JPS63139975A - Gas stream dry distillation of hydrocarbon-containing solid - Google Patents

Gas stream dry distillation of hydrocarbon-containing solid

Info

Publication number
JPS63139975A
JPS63139975A JP61285901A JP28590186A JPS63139975A JP S63139975 A JPS63139975 A JP S63139975A JP 61285901 A JP61285901 A JP 61285901A JP 28590186 A JP28590186 A JP 28590186A JP S63139975 A JPS63139975 A JP S63139975A
Authority
JP
Japan
Prior art keywords
gas
waste
shale
dry
dry distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61285901A
Other languages
Japanese (ja)
Inventor
Toshio Onishi
大西 利夫
Takuzo Nagano
永野 卓三
Koji Nitta
耕司 新田
Naokiyo Seri
世利 直清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61285901A priority Critical patent/JPS63139975A/en
Publication of JPS63139975A publication Critical patent/JPS63139975A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To carry out dry distillation inexpensively, and efficiently with excellent safety and controllability by a simple operation, by finely dividing shale into a powder having a particle size of a predetermined value or below and transferring the powder by allowing a single stream thereof to flow through various parts to thereby dry, preheat, dry-distill, cool and burning same. CONSTITUTION:Shale RS which has been finely divided into a powder having a particle size of 1mm or smaller is dried and preheated to 120-260 deg.C in a drying part A consisting of a gas stream-conveying drying pipe 1, a cyclone 2 and a suction fan 3. The powder is then transferred to a preheating part B consisting of a gas stream conveying preheating pipe 4, a cyclone 5 and an initial dry distillation gas pipe 6, heated to 400-450 deg.C and fed to the dry distillation device 7 of a mixing/dry distillation part C consisting of a dry distillation device 7, a waste combustion gas pipe 8 for supplying heat, an air introducing port 9 for diluent air and a cyclone 11, where dry distillation is carried out. Dry-distilled gas G and oil mist are taken out. Unburnt waste shale SS-u is burnt by blowing the dry-distilled gas G and air through the waste shale conveying preheating ascending gas stream pipe 12 of a combustion part D into a gas stream circulating combustion device 13. Burnt waste shale SS-b is cooled in each of gas stream cooling devices 14-1-3 through the extrusion fan 15 of a gas CG is used for the make up of heat and waste heat boiler 16.

Description

【発明の詳細な説明】 パ (従来の技術) 残存量が確定されている重油・石炭に代替する石化燃料
として厖大な賦与をもつオイル・シエールやオイル・サ
ンドが注目されてから既に久しく、その研究開発が世界
中で競ってなされ、着々と実用化に進んでいる。商業ス
ケールの実現にこぎつけたが、または間近いプロセスも
数例あり、公開されているプロセス例は枚挙にいとまな
い。
[Detailed Description of the Invention] PA (Prior Art) It has been a long time since oil shale and oil sands, which have enormous potential as fossil fuels to replace heavy oil and coal, whose remaining amounts have been determined, have attracted attention. Research and development efforts are being carried out competitively around the world, and practical application is steadily progressing. There are several processes that have reached commercial scale or are close to achieving commercial scale, and there are countless published process examples.

問題は、シエールやオイル・サンドが重油・石炭に比し
著しく貧寒なエネルギー保有量であって、大量を処理し
てわずかのエネルギーしか抽出できない点にあフ、少し
でも効率の悪いプロセスが介在すると、もはや経済ペー
スに乗らないという宿命をもっている。
The problem is that oil sands and oil sands have extremely poor energy reserves compared to heavy oil and coal, and only a small amount of energy can be extracted by processing a large amount. , is destined to no longer keep up with the economic pace.

この観点からみると、すでに公開されているプロセスの
大半は低い経済性しか有しておらず、現在実施されてい
るものでも商業ペースに乗るかど炭素分と3つに分割さ
れ、オイル分の留分を上げるべく種々の工夫がこらされ
てはいるが、炭化水素系乾留ガスと廃シエール中の残留
可燃分を回避することはできない。したがって全プロセ
スの効率を上げるためには、仁のガスと残留炭素を最大
限に利用するプロセスにならざる乞えない。
From this point of view, most of the processes already published have low economic efficiency, and even those that are currently being implemented have to be split into three parts, the carbon part and the oil part, and the oil part remains at a commercial pace. Although various efforts have been made to increase the carbon content, residual combustible content in the hydrocarbon carbonized gas and waste sierre cannot be avoided. Therefore, in order to increase the efficiency of the entire process, it is imperative that the process utilizes the gas and residual carbon to the maximum extent possible.

一方、昇温伝熱・揮発・乾留・カーボン燃焼などの過程
において、シェールの代表径とその分布が最大の要因と
なシ、その型式と適正サイズを自ら定めることになる。
On the other hand, in processes such as temperature increase heat transfer, volatilization, carbonization, and carbon combustion, the representative diameter of shale and its distribution are the biggest factors, and the type and appropriate size must be determined by the shale.

時代の流れと共に粒径を細かくすることに努力が傾けら
れたのは、そのために処理しゃすくなシ、伝熱・反応時
間が短くなシ。
Efforts have been made to make the particle size finer with the passage of time, in order to make it easier to process and shorten heat transfer and reaction times.

スケールアップが可能になシ、自動制御が容易になシ、
結果的に効率を高めることになったからである。
Scale-up is possible, automatic control is easy,
This is because efficiency has been increased as a result.

先入上として粉砕にかかわる設備・経費がわずられしく
、かなシの部分を占めると考えがちであるが、粉砕その
ものの経費はどんな工業でも多くは10%前后前屈半製
品・製品として塊状や粒状を特に要求されない場合、な
いしは製品の姿としましてや、現在微粒分は原鉱山付近
に埋戻しをしたり、残留炭素を含む廃シエールは、面倒
な利用技術よシは廃棄する方が賢明であるというプロセ
スが存在するが、これは論外であって、原シエールから
とことんしぼ力つくすのではないと経済性を確保するこ
とはできない。
As a first consideration, it is easy to think that the equipment and expenses involved in pulverization are significant and account for a large part of the cost, but in most industries, the cost of pulverization itself is 10%, which is roughly equivalent to 10% of the total cost of semi-finished products and finished products. If granules are not particularly required, or in terms of product appearance, it is currently wiser to backfill fine particles near the original mine, or to dispose of waste shale containing residual carbon, rather than using troublesome utilization techniques. However, this process is beside the point, and economic efficiency cannot be ensured unless we put our utmost effort into it.

セメント工業では気流床と回転床の組合せで、原料を平
均径で30〜50ミクロン、最大径で300ミクロン程
度に微粉砕している。粉砕経費は製造直接費の10%に
充たない。このサイズは、伝熱・か焼・タリンカ鉱物生
成反応ならびに移送・貯蔵・ハンドリングにおいて最も
適切なサイズになっている。
In the cement industry, raw materials are pulverized to an average diameter of 30 to 50 microns and a maximum diameter of about 300 microns using a combination of airflow beds and rotating beds. Grinding costs account for less than 10% of direct manufacturing costs. This size is the most appropriate size for heat transfer, calcination, and tarinka mineral formation reactions, as well as transportation, storage, and handling.

さらに細かくすると、伝熱・反応時間は短縮されるが、
既往の粉砕機では急激に粉砕費用がかさみ、またハンド
リングにも若干問題が生じてぐる。
If it is made even finer, the heat transfer and reaction time will be shortened, but
With existing crushers, the cost of crushing increases rapidly, and there are also some problems with handling.

一方、さらに粗くすると、それに見合う粉砕費用の低減
はあるが、タリンカ鉱物生成反応が不均一になシ、所要
の品質が確保されないか少くとも滞留時間を大きくしな
ければならず、装置が犬がかシになるという欠点を有す
る。
On the other hand, if the grinding is made even coarser, the grinding cost will be commensurately reduced, but the mineral formation reaction will be non-uniform, the required quality will not be ensured, or at least the residence time will have to be increased, and the equipment will be difficult to handle. It has the disadvantage of becoming dull.

(発明が解決しようとする問題点) オイル・シエールにおける適正サイズは固定床では塊状
が望ましく、移動床では粒状、流動床を加味したものあ
るいは回転床では数mm がよい。
(Problems to be Solved by the Invention) The appropriate size for oil siere is preferably lumpy for fixed beds, granular for moving beds, and several mm for rotating beds.

実際に実用化されつつある著名なプロセスでは、−がせ
いぜい3凱、好ましくは2wn 以下であることを要す
る。即ち、気流に巻きこまれ移送され分散され伝熱され
る時間が、粒子径と共に増大するので、伝熱・反応を完
了させるためには、気流パイプが粒子径と共に著しく延
長して実用から外れる。
In a well-known process that is actually being put into practical use, - is required to be at most 3 kat, preferably 2 wn or less. That is, the time required for the particles to be entrained in the air flow, transported, dispersed, and transferred to heat increases with the particle size, so in order to complete the heat transfer and reaction, the air flow pipe becomes significantly longer with the particle size, making it impractical.

本発明は微粉細の原鉱オイルシェールから油分を最大限
に回収し、設備効率に優れた乾留法を提供するものであ
る。
The present invention provides a carbonization method that maximizes the recovery of oil from fine raw ore oil shale and has excellent equipment efficiency.

(問題点を解決するだめの手段作用) 本発明は原鉱ンエールk 1 mm 以下に粉砕するも
のである。該粉体シェールは、120〜250℃の範囲
でできるだけ高い温度まで昇温し気流乾燥・脱水・予熱
され、乾留器の廃シェールを気流旋回予熱・燃焼し、1
00〜250℃まで気流冷却す息。
(Working as a means to solve the problem) The present invention is for pulverizing raw ore to a size of k 1 mm or less. The powder shale is heated to a temperature as high as possible in the range of 120 to 250°C, air-dried, dehydrated, and preheated.
Airflow cooling breath from 00 to 250℃.

本発明の乾留は原料シェールヲ400℃前屈まで、廃シ
エール燃焼ガスの一部で気流旋回瞬時伝熱し、初期乾留
を行わせ、さらに乾留器の中でプラスio。
In the carbonization of the present invention, the raw material shale is heated to a temperature of 400° C. by instantaneous airflow swirling heat transfer using a part of the waste shale combustion gas, initial carbonization is carried out, and further carbonization is carried out in the carbonization vessel.

℃前屈の間接伝熱と500℃前后の前屈乾留温度に可及
的一定にすべく保温するため、燃焼ガスの他’1:! j′\ ゛え 二設置される廃熟ボイラに利用する。また、上述の昇温
・保温に利用された500℃前后の前屈ガスの一部は、
同ボイラの中間域に導入され、余熱を利用する。
In order to keep the indirect heat transfer at ℃ forward bending and the forward bending carbonization temperature before 500℃ as constant as possible, in addition to the combustion gas '1:! ′\ E2 It will be used for the waste aging boiler that will be installed. In addition, part of the 500°C pre-bent gas used for temperature increase and heat retention mentioned above is
It will be installed in the middle region of the boiler to utilize residual heat.

本発明では乾留前昇温の大半を気流中で行わせるので、
粒径k 1 rran  以下とする。幸いなことに、
概ねオイル・シェールは粉砕しやすく、固くとも石灰石
程度で、上述セメントの場合10%の直接費とすれば、
粉砕粒径からしてこの173の費用ですむ。セメントで
は10.000 t / dの設備が実用化され、需要
の集中度との関連でそれ以上は実現していないが可能で
あシ、これからしてオイル・シエールにおいても容易に
コンパクトで大容量の設備が実現可能である。
In the present invention, most of the temperature raising before carbonization is carried out in an air stream, so
The particle size shall be k 1 rran or less. Fortunately,
In general, oil shale is easy to crush and is as hard as limestone, and in the case of the above-mentioned cement, if the direct cost is 10%,
Considering the pulverized particle size, the cost is only 173 yen. For cement, a 10,000 t/d facility has been put into practical use, and although it has not been realized due to the concentration of demand, it is possible, and from now on, it will be easy to use compact and large capacity equipment for oil and shale. facilities are possible.

産地によシ大巾に変動するが、世界に産出しまた開発計
画のある著名なものを調べると、乾留はほとんどが35
0〜600℃の間で始j発し終結する。
It varies widely depending on the production area, but if you look at famous products that are produced around the world and have development plans, most of them are carbon distilled.
It starts and ends between 0 and 600°C.

油分の留分を最大にするためには、概ね450〜550
℃の最適温度で一定にすることが望ましい。
In order to maximize the oil fraction, approximately 450 to 550
It is desirable to keep it constant at the optimum temperature of °C.

オイル・シエールの性状に応じて初期乾留の割合を定め
るが、通常400℃前后ま前屈秒前屈で気てから乾留最
適温度までの昇温と乾留に要する熱量および熱損失で降
温する分を、間接的に外部から熱補給させる。
The initial carbonization rate is determined depending on the properties of the oil/siel, but it is usually heated up to 400°C for a few seconds before heating up to the optimum carbonization temperature, the amount of heat required for carbonation, and the amount of temperature lowered due to heat loss. , indirectly supplying heat from the outside.

廃シエール燃焼は同じく気流昇温とサイクロン燃焼器タ
イプの気流旋回式燃焼器で800〜1000℃で完全燃
焼させる。この温度領域は高温技術の中では最も容易で
あるし、同じエンタルピーでも熱担体量が少く温度の高
い方がいわゆる高熱価で利用価値が大きい。これでボイ
ラを運用すると共に、一部分で原料ンエールの昇温と補
熱″frまかなう。
The waste Sierre combustion is also carried out using airflow heating and a cyclone combustor type airflow swirling combustor to achieve complete combustion at 800 to 1000°C. This temperature range is the easiest among high-temperature technologies, and even for the same enthalpy, a method with a smaller amount of heat carrier and a higher temperature has a so-called higher heat value and is of greater utility value. This will allow us to operate the boiler and partially cover the heating of the raw material and reheating.

なお、冷却も気流床で行い、熱交換された固体・気体は
徹底的に活用し、しかも単一流とすることでプロセスの
単純化・装置の簡略化を達成させる。
Cooling is also performed in an air stream bed, making full use of the heat-exchanged solids and gases, and by using a single flow, the process and equipment can be simplified.

第1図で説明すると、Aは乾燥部で気流搬送乾燥パイプ
1、サイクロン2および吸引ファン3から成る。ここで
粉粒体シエールは120〜260℃に乾燥・予熱される
。120℃は乾燥のための最小温度、250℃は原鉱シ
エールにより 200 C前層で化合水の蒸散があるの
で、それを超えて炭化水素系ガスの揮散がみられない範
囲で高い温度の方が後工程に都合よいが、同時にボイラ
効率を下げるので概ね200℃位が最善である。
Referring to FIG. 1, A is a drying section consisting of an air flow conveying drying pipe 1, a cyclone 2, and a suction fan 3. Here, the granular material Sierre is dried and preheated to 120 to 260°C. 120°C is the minimum temperature for drying, and 250°C is due to the raw ore Sierre.Since compound water evaporates in the 200C front layer, a higher temperature is recommended as long as no volatilization of hydrocarbon gas is observed. Although this is convenient for subsequent processes, it also lowers boiler efficiency, so approximately 200°C is best.

予熟部Bは、気流搬送予熱パイプ4、サイクロンおよび
搬送用燃焼排ガスを含む乾留ガスバイブロからなる。初
期乾留最適温度は、ンエールの性状に応じて400℃前
后で前屈られるが、乾燥・か焼(脱化含水)を経て12
0〜250℃の範囲で、できるだけ高い温度にされた原
料シェールの温度と、燃焼排ガス温度でガス量が定まシ
、当然ながらガス量は少い方が好ましい。これら温度関
係よシ定まるガス量の範囲では、いくら少くても気流搬
送に充分である。
The preheating section B consists of an airflow conveying preheating pipe 4, a cyclone, and a carbonized gas vibro containing a conveying combustion exhaust gas. The optimum temperature for initial carbonization is around 400°C depending on the properties of Nair, but after drying and calcination (dehydration)
The amount of gas is determined by the temperature of the raw material shale, which is made as high as possible in the range of 0 to 250° C., and the temperature of the combustion exhaust gas, and it is naturally preferable that the amount of gas be small. Within the range of gas amount determined by these temperature relationships, no matter how small the amount is, it is sufficient for airflow conveyance.

乾留は準静的変化では400℃前から始まるが、金属と
異シ一般の鉱物では温度伝導率が1710〜17100
程度なので、中心温度が表面温度と等しくなる時間を長
く要する。この気流搬送伝熱では1秒前屈であること、
粒度及び粒度分布がここで重要な役割を果す。平均径が
100ミクロン前后では、中心温度が表面温度との差の
中間温度に達するのに10分の数秒要する。
Carbonization starts before 400℃ in quasi-static change, but the temperature conductivity of metals and common minerals is 1710 to 17100.
Since the temperature is about 100%, it takes a long time for the center temperature to become equal to the surface temperature. In this airflow conveyance heat transfer, it is 1 second forward bending,
Particle size and particle size distribution play an important role here. When the average diameter is around 100 microns, it takes a few tenths of a second for the center temperature to reach the midpoint of the difference from the surface temperature.

このことが上述初期乾留の最適温度に密接に連貧ガスで
あるため、後処理のプロセス効率が低下するからである
。しかし、その懸念がないか、又はそれを上〃る操業安
定性などかあれば、この気流による初期乾留分を大きく
とることも可能である。
This is because the gas is closely connected to the optimum temperature of the above-mentioned initial carbonization, and the process efficiency of the post-treatment is reduced. However, if there is no such concern or there are operational stability issues that outweigh this concern, it is possible to increase the initial dry distillation fraction due to this air flow.

また、もしンエールの乾留特性が、例えば450℃から
急激に行われて、550℃で効率よく終結するとすれば
、400℃まで昇温して、その用ずみのガスは初期乾留
ガスバイブロでなく、場合によシボイラ再熱に利用され
ることもあシうる。つまシはとんどここで乾留を行わせ
ないで、初期の乾留をできるだけ少量にとどめるが、ま
たかなり多量にしてその代り乾留器を小さくするか、こ
のシステムの選択は原シエールの性状にかかつている。
Furthermore, if the carbonization characteristics of Nair are carried out suddenly from, for example, 450°C and efficiently terminated at 550°C, then when the temperature is raised to 400°C, the used gas is not the initial carbonized gas vibro, In some cases, it may also be used to reheat the steamer. The choice of this system will depend on the nature of the raw Sière, such as keeping the initial carbonization to a small amount as much as possible by not allowing carbonization to take place anywhere, or by increasing the amount considerably and making the carbonization vessel smaller instead. There used to be.

混合・乾留部Cは、乾留器7と熱補給のための燃焼排ガ
スパイプ8と稀釈用の空気導入口9、さらに乾留ガス1
次除塵サイクロン11から成る。
The mixing/carbonization section C includes a carbonization device 7, a combustion exhaust gas pipe 8 for heat replenishment, an air inlet 9 for dilution, and a carbonization gas 1.
It consists of a second dust removal cyclone 11.

上述の400〜450℃に昇温された原料シエールは乾
留器7に入シ、熟の補給をうけて乾留最適温度通常50
0℃前后に前屈され、乾留に要する熱も補給され、また
装置の熱損失も償われる。そのことによシ最適乾留全遂
行させる。
The raw material Sierre heated to 400 to 450°C as mentioned above enters the carbonization vessel 7, and after being replenished with ripening, the optimum temperature for carbonization is usually 50°C.
The temperature is lowered to 0°C, the heat required for carbonization is replenished, and the heat loss of the equipment is also compensated. This allows the complete carbonization to be carried out optimally.

この熱補給は間接熱交換で、乾燥あるいは石こうか焼な
どに使われる。スチームチューブロータリー熱交換機、
振動コンベア式攪拌器付パン混合器、混合用リボンスパ
イラル付タンク、ダブルドラムミルなど原料シエールと
その乾留工程における特性に応じ、またユニットの大き
さ、経済性、安全性、安定性なども考慮して、最適の混
合と伝熱と乾留ガス及び油分抽出に便利な装置を選択す
る。パイプ挿入、ジャケット式、フィン型など間接伝熱
効率向上を配慮する。
This heat supply is indirect heat exchange and is used for drying or plaster calcining. steam tube rotary heat exchanger,
A pan mixer with a vibrating conveyor type stirrer, a tank with a ribbon spiral for mixing, a double drum mill, etc., depending on the characteristics of the raw material Siehl and its carbonization process, and also considering the size, economy, safety, and stability of the unit. equipment for optimal mixing, heat transfer, and carbonization gas and oil extraction. Consider ways to improve indirect heat transfer efficiency, such as by inserting a pipe, using a jacket type, or using a fin type.

燃焼部りは、廃ンエール搬送予熟上昇気流パイプ12と
気流旋回式燃焼器13から成り、コアフレーム用に乾留
ガスの炭化水素系ガス燃焼を当て補給空気を入れ、燃焼
結果である排ガスは、ボイラ主体に部分的には原料シエ
ール予熱・乾留に用いた後再びボイラで活用され、燃焼
廃シエールは排出されて、そのエンタルピーは燃焼用空
気の予熱に利用される。量的な関係で上述燃焼補給空気
も、一括して冷却用即ち燃焼廃シエール空気搬送伝熱に
供してもよい。
The combustion section consists of a waste ale conveying preconditioning updraft pipe 12 and an airflow swirling type combustor 13, which applies hydrocarbon-based gas combustion of carbonized gas for the core frame, introduces make-up air, and produces exhaust gas as a result of combustion. Mainly in the boiler, some of the raw material Sierre is used for preheating and carbonization, and then used again in the boiler, combustion waste Sierre is discharged, and its enthalpy is used to preheat the combustion air. In terms of quantity, the above-mentioned combustion make-up air may also be used for cooling, that is, for the combustion waste air conveying heat transfer.

冷却部Eは、多段サイクロン14と気流搬送管および押
込ファン15から成る。サイクロンは温度の関係から3
段が適当である。4段ならなお廃シエール冷却温度が下
シ、空気の熱回収がさらに大きくなるが、設備的に大き
くなるので、その辺との兼ね合いで定まる。
The cooling section E includes a multistage cyclone 14, an air flow conveying pipe, and a forced fan 15. Cyclones are classified as 3 due to temperature.
The steps are appropriate. If there are 4 stages, the cooling temperature of the waste sierre will be lower, and the heat recovery from the air will be even greater, but the equipment will be larger, so it is determined by taking into account these factors.

に至る。全体としてきわめて単純な系をなし、固体流・
気流共に1分以内で系を貫く。乾留器7でシエールは停
滞するが、微粉のため乾留特性がよいので2〜3分で充
分である。
leading to. The system as a whole is extremely simple, with solid flow and
Both airflow penetrates the system within 1 minute. The sierre stagnates in the carbonizer 7, but since it is a fine powder and has good carbonization properties, 2 to 3 minutes is sufficient.

第2図は、以上のプロセスを、固体(ンエール)流と気
体(空気/ガス)流を主体に流れを模式的に表わしたも
ので、縦軸は温度、横軸は時間とは無関係の工程別区分
け、実線がシエール、帯状が気体、矢印は流れ方向、■
印は相互に伝熱が行われることを示す。0内数値は原料
ンエールを単位量1とした時の比例量を示し、(]内数
値はこれに対応する空気/ガス量を示す。
Figure 2 schematically represents the above process, mainly consisting of solid (air) and gas (air/gas) flows, with the vertical axis representing temperature and the horizontal axis representing processes unrelated to time. Separate division, solid line is siere, band shape is gas, arrow is flow direction, ■
The marks indicate mutual heat transfer. The numbers in 0 indicate the proportional amount when the unit amount of raw material air is 1, and the numbers in parentheses indicate the corresponding amount of air/gas.

例えば、固体をにgとすれば、気体は−Nに相当する値
となっている。また左方に廃熱ボイラに利用される温度
領域と気体の単位量を示している。
For example, if the solid is 2g, the value of the gas is equivalent to -N. Additionally, the temperature range and unit amount of gas used in the waste heat boiler are shown on the left.

勿論すべての数値は1例にすぎない。Of course, all numbers are just examples.

プロセス開発用ユニツ)(PDU)の結果から、実用機
で推定される熱収支を第3図に示す。
Figure 3 shows the heat balance estimated for a practical machine based on the results of the Process Development Unit (PDU).

油分を最大限に回収し、乾留所要熱、装置の熟損、乾留
ガス及びオイル・ミストの顕熱など避け′ 返だけ低温
ですませようとするが、残留カーボン−が増える。完全
燃焼は燃焼排ガス顕熱が高くなる+S+ 同時に廃シエール燃焼顕熱は多段気流成熟回収装置で最
大限回収する。しかし、冷却された廃ンエールの顕熱、
燃焼器の放散熱損、炭酸塩の分解熱、ボイラ排ガスのさ
らに熱回収されたあとの顕熱なと回避できないので、蒸
気発生に寄与する熱量は、油分抽出の残余の保有熱、即
ち乾留ガス炭化水素および廃シエール保有熱量の粉程度
になることは如何ともしがたい。
Although attempts are made to recover as much oil as possible and to avoid the heat required for carbonization, equipment damage, and sensible heat of carbonization gas and oil mist, the process is done at a low temperature, but residual carbon increases. Complete combustion increases the sensible heat of combustion exhaust gas +S+ At the same time, the sensible heat of combustion of waste Sierre is recovered as much as possible by the multi-stage airflow maturation recovery device. However, the sensible heat of the cooled waste ale,
Since it is impossible to avoid the dissipation heat loss of the combustor, the decomposition heat of carbonates, and the sensible heat after further heat recovery of the boiler exhaust gas, the amount of heat that contributes to steam generation is the remaining heat from oil extraction, that is, the carbonization gas. It is difficult to imagine that the amount of heat held by hydrocarbons and waste sierre would be reduced to the level of powder.

しかし既往のプロセスのいずれよシも、効率よく経済的
なシステムである。
However, all existing processes are efficient and economical systems.

(発明の効果) 本発明は、原鉱シエールの微粉砕を前提とし、蒸気ボイ
ラ等の熱回収装置を必然的なものとする。
(Effects of the Invention) The present invention is based on the pulverization of raw ore Sierre, and necessitates the use of a heat recovery device such as a steam boiler.

既往のプロセスでは微粉砕を前提としないし、廃熱ボイ
ラの設置に言及したものはあるが、これによシ積極的に
余剰の全熱ff1t−活用するという例は−よい大容量
のものが現存して何ら支障はない。原鉱シエールの全熱
量を抽出し、廃棄するものはなく、冷却された廃シエー
ルは粉末のため、ハンドリングが容易であシ埋戻した時
の土壊性状もよい。
Existing processes do not assume pulverization, and some mention the installation of a waste heat boiler, but an example of proactively utilizing surplus total heat ff1t is a good large-capacity one. There is no problem in its existence. The entire heat content of the raw ore sier is extracted, and there is nothing to dispose of, and the cooled waste sier is powder, so it is easy to handle and has good soil destruction properties when backfilled.

乾留ガス炭化水素は燃焼に利用するが、場合によっては
他の用途に便じてもよく、廃シエール含有炭化水素及炭
素は完全に燃焼される。全プロセスはきわめて単純、設
備効率よくスケールアップにほとんど制限はない。自動
制御しやすく、操作は簡単で安定性は抜群である。既往
のどのプロセスよシも単純経済的なものといえる。
The carbonized gaseous hydrocarbons are utilized for combustion, but may also be used for other purposes in some cases, and the waste sierre-containing hydrocarbons and carbon are completely combusted. The entire process is extremely simple, equipment efficient, and has almost no limits on scale-up. It is easy to control automatically, easy to operate, and has excellent stability. It can be said that any existing process is simple and economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の模式流れ図、第2図は温度・流@を表
示した特性図、第3図は本発明のヒートバランスの図表
である。 1:気流搬送乾燥パイプ   2:気流搬送乾燥ナイフ
ロン5=排ガスファン      4:気流搬送予熱パ
イプ5:気流搬送予熱サイクロン 6:初期乾留ガスパ
イプ7:乾 留 器       8:乾留群昇温・保
温パイプ9:乾留群昇温・保温用空気導入口 13:旋回式燃焼器 14:燃焼廃シエール15:冷却
用ファン    気流冷却装置16:廃熱ボイラ 出願人 工業技術院長  飯 塚 幸 三范3図 F(、−!1ia
FIG. 1 is a schematic flowchart of the present invention, FIG. 2 is a characteristic diagram showing temperature and flow, and FIG. 3 is a diagram of the heat balance of the present invention. 1: Air flow conveyance drying pipe 2: Air flow conveyance drying knife 5 = Exhaust gas fan 4: Air flow conveyance preheating pipe 5: Air flow conveyance preheating cyclone 6: Initial carbonization gas pipe 7: Carbonization vessel 8: Carbonization group temperature raising/heat retention pipe 9: Carbonization Air inlet for group heating and heat retention 13: Swirl type combustor 14: Combustion waste siere 15: Cooling fan Air flow cooling device 16: Waste heat boiler Applicant: Director of the Agency of Industrial Science and Technology Sachi Iizuka Mihane 3 Figure F (, -! 1ia

Claims (1)

【特許請求の範囲】[Claims] 1mm以下に粉砕したシェールを、全システムを押込・
吸引ファンによる単一の気流で貫流し、その気流搬送・
旋回を利用して移送・乾燥・伝熱・一部乾留・燃焼・冷
却を行わせることを特徴とする炭化水素含有固体の気流
式乾留法。
Shale crushed to 1 mm or less is pushed through the entire system.
A single airflow by a suction fan flows through the airflow, and the airflow conveys and
An air-flow carbonization method for hydrocarbon-containing solids that utilizes swirling to perform transfer, drying, heat transfer, partial carbonization, combustion, and cooling.
JP61285901A 1986-12-02 1986-12-02 Gas stream dry distillation of hydrocarbon-containing solid Pending JPS63139975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61285901A JPS63139975A (en) 1986-12-02 1986-12-02 Gas stream dry distillation of hydrocarbon-containing solid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61285901A JPS63139975A (en) 1986-12-02 1986-12-02 Gas stream dry distillation of hydrocarbon-containing solid

Publications (1)

Publication Number Publication Date
JPS63139975A true JPS63139975A (en) 1988-06-11

Family

ID=17697487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61285901A Pending JPS63139975A (en) 1986-12-02 1986-12-02 Gas stream dry distillation of hydrocarbon-containing solid

Country Status (1)

Country Link
JP (1) JPS63139975A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109546A (en) * 2013-04-18 2014-10-22 武汉华中工建工程技术有限公司 Multi-point material-feeding retort technology with upper-combustion solid heat carrier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532384A (en) * 1976-06-25 1978-01-11 Occidental Petroleum Corp Method of pyrolysis and its apparatus
JPS581781A (en) * 1981-06-26 1983-01-07 Mitsubishi Heavy Ind Ltd Method and apparatus for dry-distilling oil-containing mineral
JPS59187087A (en) * 1983-04-07 1984-10-24 Tsusho Sangyo Daijin Carbonization of solid containing hydrocarbon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532384A (en) * 1976-06-25 1978-01-11 Occidental Petroleum Corp Method of pyrolysis and its apparatus
JPS581781A (en) * 1981-06-26 1983-01-07 Mitsubishi Heavy Ind Ltd Method and apparatus for dry-distilling oil-containing mineral
JPS59187087A (en) * 1983-04-07 1984-10-24 Tsusho Sangyo Daijin Carbonization of solid containing hydrocarbon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109546A (en) * 2013-04-18 2014-10-22 武汉华中工建工程技术有限公司 Multi-point material-feeding retort technology with upper-combustion solid heat carrier
CN104109546B (en) * 2013-04-18 2016-12-28 北京市工业设计研究院有限公司 Multiple spot blanking upper-burning solid heat carrier retort technique

Similar Documents

Publication Publication Date Title
JP2008516183A (en) How to improve the quality of high moisture content using system heat source
CN102061211B (en) Integral purified integration system and process of lignite in cement production through catalytic mild pyrolysis
CN102329628B (en) Large-size low-temperature destructive distillation system for low-order lignite
US3597347A (en) Process for retorting carbonaceous material
US3854666A (en) Process for pulverizing coal to ultrafine size
SU862835A3 (en) Method of oil shale preheating
CN105752956A (en) Method and system for preparing phosphoric acid
CN103447137A (en) Safe and efficient system and safe and efficient method for preparing powdered coal
CN201343520Y (en) Flash dry distillation technology device of oil shale
US4340463A (en) System for utilizing oil shale fines
CN105969417A (en) Oil shale or oil sand downstream circulating bed millisecond pyrolysis refining device
CN205803398U (en) A kind of low order fine coal hydrogenation pressurization fast low temperature destructive distillation device
US6807749B2 (en) Drying carbon black pellets
JPS63139975A (en) Gas stream dry distillation of hydrocarbon-containing solid
KR101220596B1 (en) Process for production of solid fuel for use in sintering, solid fuel for use in sintering, and process for manufacturing sintered ore using same
US4563264A (en) Method of dry distillation of volatile substances from mineral matter containing same
US3803021A (en) Separating retorted shale from recycled heat-carrying pellets
CN107686099A (en) A kind of device and method that yellow phosphorus is produced using mid low grade phosphate rock stone
CN203540665U (en) Safe efficient coal powder preparation system
US3803022A (en) Retorting system
CN104893746A (en) Carbocoal heat recycling system and recycling process
US4515679A (en) Process for retorting oil shale with fluidized retorting of shale fines
CN205709870U (en) Prepare the system of phosphoric acid
CN108947285A (en) The new method of the spiral flow fluidized circulation Rapid Heating-up Burning of Cement Clinker of bulky grain
JPS5819385A (en) Method and apparatus for recovering oil and gas from oil shale