギー吸収性とガス放出性を備える
低融点金属反応膜を形成する。この低融点金属反
応膜を形成させたガラス基板を回転させ、レザー
ビームを孔部を形成することなくスパイラル状の
凸部を形成するよう一定のパワーでレザーを照射
すれば、微細パターンを形成された欠点のない原
盤が得られる。 このようにして形成された原盤表面に転写性を
劣化させず導電性を付与し、かつ原盤との密着性
の良好な金属薄膜を真空蒸着して形成し、金属薄
膜に直接Ni電着が行なわれるように原盤中心開
孔縁に金属ドーナツ板を対接させ、回転陰電極端
面にフランジ付き円筒金具を介してボルトでねじ
こみ、同一Ni浴槽内でNi層を下地から連続して
電着すればNiは介在させた金属板にも電着され、
金属薄膜とも一体化されたNi層が形成されて、
欠点のないスタンパーを得させるのである。 〔発明の実施例〕 以下この発明の実施例について図面を参照して
説明する。第2図イ〜ニは各例のスタンパー製造
方法に係る半成品を工程順に示す断面図である。 (1) こゝでは記述を一般的にして述べてある。ま
ず第一工程として、中心を開孔したガラス基板
11に真空中で例えばTeをターゲツトとして
CH4ガスプラズマで反応性スパツタリングを行
なう。この結果密着性に優れ、膜厚むらがな
く、かつエネルギー吸収性とガス放出性を合せ
持つTe60C20H20の低融点金属反応膜が厚さ0.15
〜0.4μm形成される。低融点金属反応膜を被着
したこのガラス基板を回転させ、He−Neまた
はArガスレザー或いはGaAlAsの半導体レザー
の連続ビームを半径方向に連続移動させると、
スパイラル状に同一形状からなる凸部が形成さ
れて、微細パターン12を備える原盤となる。
イにこの状態を示す。次に第二工程として、こ
の微細パターンを備えた原盤の表面にNi電着
に必要な導電性を付与し、転写性を劣化させず
に密着性良好なAu,Pd,Rh、またはPtなど金
属を厚さ0.03〜0.2μmに真空蒸着してロに示す
ように金属薄膜13を形成する。第三工程とし
ては金属薄膜13を表面に被着した原盤と、回
転陰電極14との電気的接触およびとりつけに
あたり、予めドーナツ状に成形された厚さ0.02
〜0.2mmのNi,Fe,Cu,Co、リン青銅、黄銅、
ステンレスなどの板片に厚さ5μm以下のAg,
Au,Ptなど接触抵抗の低い貴金属メツキを施
した金属ドーナツ板15を作製する。この金属
ドーナツ板15を原盤と中心を合わせて配置
し、フランジ付き円筒金具16、ワツシヤー1
7を介してボルト18で原盤と回転陰電極14
をしめつける。またボルトの頭などの不要部分
に電着されないように絶縁キヤツプ19を被せ
る。さらに電流集中防止カバー20を原盤に被
せたのちに、Ni電着浴槽中でデポライズニツ
ケルを陽極として、1〜3A/dm2の電流密度
にて厚さ2〜5μmの下地Ni層21を形成し、
連続またはステツプ状に電流を増加させ、8〜
15A/dm2の高電流密度に到達させたのちに、
厚さ180〜350μmの本Ni層22を形成する。ハ
にこの状態を示す。このような方法で連続Ni
電着を行なうと下地Ni層、電流増加中Ni層、
本Ni層の各層間が不明確になる程結晶整合性
の良いNi電着層が形成される。一方介在させ
た金属ドーナツ板15にも下地Ni層から電着
されてNi電着層を一体化しているため、著る
しく電気的接触を良好にする。また金属薄膜1
3のAu,Pd,RhまたはPtなどは、下地Ni層
界面の間で電着時の発熱によつて相互拡散し、
ために剥離することがない。第四工程ではガラ
ス基板から金属薄膜、金属ドーナツ板を含む
Ni層を分離し、金属薄膜面に付着し残存する
低融点金属反応膜を電解洗浄法によつて除去し
て、微細パターンが転写されたスタンパーが得
られる。ニにこのスタンパーを示す。 このような工程を経過するスタンパーの製造
方法では、従来のフオトレジスト原盤方式に起
因する種々の問題点を除くために微細パターン
を形成するフオトレジストに替り、低融点金属
反応膜を用い、転写性、密着性、結晶接合性な
ど多くの優れた特徴を持つスタンパーを得させ
るようにしている。 以下の例は具体的に述べてある。 (2) まず厚さ12mmで外径350mmφ、中心内径20mm
φからなり中心を開孔したガラス基板11の表
面に、真空中でTeをターゲツトとしCH4ガス
プラズマで反応性スパツタリングを行ない、
Te60C20H20なる低融点金属反応膜を0.3μm形成
する。低融点金属反応膜を被着したこのガラス
基板を回転させ、He−Neガスレザーの連続ビ
ームを連続移動させながら照射する。照射時の
回転速度は、線速が4m/secになるように制
御すると共に、ビームを半径方向に一定間隔で
移動させるように制御する。またHe−Neガス
レザーのパワーは7mWとする。 このようにしてレザービームを照射した低融
点金属反応膜には、間隔2μm、幅0.7μm、高さ
0.1μmのスパイラル状に同一形状の凸部が形成
され微細パターン12を有する原盤ができる。
この状態はイの通りである。次にこの微細パタ
ーンを備えた原盤に、真空中でAuをターゲツ
トとし、Arガスプラズマで、蒸着速度3Å/
secのスパツタリングを行ない厚さ100Å蒸着し
たのち、蒸着速度を10Å/secにして合計厚さ
0.1μmの金属薄膜13を形成する。ロはこの状
態を示す。次に金属薄膜13を表面に項いてい
る原盤と回転陰電極14との電気的接触および
とりつけをはかりドーナツ状の金属板15をあ
らかじめ作製しなければならない。この例で
は、厚さ50μmのNi板を、外径36mmφ、内径
20.1mmφのドーナツ状に成形する。この成形は
バリ、ソリを発生しないエツチング加工法を用
いる。さらにドーナツ状に成形されたNi板全
面に厚さ2μmのAuメツキを施し、金属ドーナ
ツ板15を形成する。こうして作製された金属
ドーナツ板15を金属薄膜13を表面とする原
盤の開孔周縁に中心を合わせて置き、フランジ
付き円筒金具16ワツシヤー17を介してボル
ト18で原盤と回転陰電極14を一体にしめつ
ける。またボルトの頭など金属板以上の所に電
着されないように絶縁キヤツプ19を被せさら
に電流集中防止カバー20を原盤に被せたのち
に、次にあげるスルフアミン酸ニツケル浴で電
着を行なう。
[Technical Field of the Invention] This invention relates to a disk substrate made of an acrylic base material or a glass base material used for optical disk memory, with a width of 0.2 to 1.5 μm, a depth of 0.03 to 0.2 μm, and a spacing of 1.2 to 3 μm.
The present invention relates to a method for manufacturing a stamper that makes it possible to form a fine pattern on the order of m. [Technical background of the invention and its problems] As a conventional method for manufacturing a stamper, there is an example in which the Ni electrodeposition method for record masters is applied. FIGS. 1A to 1D show cross-sectional views of semifinished stampers according to this method in the order of steps. First, in the first step, a liquid positive type photoresist is applied with a spinner to a glass plate 1 on which a Cr thin film 2 has been vapor-deposited, and then baked. The glass plate is rotated and the laser beam is moved while irradiating the glass plate for exposure. Next, when development and etching are carried out, a master disk having a fine pattern 3 consisting of spiral concave portions is produced as shown in FIG. Next, in a second step, a silver coating 4 having a thickness of 0.05 to 0.5 μm is adhered to the master surface by silver mirror reaction, serving both as conductivity necessary for Ni electrodeposition and as a transfer of a fine pattern. At this time, the silver coating 4' also adheres to part of the side and back surfaces of the master. Since Ni electrodeposition is not carried out at a high current density on this thin silver film, the cathode dropper method using the silver film as a negative electrode
2-5μ thick at a current density of 1-3A/ dm2 in a bathtub
A base Ni layer 5 of m is formed and taken out. Figure B shows this state. A Ni layer is also distributed on the surface as 5'. In the third step, the master disk is attached with synthetic resin screws 7 by mechanically contacting the silver coating 4' and base Ni layer 5' attached to the back surface of the master disk with the table surface 6' of the rotating cathode 6. After covering with the current concentration prevention cover 8, 2 to 4 A/dm 2 in a high-speed Ni electrodeposition bath.
A preliminary Ni layer 9 with a thickness of 5 to 20 .mu.m is formed at a current density of 2 to 20 A/dm2, and a main Ni layer 10 of 180 to 350 .mu.m in thickness is further formed at a high current density of 8 to 20 A/dm.sup.2. This state is shown in C. Next, the silver coating 4 and Ni layers 5, 9, and 10 formed in the fourth step are separated from the glass plate.
At this time, some or all of the photoresist on which the fine pattern was formed remains on the silver film, so the resist is etched with a resist stripping solution to form the Ag film 4 with the surface to which the fine pattern has been transferred.
and Ni layers 5, 9, and 10. This state is shown in d. Either surface oxidize the Ag coating of this stamper or
Alternatively, after etching the Ag film, Cr plating is applied to the Ni surface, and a master disk is obtained by electrodepositing Ni on the surface and separating, to obtain a mother disk, and a stamper can be manufactured from the mother disk in the same way.
The mother board can also be used as a mother stamper. Disadvantages of this manufacturing method include (1) The adhesion of the photoresist is poor even on a glass plate on which the Cr thin film 2 is vapor-deposited. Furthermore, the adhesion is extremely poor at the photoresist areas that extend around the side and back surfaces of the substrate. (2) The biggest drawback of photoresists is that they tend to attract dust and are difficult to remove.
In addition, the master disc has many defects such as uneven coating that changes the depth of the recesses and uneven development that causes the recesses to disappear. (3) It is difficult to control the reaction rate of the Ag film produced by the silver mirror reaction, and the film thickness tends to be uneven.
becomes crushed crystals and deteriorates the transferability of fine patterns. Furthermore, the surface of Ag is susceptible to silver chloride and silver sulfide, which also deteriorates transferability. (4) The Ag film 4' and base Ni layer 5' that have wrapped around the back surface have weak adhesion to the glass plate 1, and if mechanically and electrically contacted, they will cause poor conduction or peeling. (5) In order to suddenly change the current density when taking out the Ni bath after forming the base Ni layer 4 or when forming the main Ni layer 10 from the preliminary Ni layer 9,
The crystal consistency of Ni is poor, causing peeling between Ni layers or warping due to electrodeposition stress. etc. can be counted. [Object of the invention] This invention does not use such a conventional master disc,
We create a master disc with an excellent fine pattern, form a conductive thin film on the master disc that transfers this fine pattern without damaging it, and ensure reliable conduction with the negative electrode.
The present invention provides a stamper manufacturing method for forming a Ni electrodeposition stamper. [Summary of the Invention] That is, the present invention consists of (1) forming a low melting point metal reaction film having both energy absorbing and gas releasing properties on a circular glass substrate with a hole in the center, and irradiating the film surface with an energy beam; A master disc is created by irradiating it to form a fine pattern consisting of spiral or concentric irregularities, and after forming a thin metal film on the master disc without damaging the fine pattern, the master disc is placed on the end face of a rotating cathode. It is held removably through a flanged cylindrical fitting by bolts screwed through the master hole, and this metal thin film is used as a cathode.
When laminating the Ni electrodeposition layer, by interposing a metal donut plate between the metal thin film and the flange of the metal fitting, the metal thin film, metal donut plate, and Ni electrodeposition layer are integrated, and the adhesion, transferability, A method for manufacturing a stamper to obtain a stamper with good durability;
or (2) Au, Cr, where the metal thin film is 0.03 to 0.2 μm thick,
The method for producing a stamper according to item 1 above, which is made of at least one of Ir, Pd, Pt, Rh, Ru, Ti, Zr, and Ta, or (3) the metal donut plate has a thickness of
0.02~0.2mm Ni, Fe, Co, phosphor bronze, brass, stainless steel plate with a thickness of 5μm or less, Ag,
The method for manufacturing a stamper according to item 1 above, wherein the stamper is coated with a plating layer or a vapor deposited layer of Au, Pd, Pt, or Rh (4) The metal donut plate is made of Ag,
The method for producing a stamper according to item 1 above, in which Au, Pd, Pt, Rh, Ni, stainless steel, or (5) Ni
In the method for producing a stamper according to item 1, the electrodeposited layer is formed by sequentially or stepwise increasing current in the same bath. In the stamper manufacturing method of the present invention, a target of a low melting point metal such as Te, Bi, Zn, or Sb is first reacted with a gas plasma containing components such as C, H, N, and O on a glass substrate in a vacuum. By sputtering, a low melting point metal reaction film with excellent adhesion, uniform thickness, energy absorption and gas release properties is formed. By rotating the glass substrate on which this low-melting point metal reaction film is formed and irradiating the laser beam with a constant power so as to form spiral convex parts without forming holes, a fine pattern can be formed. A master disc with no defects can be obtained. A thin metal film that imparts conductivity without deteriorating transferability and has good adhesion to the master disc is formed on the surface of the master disc thus formed by vacuum deposition, and Ni electrodeposition is performed directly on the metal thin film. A metal donut plate is placed in contact with the edge of the opening at the center of the master disk, and a flanged cylindrical metal fitting is screwed onto the end face of the rotating cathode with bolts, and a Ni layer is continuously electrodeposited from the base in the same Ni bath. Ni is also electrodeposited on the intervening metal plate,
A Ni layer integrated with the metal thin film is formed,
This allows you to obtain a stamper with no defects. [Embodiments of the Invention] Examples of the present invention will be described below with reference to the drawings. FIGS. 2A to 2D are cross-sectional views showing semifinished products according to each example of the stamper manufacturing method in the order of steps. (1) The description here is made in general terms. First, as a first step, a glass substrate 11 with a hole in the center is made of, for example, Te as a target in a vacuum.
Perform reactive sputtering with CH 4 gas plasma. As a result, the low melting point metal reaction film of Te 60 C 20 H 20 , which has excellent adhesion, no uneven film thickness, and has both energy absorption and gas release properties, has a thickness of 0.15.
~0.4 μm is formed. When this glass substrate coated with a low melting point metal reaction film is rotated and a continuous beam of He-Ne or Ar gas laser or GaAlAs semiconductor laser is continuously moved in the radial direction,
Convex portions having the same shape are formed in a spiral shape, thereby forming a master disk having a fine pattern 12.
This state is shown in A. Next, as a second step, the surface of the master disk with this fine pattern is given the conductivity necessary for Ni electrodeposition, and a metal such as Au, Pd, Rh, or Pt, which has good adhesion without deteriorating transferability, is applied. is vacuum-deposited to a thickness of 0.03 to 0.2 μm to form a metal thin film 13 as shown in FIG. The third step is to electrically contact and attach the master disk with the metal thin film 13 on its surface to the rotating cathode 14, which is formed in advance into a donut shape with a thickness of 0.02 mm.
~0.2mm Ni, Fe, Cu, Co, phosphor bronze, brass,
Ag with a thickness of 5 μm or less on a piece of stainless steel, etc.
A metal donut plate 15 plated with a noble metal such as Au or Pt having low contact resistance is manufactured. This metal donut plate 15 is arranged so that its center is aligned with the master, and the flanged cylindrical metal fitting 16 and the washer 1 are placed.
The master disk and the rotating cathode 14 are connected by bolts 18 through 7.
Tighten. Further, an insulating cap 19 is placed over unnecessary parts such as bolt heads to prevent electrodeposition. Furthermore, after covering the master with a current concentration prevention cover 20, a base Ni layer 21 with a thickness of 2 to 5 μm is formed at a current density of 1 to 3 A/dm 2 using depolyzed nickel as an anode in a Ni electrodeposition bath. death,
Increase the current continuously or in steps, from 8 to
After reaching a high current density of 15A/ dm2 ,
A real Ni layer 22 with a thickness of 180 to 350 μm is formed. This state is shown in c. Continuous Ni
When electrodeposition is performed, the base Ni layer, the Ni layer during current increase,
The more unclear the interlayers of the present Ni layer are, the better the crystal consistency of the Ni electrodeposited layer is formed. On the other hand, since the interposed metal donut plate 15 is also electrodeposited from the base Ni layer to integrate the Ni electrodeposition layer, the electrical contact is significantly improved. Also, metal thin film 1
Au, Pd, Rh, or Pt, etc. in 3. interdiffuse between the interfaces of the base Ni layer due to heat generated during electrodeposition.
It won't peel off because of this. The fourth process includes the glass substrate, metal thin film, and metal donut plate.
The Ni layer is separated and the remaining low melting point metal reaction film adhering to the metal thin film surface is removed by electrolytic cleaning to obtain a stamper with a fine pattern transferred thereon. Show this stamper on d. In order to eliminate various problems caused by the conventional photoresist master method, the stamper manufacturing method that involves these steps uses a low-melting point metal reaction film instead of a photoresist that forms a fine pattern, and improves transferability. We are trying to obtain a stamper with many excellent characteristics such as adhesion and crystal bonding properties. The following examples are specific. (2) First, the thickness is 12mm, the outer diameter is 350mmφ, and the center inner diameter is 20mm.
Reactive sputtering is performed on the surface of a glass substrate 11 made of φ with a hole in the center using CH 4 gas plasma with Te as a target in a vacuum.
A low melting point metal reaction film of Te 60 C 20 H 20 is formed to a thickness of 0.3 μm. This glass substrate coated with a low-melting point metal reaction film is rotated and irradiated with a continuously moving continuous beam of He-Ne gas laser. The rotational speed during irradiation is controlled so that the linear speed is 4 m/sec, and the beam is moved at regular intervals in the radial direction. In addition, the power of the He-Ne gas laser is 7 mW. The low melting point metal reaction film irradiated with the laser beam in this way has a spacing of 2 μm, a width of 0.7 μm, and a height of
A master disk having a fine pattern 12 is obtained by forming convex portions of the same shape in a spiral shape of 0.1 μm.
This situation is as shown in A. Next, on the master disk with this fine pattern, Au was targeted in vacuum and Ar gas plasma was applied at a deposition rate of 3 Å/3.
sec sputtering to deposit a thickness of 100 Å, then reduce the deposition rate to 10 Å/sec to a total thickness of 100 Å.
A metal thin film 13 of 0.1 μm is formed. B indicates this state. Next, a doughnut-shaped metal plate 15 must be prepared in advance to ensure electrical contact and attachment between the master disk having the metal thin film 13 on its surface and the rotating cathode 14. In this example, a Ni plate with a thickness of 50 μm is used with an outer diameter of 36 mmφ and an inner diameter of
Form into a donut shape of 20.1mmφ. This molding uses an etching process that does not generate burrs or warpage. Further, the entire surface of the donut-shaped Ni plate is plated with Au to a thickness of 2 μm to form a metal donut plate 15. The metal donut plate 15 produced in this way is placed centered on the periphery of the hole in the master disk whose surface is the metal thin film 13, and the master disk and the rotating cathode 14 are integrally connected with bolts 18 via flanged cylindrical fittings 16 and washers 17. Tighten. Further, after covering the master disc with an insulating cap 19 and a current concentration prevention cover 20 to prevent electrodeposition on parts such as bolt heads that are higher than the metal plate, electrodeposition is carried out in the following nickel sulfamic acid bath.

〔発明の効果〕〔Effect of the invention〕

本発明の製造方法によれば、ガラス基板に密着
性が良く、かつ均一の凸部を有する欠点のない原
盤から、転写性を良好にし且つ金属ドーナツ板を
介在させて金属薄膜からNi層を一体化形成させ
るため、フオトレジストを用いた種々の欠点を除
いたスタンパーを得させることが出来る。
According to the manufacturing method of the present invention, a Ni layer is integrated from a metal thin film using a defect-free master disk that has good adhesion to a glass substrate and has uniform convex portions, with good transferability and with a metal donut plate interposed. Since the stamper is formed using a photoresist, it is possible to obtain a stamper free of various drawbacks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のスタンパー製造方法を説明する
ため工程順に示す半成品断面図、第2図はこの発
明のスタンパー製造方法を説明するため工程順に
示す半成品断面図であつて、各図面とも右左対称
につき右側を省略してある。 両図で、1……ガラス基板、2……Cr薄膜、
3……微細パターン、4……Ag被膜、5……下
地Ni層、6……回転陰電極、7……合成樹脂製
ネジ、8……電流集中防止カバー、9……予備
Ni層、10……本Ni層、11……ガラス基板、
12……微細パターン、13……金属薄膜、14
……回転陰電極、15……金属ドーナツ板、16
……フランジ付き円筒金具、17……ワツシヤ
ー、18……ボルト、19……絶縁キヤツプ、2
0……電流集中防止カバー、21……下地Ni層、
22……本Ni層。
Fig. 1 is a cross-sectional view of a semi-finished product shown in order of steps to explain a conventional stamper manufacturing method, and Fig. 2 is a cross-sectional view of a semi-finished product shown in order of steps to explain the stamper manufacturing method of the present invention. The right side has been omitted. In both figures, 1...Glass substrate, 2...Cr thin film,
3... Fine pattern, 4... Ag coating, 5... Base Ni layer, 6... Rotating cathode, 7... Synthetic resin screw, 8... Current concentration prevention cover, 9... Spare
Ni layer, 10... real Ni layer, 11... glass substrate,
12... Fine pattern, 13... Metal thin film, 14
... Rotating cathode, 15 ... Metal donut plate, 16
... Cylindrical metal fitting with flange, 17 ... Washer, 18 ... Bolt, 19 ... Insulation cap, 2
0...Current concentration prevention cover, 21...Ni base layer,
22... Actual Ni layer.

Claims (1)

【特許請求の範囲】 1 中心を開孔した円形のガラス基板上にエネル
ギー吸収性とガス放出性の両性質を備える低融点
金属反応膜を形成し、膜面にエネルギービームを
照射してスパイラル状もしくは同心円状の凸凹か
らなる微細パターンを形成することにより原盤を
作成し、この原盤上に微細パターンを損うことな
く金属薄膜を形成した後、回転する陰電極端面に
原盤を原盤開孔を通してねじ込まれるボルトによ
りフランジつき円筒金具を介して脱着自在に保持
させ、この金属薄膜を陰極としてNi電着層を積
層するに際し、金属薄膜と金具のフランジとの間
に金属ドーナツ板を介在させることにより、金属
薄膜、金属ドーナツ板、Ni電着層を一体化させ、
密着性、転写性、耐久性を良好にするスタンパー
を得ることを特徴とするスタンパーの製造方法。 2 金属薄膜が厚さ0.03〜0.2μmのAu,Cr,Ir,
Pd,Pt,Rh,Ru,Ti,Zr,Taのいずれか少く
とも一種から成ることを特徴とする特許請求の範
囲第1項に記載のスタンパーの製造方法。 3 金属ドーナツ板が厚さ0.02〜0.2mmのNi,Fe,
Co、リン青銅、黄銅、ステンレスのいずれか板
体に厚さ5μm以下のAg,Au,Pd,Pt,Rhのメ
ツキ層または蒸着層の何れか層を被着させたもの
であることを特徴とする特許請求の範囲第1項に
記載のスタンパーの製造方法。 4 金属ドーナツ板がAg,Au,Pd,Pt,Rh,
Ni、ステンレスの何れかとすることを特徴とす
る特許請求の範囲第1項に記載のスタンパーの製
造方法。 5 Ni電着層は同一浴槽内で順次連続またはス
テツプ状に電流を増加させて形成されたものであ
ることを特徴とする特許請求の範囲第1項に記載
のスタンパーの製造方法。
[Claims] 1. A low melting point metal reaction film having both energy absorbing and gas releasing properties is formed on a circular glass substrate with a hole in the center, and the film surface is irradiated with an energy beam to form a spiral shape. Alternatively, a master disk is created by forming a fine pattern consisting of concentric irregularities, a thin metal film is formed on the master disk without damaging the fine pattern, and then the master disk is screwed through the hole in the master disk onto the end surface of the rotating cathode. By holding the metal donut plate between the metal thin film and the flange of the metal fitting when laminating the Ni electrodeposition layer using this metal thin film as a cathode, By integrating metal thin film, metal donut plate, and Ni electrodeposition layer,
A method for producing a stamper, characterized by obtaining a stamper with good adhesion, transferability, and durability. 2 Au, Cr, Ir, 0.03 to 0.2 μm thick metal thin film,
The method for manufacturing a stamper according to claim 1, characterized in that the stamper is made of at least one of Pd, Pt, Rh, Ru, Ti, Zr, and Ta. 3 The metal donut plate is made of Ni, Fe, with a thickness of 0.02 to 0.2 mm,
It is characterized by having a plating layer or a vapor deposited layer of Ag, Au, Pd, Pt, or Rh with a thickness of 5 μm or less applied to a plate made of Co, phosphor bronze, brass, or stainless steel. A method for manufacturing a stamper according to claim 1. 4 Metal donut plate is Ag, Au, Pd, Pt, Rh,
The method for manufacturing a stamper according to claim 1, characterized in that the stamper is made of either Ni or stainless steel. 5. The method for manufacturing a stamper according to claim 1, wherein the Ni electrodeposited layer is formed by sequentially or stepwise increasing current in the same bath.
JP16862282A 1982-09-29 1982-09-29 Production of stamper Granted JPS5959892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16862282A JPS5959892A (en) 1982-09-29 1982-09-29 Production of stamper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16862282A JPS5959892A (en) 1982-09-29 1982-09-29 Production of stamper

Publications (2)

Publication Number Publication Date
JPS5959892A JPS5959892A (en) 1984-04-05
JPS6314066B2 true JPS6314066B2 (en) 1988-03-29

Family

ID=15871468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16862282A Granted JPS5959892A (en) 1982-09-29 1982-09-29 Production of stamper

Country Status (1)

Country Link
JP (1) JPS5959892A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369991A (en) * 1986-09-09 1988-03-30 Nec Corp Production of stamper for optical disk

Also Published As

Publication number Publication date
JPS5959892A (en) 1984-04-05

Similar Documents

Publication Publication Date Title
US4259166A (en) Shield for plating substrate
US3884771A (en) Process of producing resinous board having a rough surface usable for firmly supporting thereon a printed circuit
US5015338A (en) Method of manufacturing a stamper for formation of optical information carrying disk
JPH0418376B2 (en)
JPS6314066B2 (en)
US4474650A (en) Method of manufacturing a mother matrix
JPH0349998B2 (en)
EP0738573B1 (en) Stamper for forming sound recordings and method of manufacturing
JPH01246391A (en) Production of stamper
JPS5934783B2 (en) Disc master manufacturing method
JPS5850635A (en) Stamper and production thereof
JPH07241856A (en) Manufacture of electroformed duplicate stamper
JP2916542B2 (en) Electroforming method of electroforming original plate and electroforming original plate
JPH04139632A (en) Production of stamper for forming information recording medium
JP2646533B2 (en) Manufacturing method of stamper for optical memory
JP2683118B2 (en) Method for manufacturing stamper for optical disk duplication
JPS62236155A (en) Production of optical disk stamper
JPH0820883A (en) Method of duplicating stamper and washer used therefor
JPS5782236A (en) Mother mold of duplicated metallic mold for information recording carrier
JPH04259936A (en) Production of stamper for producing information recording medium
JPH036390A (en) Production of stamper for forming information recording medium
JPH0250995A (en) Production of stamper for duplicating optical disk
JPS6156292A (en) Electroforming device
JP2517161B2 (en) Optical disc master and master stamper manufacturing method
JPS6156293A (en) Apparatus for producing stamper