JPS63139278A - Method for searching underground structure by electromagnetic wave - Google Patents

Method for searching underground structure by electromagnetic wave

Info

Publication number
JPS63139278A
JPS63139278A JP61287286A JP28728686A JPS63139278A JP S63139278 A JPS63139278 A JP S63139278A JP 61287286 A JP61287286 A JP 61287286A JP 28728686 A JP28728686 A JP 28728686A JP S63139278 A JPS63139278 A JP S63139278A
Authority
JP
Japan
Prior art keywords
several
receiver
ground
wave
underground structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61287286A
Other languages
Japanese (ja)
Other versions
JPH0772751B2 (en
Inventor
Tetsuo Kinoshita
木下 哲生
Itsuo Kawasaki
川崎 逸男
Akira Shiromori
明 城森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KENSETSU KIKAKU CONSULTANT KK
Original Assignee
KENSETSU KIKAKU CONSULTANT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KENSETSU KIKAKU CONSULTANT KK filed Critical KENSETSU KIKAKU CONSULTANT KK
Priority to JP61287286A priority Critical patent/JPH0772751B2/en
Publication of JPS63139278A publication Critical patent/JPS63139278A/en
Publication of JPH0772751B2 publication Critical patent/JPH0772751B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To more accurately determine an underground structure, by measuring the specific resistances up to several ms - several kms and the dielectric constants up to several ten ms in the ground by utilizing an electromagnetic wave of 7Hz - 1MHz. CONSTITUTION:An artificial oscillator 1 oscillates an electromagnetic wave of 7Hz - 1MHz and the AC of a single-phase generator 2 is boosted by a boosting transformer 3 and converted to DC by the rectifier in an oscillator main body 4. Each frequency is formed by cutting said DC by switching and a current is allowed to flow to the ground using a copper electrode 6. A receiver 7 is arranged so that electrodes 11 are respectively separated and a coil 10 for a magnetic field sensor is set so as to cross the receiver 7 at a right angle. The original wave form of a receiving wave is outputted as an effective value from the wide band of an MT (magnetotelluric) meter main body 9 and the wave form of selected frequency is outputted as an effective value from a narrow band. An oscilloscope 8 takes the wave forms of both components in a portable computer 12 from the terminal of the narrow band of the receiver 7 to measure specific resistances up to several ms - several kms and dielectric constants up to several ten m in the ground and an underground structure is elucidated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は地下構造の探査方法に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a method for exploring underground structures.

従来の技術 従来より電磁波による地下構造の探査方法はマグネチル
リフ法と呼ばれ、地下数に膿もの深部の地盤の電気的性
質を探査し、地下構造の解明をするのに用いられて来て
いたが、40H2以上の高い周波数の自然電磁波は、そ
の信号が著しく小さいことと80H2あるいは50H2
の適用周波数がノイズとなるために使用できなかった。
Conventional technology The method of exploring underground structures using electromagnetic waves is called the magnetic rift method, and has been used to investigate the electrical properties of the ground deep underground and elucidate underground structures. , 40H2 or higher frequency natural electromagnetic waves have extremely small signals and 80H2 or 50H2
could not be used because the applied frequency would result in noise.

これを解決する方法として、例えば、本発明人が開発し
た一連の発明特願昭56−144450号、特願昭58
−178805号及び、特願昭130−1!11904
3号が開発されてきている。
As a method to solve this problem, for example, a series of invention patent applications No. 144450/1983 developed by the present inventor,
-178805 and patent application No. 130-1!11904
No. 3 has been developed.

発明が解決しようとする問題点 以上の様に、電磁波による地下構造の探査方法がいくつ
か開発されてきたが、従来の比抵抗のみを測定する地盤
の探査では地下水の探査に明確な判断を下すことが困難
な場合もあった。
Problems to be Solved by the Invention As mentioned above, several methods of exploring underground structures using electromagnetic waves have been developed, but conventional ground exploration that only measures resistivity makes it difficult to make clear judgments about underground water exploration. There were times when it was difficult.

而して今迄平面電磁波の理論による測定では誘電率は無
視されてきたが、本発明は比抵抗の測定ばかりでなく、
誘電率をも測定することにより、地下水の分布を正確に
探査が出来る方式を開発し、地下構造全体をより正確に
把握できる様にしたものである。
Until now, permittivity has been ignored in measurements based on the theory of plane electromagnetic waves, but the present invention is applicable not only to measurements of resistivity, but also to measurements based on the theory of plane electromagnetic waves.
By also measuring the dielectric constant, we have developed a method that can accurately explore the distribution of groundwater, making it possible to more accurately understand the entire underground structure.

問題点を解決するための手段 次に本発明について説明する。Means to solve problems Next, the present invention will be explained.

7H2−IM)iZ迄の電磁波を利用して、地下数m〜
数Km迄の比抵抗と、増下数十m迄の誘電率とを測定し
、地下構造を解明するものである。
7H2-IM) Using electromagnetic waves up to iZ, several meters underground
It measures resistivity up to several kilometers and dielectric constant up to several tens of meters, and elucidates the underground structure.

作用 本発明は以上な様なもので、この使用に際しては、前記
の発明等と同様であるが、本発明は比抵抗と誘電率とを
測定し、これをもって地下構造を解明するものであるか
ら、地下水の構造については極めて正確に探査出来るも
のである。これは水資源の誘電率と他の地盤を構成して
いる岩石、砂及び粘土等との誘電率が極めて大きな差が
あることを利用したものである。
Function The present invention is as described above, and its use is similar to the above-mentioned inventions, but the present invention measures specific resistance and permittivity, and uses these to elucidate the underground structure. , the structure of groundwater can be explored very accurately. This takes advantage of the fact that there is an extremely large difference in the dielectric constant between water resources and other rocks, sand, clay, etc. that make up the ground.

実施例 次に図面に基づいて、本発明の一実施例について説明す
る。
Embodiment Next, an embodiment of the present invention will be described based on the drawings.

先ず、第1図及び第2図に示す実施例について説明する
と、この第1の実施例の人工発振器(1)は数H2〜数
KH2のもので、該人工発振器(1)は発電機(2)、
昇圧トランス(3)及び発振器本体(4)等より構成さ
れており、また発電41! (2)は単相発電機(10
0V・25A)であって、この単相発電機の交流を昇圧
トランス(3)によりsoo v・5Aに昇圧し、それ
を発振器本体(4)内の整流器(5)により直流変換す
る。各周波数はこの直流をスイッチングにより切断する
ことで作成し、銅電極(6)eを用いて地盤に電流を流
す、又第3図及び第4図に示す第2の実施例における人
工発振器(1)は数KH2〜LM)12までのもので、
該人工発振器(1)は発振器本体(4)と昇圧トランス
(3)から構成されており、発振器本体(0から発振し
た交替電圧を増巾して発振する。この場合地盤に流す電
流は適宜変更するものである。
First, the embodiment shown in FIG. 1 and FIG. ),
It consists of a step-up transformer (3), an oscillator body (4), etc., and also generates power 41! (2) is a single-phase generator (10
0 V, 25 A), the AC of this single-phase generator is boosted to soo v, 5 A by a step-up transformer (3), and then converted to DC by a rectifier (5) in the oscillator body (4). Each frequency is created by cutting off this direct current by switching, and a current is passed through the ground using a copper electrode (6)e. ) is the number KH2 to LM) up to 12,
The artificial oscillator (1) is composed of an oscillator body (4) and a step-up transformer (3), and oscillates by amplifying the alternating voltage oscillated from the oscillator body (0).In this case, the current flowing to the ground is changed as appropriate. It is something to do.

受信器(7)は第5図及び第6図に示す様にオシロスコ
ープ(8)、MTツメ−一本体(9)  (MTとはマ
グネチルリフの略称である)、磁場センサー用コイル(
10)及び電場センサー用電極(11)・等から構成さ
れ、これらは携帯用計算機(12)に連結されている。
As shown in Figs. 5 and 6, the receiver (7) includes an oscilloscope (8), an MT claw body (9) (MT is an abbreviation for magnetyliff), and a magnetic field sensor coil (
10), an electric field sensor electrode (11), etc., and these are connected to a portable computer (12).

本発明は以上の様な装置を用い探査するもので、発振器
本体(4)は両電極(6)・を約IKm離して設置し、
(この場合探査する場所の地形や広さに応じて適正な距
離にするもので、IKmに限定されるもノテはナイ)最
大出力2.5KW(500V −5A)(この場合の最
大出力等もその場その場によって適正な出力にすること
は当然のことである)で交替電流を地盤に流し、測定に
必要な周波数の電磁波を発生するもので、発振する電磁
波の波形は、矩形波を使用して、それらの周波数は、例
えば、?、8 、20.4 、40.0 、8’0.0
 、180.0 、32Q、0、 Ef40.0 、1
280.0 、2560.0 、及び5120 、0 
)12の合計10種類と1゜25KH2〜IMH2まで
の各種のものを発振する。受信器(7)は、これら上記
周波数に自然電磁波の14.0H2とオメガ局から発振
されている17.4KH2を加えて、合計12種類の周
波数と1.25KH2〜IMH2までの各種の周波数を
受信する。
The present invention uses the above-mentioned device for exploration, and the oscillator main body (4) is installed with both electrodes (6) separated by approximately IKm.
(In this case, the distance should be set to an appropriate distance depending on the topography and size of the area to be explored, and although it is limited to IKm, please note) Maximum output 2.5KW (500V -5A) (The maximum output etc. in this case is also It is natural that the output should be set appropriately depending on the situation), and an alternating current is passed through the ground to generate electromagnetic waves of the frequency required for measurement.The waveform of the oscillated electromagnetic waves uses a rectangular wave. And what are their frequencies, for example? , 8 , 20.4 , 40.0 , 8'0.0
, 180.0 , 32Q, 0, Ef40.0 , 1
280.0, 2560.0, and 5120, 0
)12 in total and various types from 1°25KH2 to IMH2 are oscillated. The receiver (7) receives 14.0H2 of natural electromagnetic waves and 17.4KH2 oscillated from Omega station to these frequencies, for a total of 12 frequencies and various frequencies from 1.25KH2 to IMH2. do.

受信器(7)は電極(11) −を約30m#t、て設
置し、(この場合も測定地の地形等によって適正な距離
とする)これと直交するように磁場センサー用コイル(
10)を設定する、MTツメ−一本体(9)は探査する
地方特有の商用電源に関する雑音を除去するノツチフィ
ルターと受信波の内、必要周波数を抽出するためのバン
ドパスフィルターより構成されている。バンドパスフィ
ルターを通した電場、磁場の実効値は、MTツメ−一本
体(8)にデジタル表示される、又MTツメ−一本体(
9)には広帯域バンドと、狭帯域バンドの端子があり、
広帯域バンドからは受信波の原波形が、狭帯域バンドか
らは選定した周波数の波形が実効値で出力される。
The receiver (7) is installed at a distance of approximately 30 m from the electrode (11) (also in this case, the appropriate distance is determined depending on the topography of the measurement site), and the magnetic field sensor coil (
10), the MT claw body (9) consists of a notch filter that removes noise related to commercial power sources specific to the region to be explored, and a bandpass filter that extracts the necessary frequency from the received waves. . The effective values of the electric field and magnetic field that have passed through the bandpass filter are digitally displayed on the MT claw body (8).
9) has wide band and narrow band terminals,
The original waveform of the received wave is output from the wideband band, and the waveform of the selected frequency is outputted from the narrowband band as an effective value.

次にオシロスコープ(8)は、両成分の波形を受信器(
7)の狭帯域バンドの端子から携帯用計算器(12)内
に取り込み、平面電磁波の理論等に基づき、現地におい
て大地の見掛は比抵抗値及び誘電率を算出し、プリント
アウトする。この際異常データーは、現地において統計
処理により除去する。尚本発明による方式では1地点の
測定は30分程度ですむものである。
Next, the oscilloscope (8) transmits the waveforms of both components to the receiver (
7) into a portable calculator (12) from the narrow band terminal, and based on the theory of plane electromagnetic waves, calculate the apparent resistivity and permittivity of the earth at the site, and print it out. At this time, abnormal data will be removed through statistical processing on-site. In addition, according to the method according to the present invention, measurement at one point only takes about 30 minutes.

発明の効果 本発明によれば、今迄平面電磁波の理論による地下構造
の探査には無視されてきた誘電率を活用することにより
比抵抗と誘電率から地下水の分布が正確に解明されるこ
ととなり、全体としてより正確に地下構造が把握し得る
様になる。従って、この方法は特に地下工事、トンネル
工事、地すべり地の地下水脈や水資源の活用等に極めて
有効な価値ある方法である。
Effects of the Invention According to the present invention, the distribution of groundwater can be accurately elucidated from resistivity and permittivity by utilizing permittivity, which has been ignored until now in exploration of underground structures based on the theory of plane electromagnetic waves. , it becomes possible to understand the underground structure more accurately as a whole. Therefore, this method is an extremely effective and valuable method, especially for underground construction, tunnel construction, and utilization of groundwater veins and water resources in landslide areas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成部材の一つである人工発振器の説
明的概略図、第2図は同第1図に示した人工発振器のブ
ロック図、第3図は同本発明の他の実施例の人工発振器
の説明的概略図、第4図は同第3図に示した人工発振器
のブロック図、第5図は同本発明の構成部材の他の一つ
である受信機の説明的概略図、第6図は同第5図に示し
た受信機のブロック図。 出願人 株式会社建設企画コンサルタントM5 図 第6図 、7
FIG. 1 is an explanatory schematic diagram of an artificial oscillator, which is one of the components of the present invention, FIG. 2 is a block diagram of the artificial oscillator shown in FIG. 1, and FIG. 3 is another embodiment of the present invention. FIG. 4 is a block diagram of the artificial oscillator shown in FIG. 3, and FIG. 5 is an explanatory schematic diagram of the receiver, which is another component of the present invention. 6 is a block diagram of the receiver shown in FIG. 5. Applicant Kensetsu Planning Consultant Co., Ltd. M5 Figures 6 and 7

Claims (1)

【特許請求の範囲】[Claims] 1.7HZ〜1MHZ迄の電磁波を利用して、地下数m
〜数Km迄の比抵抗と、地下数十m迄の誘電率とを測定
し、地下構造を解明することを特徴とする電磁波による
地下構造の探査方法。
Using electromagnetic waves from 1.7HZ to 1MHZ, several meters underground
A method for exploring underground structures using electromagnetic waves, characterized by measuring resistivity up to several kilometers and dielectric constant up to several tens of meters underground to elucidate underground structures.
JP61287286A 1986-12-02 1986-12-02 Method for exploring underground structures using artificial electromagnetic waves Expired - Lifetime JPH0772751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61287286A JPH0772751B2 (en) 1986-12-02 1986-12-02 Method for exploring underground structures using artificial electromagnetic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61287286A JPH0772751B2 (en) 1986-12-02 1986-12-02 Method for exploring underground structures using artificial electromagnetic waves

Publications (2)

Publication Number Publication Date
JPS63139278A true JPS63139278A (en) 1988-06-11
JPH0772751B2 JPH0772751B2 (en) 1995-08-02

Family

ID=17715425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61287286A Expired - Lifetime JPH0772751B2 (en) 1986-12-02 1986-12-02 Method for exploring underground structures using artificial electromagnetic waves

Country Status (1)

Country Link
JP (1) JPH0772751B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105279A (en) * 1989-09-19 1991-05-02 Central Res Inst Of Electric Power Ind Receiving device for csamt method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146179A (en) * 1981-01-20 1982-09-09 Aerospatiale Method of calculating irradiation on ground and dielectric constant and conductivity of ground with electromagnetic pulse and exclusive simulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146179A (en) * 1981-01-20 1982-09-09 Aerospatiale Method of calculating irradiation on ground and dielectric constant and conductivity of ground with electromagnetic pulse and exclusive simulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105279A (en) * 1989-09-19 1991-05-02 Central Res Inst Of Electric Power Ind Receiving device for csamt method

Also Published As

Publication number Publication date
JPH0772751B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
AU2007340850B2 (en) A process and device for measurement of spectral induced polarization response using Pseudo Random Binary Sequence (PRBS) current source
AU5733486A (en) Electromagnetic array profiling survey method
CN105866844A (en) Device and method for measuring whole region measuring current source frequency domain electric field horizontal x component
CN105259584A (en) Water area electric prospecting system
ES386865A1 (en) Induction logging methods and apparatus using more than one phase component of the received signal
RU2567181C1 (en) System for very low-frequency and extremely low-frequency communication with deep-sunk and remote objects - 1
CN105388368B (en) A kind of impedance load(ing) point choosing method of high pressure overhead power line electromagnetic scattering
JPS63139278A (en) Method for searching underground structure by electromagnetic wave
Nair et al. Experimental studies on the electromagnetic response of tilted conducting half-planes to a horizontal-loop prospecting system
Gardner Effect of the propagation path on lightning-induced transient fields
Lima et al. Transient ground impedance measurement using a very short current lead
Persova et al. Numerical scheme for modelling the electromagnetic field in airborne electromagnetic survey taking into account follow currents in transmitter loop
US1808397A (en) Method of and apparatus for locating deposits of oil, gas and other dielectric subterranean bodies
JPH0236912B2 (en)
SU868679A1 (en) Method and device for measuring induced polarization in electric geosurvey
US2237643A (en) Method of subsurface prospecting
RU2059270C1 (en) Method for determination of geoelectrical impedance
SU987552A1 (en) Geoelectric prospecting method
SU1323993A1 (en) Method of magnetotelluric sounding
West Electrical prospecting with non-sinusoidal alternating currents
RU2105329C1 (en) Method of man-made electric charge
RU2059269C1 (en) Method for electrical exploration
Osburn et al. Methodology for developing expected values of radiated emissions from cables
CN118033753A (en) Geophysical prospecting method for detecting underground water by non-traditional audio magnetotelluric sounding method
RU1805428C (en) Method of prediction of grounding system electric characteristics