JPH0772751B2 - Method for exploring underground structures using artificial electromagnetic waves - Google Patents

Method for exploring underground structures using artificial electromagnetic waves

Info

Publication number
JPH0772751B2
JPH0772751B2 JP61287286A JP28728686A JPH0772751B2 JP H0772751 B2 JPH0772751 B2 JP H0772751B2 JP 61287286 A JP61287286 A JP 61287286A JP 28728686 A JP28728686 A JP 28728686A JP H0772751 B2 JPH0772751 B2 JP H0772751B2
Authority
JP
Japan
Prior art keywords
underground
exploring
underground structure
electromagnetic waves
rocks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61287286A
Other languages
Japanese (ja)
Other versions
JPS63139278A (en
Inventor
哲生 木下
逸男 川崎
明 城森
Original Assignee
株式会社建設企画コンサルタント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社建設企画コンサルタント filed Critical 株式会社建設企画コンサルタント
Priority to JP61287286A priority Critical patent/JPH0772751B2/en
Publication of JPS63139278A publication Critical patent/JPS63139278A/en
Publication of JPH0772751B2 publication Critical patent/JPH0772751B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、人工の電磁波による地下構造の探査方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for exploring underground structures using artificial electromagnetic waves.

従来の技術 従来から、電磁波による地下構造の探査方法として、マ
グネテルリク法即ちその略称をMT法と呼ばれる地下構造
の探査方法があった。その地下構造の探査方法は、地球
の電磁気的な現像を利用して大地の比抵抗分布を調べ、
地質構造を推定する物理探査の一つの手法であって、雷
放電などによる自然発生的な電磁波が空中から地表に入
射し、地下の地層や岩石などの媒質を透過する時、導電
性などの電気的性質に応じた磁場と電場が大地に形成さ
れ、地表で磁場の強さと電場の強さを測定することで、
地下の媒質の電気的性質の導電率を求めることが出来る
のであり、地中に入射した電磁波は、周波数により透過
する深さが異なるため、10-2乃至103Hzの広い範囲の周
波数帯域の電磁波を利用することで異なった深さについ
て比抵抗が求められ、その変化から地下の地質構造が推
定されるのである。そこで、地下数kmの地下構造である
深部の地盤の電気的性質を探査し、地下構造の解明をす
ることに適した地下構造の探査方法であった。しかし、
40HZ以上の高い周波数の自然電磁波は、その信号が、著
しく小さいことと60HZ或いは50HZの適用周波数がノイズ
となるために、ノイズとなる範囲では使用できなかっ
た。そこで、そのような支障を回避するために、本特許
出願の発明者が開発した研究の過程で、例えば、次の発
明をしてきた。その一つが、特願昭56−144450号(特開
昭58−45587)であり、他の一つが、特願昭58−176805
号(特公平2−36197)であり、さらに、他の一つが、
特願昭60−199043号(特公平2−36912)である。
2. Description of the Related Art Conventionally, as a method for exploring an underground structure by electromagnetic waves, there has been a method for exploring an underground structure, which is called a magnetelique method, that is, its abbreviation is MT method. The method of exploring the underground structure is to investigate the resistivity distribution of the earth by utilizing the electromagnetic development of the earth,
This is a method of geophysical exploration that estimates the geological structure.When spontaneous electromagnetic waves caused by lightning discharge enter the surface of the earth from the air and penetrate through underground media such as strata and rocks, electrical conductivity A magnetic field and an electric field according to the physical properties are formed on the ground, and by measuring the strength of the magnetic field and the strength of the electric field at the surface,
It is possible to determine the electrical conductivity of the underground medium, and the depth of penetration of electromagnetic waves that enter the ground varies depending on the frequency, so a wide frequency band of 10 -2 to 10 3 Hz The resistivity is obtained at different depths by using electromagnetic waves, and the underground geological structure is estimated from the change. Therefore, it was an exploration method for the underground structure suitable for clarifying the underground structure by exploring the electrical properties of the deep ground, which is an underground structure several kilometers underground. But,
Natural electromagnetic waves with a high frequency of 40 HZ or more could not be used in a noise range because the signal was extremely small and the applied frequency of 60 HZ or 50 HZ became noise. Therefore, in order to avoid such obstacles, for example, the following invention has been made in the course of the research developed by the inventor of the present patent application. One of them is Japanese Patent Application No. 56-144450 (Japanese Patent Laid-Open No. 58-45587) and the other is Japanese Patent Application No. 58-176805.
No. (Japanese Patent Publication No. 2-36197), and the other one is
This is Japanese Patent Application No. 60-199043 (Japanese Patent Publication No. 2-36912).

発明が解決しようとする問題点 そこで、上記の発明をして、電磁波による地下構造の探
査方法を開発してきたのであるが、従来の地下構造の比
抵抗のみを測定して、地下構造の地盤の探査をする方法
では、地下水の探査をするために明確な判断をしにくい
ことが生じることもあった。特に、地下構造の地盤の探
査をするに当たり、岩盤の性質を知るためには、断層を
探し当てることが必要になる。そして、断層のあるとこ
ろには、一般に、隙間があり、その隙間に水が溜り得
る。それ故に、地下水の分布を探査し得ると、断層の有
無のみならず、断層の状態までも探査し得る。ところ
で、従来は、地質調査の一環として、自然の電磁波によ
る地下構造の探査方法が適用されてきたが、近年、それ
らの地下構造の探査技術を、安定地盤の確保のためなど
の建設技術に適用していくことが課題になり、電磁波に
よる地下構造の探査方法を土木工学分野で実用化するこ
との研究をしていくことが必要になってきた。本発明
は、比抵抗の測定のみならず、地下数十mまでの地下構
造の誘電率を測定して、地下構造の地下水の分布を探査
して、地下構造の岩盤の亀裂の状態を知り、地下構造体
を正確に把握し得る人工の電磁波による地下構造の探査
方法を提供することを第一の目的とする。また、地下構
造の中で、地下水のあるところは、断層がある場合が多
く、その地下水のある地盤と他の地盤である岩石、砂お
よび粘土などの地盤などで誘電率を測定すると、それら
の地下構造の中で、地下水のある地盤と他の地盤である
岩石、砂および粘土などの地盤の間で、特に、誘電率の
差が顕著であることが、本発明者の研究の過程で分か
り、その研究の成果を利用して、地盤の誘電率を測定
し、そこで、誘電率の差があるところに、地盤の性質の
差があることを想定し、そこで、誘電率の差があるとこ
ろ探査し得るようにして、所期の目的を達成する期待が
出来るものとして、地下構造の誘電率を測定することに
より、地下構造の地下水のあるところを探り当て、その
地下水のある地盤を探査して、地下構造の岩盤の亀裂の
状態を知り、地下構造全体を正確に把握し得る人工の電
磁波による地下構造の探査方法を提供することを第二の
目的とする。
Problems to be Solved by the Invention Therefore, the invention described above has been developed to develop a method for exploring an underground structure by electromagnetic waves. However, by measuring only the resistivity of a conventional underground structure, With the exploration method, it may be difficult to make a clear decision in order to explore the groundwater. In particular, when exploring the underground structure, it is necessary to find faults in order to know the nature of the bedrock. And, where there is a fault, there is generally a gap, and water can collect in the gap. Therefore, if the distribution of groundwater can be searched, not only the existence of a fault but also the state of the fault can be searched. By the way, conventionally, as a part of geological surveys, methods for exploring underground structures using natural electromagnetic waves have been applied, but in recent years, those techniques for exploring underground structures have been applied to construction technologies such as securing stable ground. This has become an issue, and it has become necessary to conduct research into the practical application of methods for exploring underground structures using electromagnetic waves in the field of civil engineering. INDUSTRIAL APPLICABILITY The present invention not only measures the specific resistance but also measures the permittivity of an underground structure up to several tens of meters underground to investigate the distribution of groundwater in the underground structure, to know the state of cracks in the rock of the underground structure, A first object of the present invention is to provide a method for exploring an underground structure by artificial electromagnetic waves that can accurately grasp the underground structure. In addition, in the underground structure, there are often faults where there is groundwater, and when the permittivity is measured on the ground with groundwater and the ground such as rock, sand and clay, the In the process of the present inventor, it was found that the difference in permittivity is particularly remarkable between the ground with groundwater and the ground such as rock, sand and clay in the underground structure. , Using the results of that research, we measured the permittivity of the ground, and we assume that there is a difference in the properties of the ground where there is a difference in the permittivity. As a result of exploration, we can expect the achievement of the intended purpose.By measuring the permittivity of the underground structure, we can find out where the underground water is and search the ground where the groundwater exists. Knows the state of cracks in underground rocks To provide an exploration method underground structure by electromagnetic waves artificial can accurately grasp the entire underground structures and second object.

問題点を解決するための手段 本発明は、7HZ〜1MHZの人工の電磁波を利用して、その
電磁波が地下数m〜地下数kmの地下構造の深いところか
ら浅いところの間の地下の地層や岩石などの媒質を透過
する時、導電性などの電気的性質に応じた磁場と電場が
大地に形成され、地表で磁場の強さと電場の強さを測定
することで、地下の媒質の電気的性質の比抵抗を求める
とともに地下数十mまでの地下構造の誘電率を求めて、
地下の地層や岩石を探査して、地下構造の地層や岩石の
状態を知り、地下構造全体を把握し解明することを特徴
とする人工の電磁波による地下構造の探査方法である。
Means for Solving the Problems The present invention utilizes an artificial electromagnetic wave of 7HZ to 1MHZ, and the electromagnetic wave is a subterranean stratum between a deep portion and a shallow portion of an underground structure of several meters to several kilometers underground. When passing through a medium such as rock, a magnetic field and electric field are formed on the ground according to electrical properties such as conductivity, and by measuring the strength of the magnetic field and the electric field at the surface of the earth, the electrical conductivity of the underground medium is measured. The specific resistance of the property is calculated, and the dielectric constant of the underground structure up to several tens of meters underground is calculated.
This is a method for exploring underground structures by artificial electromagnetic waves, characterized by exploring underground strata and rocks to know the state of underground strata and rocks, and grasping and clarifying the entire underground structure.

作用 本発明は、7HZ〜1MHZの人工の電磁波を利用して、その
電磁波が地下数m〜地下数kmの地下構造の比抵抗と、地
下数十mまでの地下構造の誘電率を測定し、地下構造を
探査していくのであるが、地下数kmの地下構造の深いと
ころから浅いところの間の地下の地層や岩石などの媒質
を透過する時、導電性などの電気的性質に応じた磁場と
電場が大地に形成され、地表で磁場の強さと電場の強さ
を測定することで地下の媒質の電気的性質を求めるとと
もに地下数十mまでの地下構造の誘電率を求めて、地下
の地層や岩石を探査し、地下構造の地層や岩石の状態を
知り、地下構造全体を把握し、特に、地下構造の岩盤の
亀裂の状態を知り、地下構造のひとつである地下水の分
布を探査して、地下構造の岩盤の亀裂の状態を知り、断
層などの分布状態を把握して、地下構造全体の地盤や岩
盤やその岩盤の岩質を把握し、地下構造を、きわめて正
確に探査し得る。
Action The present invention utilizes an artificial electromagnetic wave of 7HZ to 1MHZ to measure the specific resistance of the underground structure of several m to several km underground and the dielectric constant of the underground structure of several tens m underground, We are exploring the underground structure.When passing through underground media such as rocks and underground strata between the deep and shallow parts of the underground structure of several kilometers underground, a magnetic field according to electrical properties such as conductivity. And an electric field are formed on the ground, and the electric properties of the underground medium are obtained by measuring the strength of the magnetic field and the strength of the electric field on the surface of the earth, and the permittivity of the underground structure up to several tens of meters underground is also obtained. By exploring the formations and rocks, knowing the condition of the formations and rocks of the underground structure, grasping the entire underground structure, especially the crack condition of the bedrock of the underground structure, and exploring the distribution of groundwater, which is one of the underground structures. Know the state of cracks in underground rocks, To grasp, to understand the lithology of the entire underground structure ground and rock and the rock, the underground structure, it can be very accurately exploration.

実施例 第1図および第2図に示す実施例について説明すると、
本発明の実施例の1つの人工発振器1は、数HZ〜数KHZ
の電磁波を利用するものであって、その人工発振器1
は、発電機2、昇圧トランス3、発信器本体4などより
構成されており、また、発電機2は、単相発電機は、10
0Vであり、25Aであって、この単相発電機の交流を昇圧
トランス3により、500Vで、5Aに昇圧し、それを発信器
本体4内の整流器5により直流交換する。そして、この
直流をスイッチングにより切断することで作成し、銅電
極6を用いて地盤に電流を流すのである。
EXAMPLE The example shown in FIGS. 1 and 2 will be described.
One artificial oscillator 1 according to the embodiment of the present invention has several HZ to several KHZ.
That uses the electromagnetic waves of
Is composed of a generator 2, a step-up transformer 3, a transmitter body 4, etc. Further, the generator 2 is a single-phase generator, and
The alternating current of this single-phase generator, which is 0V and 25A, is stepped up to 5A at 500V by the step-up transformer 3, and is DC-exchanged by the rectifier 5 in the oscillator body 4. Then, this direct current is cut by switching to create it, and the copper electrode 6 is used to pass an electric current to the ground.

また、第3図および第4図に示す実施例の他の1つにお
ける人工発振器1は、数KHZ〜数MHZの電磁波を利用する
ものであって、その人工発振器1は、昇圧トランス3、
発振器本体4から構成されており、発振器本体4から発
信した交替電圧を増幅して発振する。この場合、地盤に
流す電流は、適宜変更するものである。そして、第5図
および第6図に示すようにオシロスコープ8とマグネテ
ルリクメーター本体9と磁場センサー用コイル10および
電場センサー用電極11などから構成され、これらの構成
部分は、携帯用計算機12に連結されている。
Further, an artificial oscillator 1 in another one of the embodiments shown in FIGS. 3 and 4 uses electromagnetic waves of several KHZ to several MHZ, and the artificial oscillator 1 is a step-up transformer 3,
The oscillator main body 4 is configured to amplify and oscillate the alternating voltage transmitted from the oscillator main body 4. In this case, the current flowing through the ground is changed appropriately. As shown in FIGS. 5 and 6, the oscilloscope 8, the magnetel-like meter body 9, the magnetic field sensor coil 10, the electric field sensor electrode 11 and the like are included. It is connected.

本発明の電磁波による地下構造の探査方法は、上記の装
置を用いて探査するものであるが、発振器本体4の両電
極の幅は、探査する場所の地形や広さに応じて適正な距
離にするものであるから、両電極の幅を1Kmに限定する
ものではなく、しかし、両電極6を約1Km離して設置
し、500V、5Aで、最大出力2.5KWで交替電流を地盤に流
し、測定に必要な周波数の電磁波を発生するもので、発
振する電磁波の波形は、矩形波を利用して、それらの周
波数は、例えば、7.8、20.4、40.0、80.0、160.0、320.
0、640.0、1280.0、2560.0、5120.0HZの合計10種類と、
1.25KHZ〜1MHZの各種のものを発振する。そして、受信
器7は、これら上記周波数に自然電磁波の14.0HZとオメ
ガ局から発振されている17.4KHZを加えて、合計12種類
の周波数と1.25KHZ〜1MHZの各種の周波数を受信する。
そして、探査する場所の地形や広さに応じて適正な距離
にするものであるから、その距離を限定されるものでは
なく、受信器7は、電極11を約30m離して設置し、これ
と直交するように磁場センサー用コイル10を設定する。
マグネテルリクメーター本体9は、探査する地方特有の
商用電源に関する雑音を除去するノッチフィルターと受
信波の内、必要周波数を抽出するためのバンドパスフィ
ルターより構成されている。そして、バンドパスフィル
ターを通した電場、磁場の実効値は、マグネテルリクメ
ーター本体9にデジタル表示される。また、マグネテル
リクメーター本体9には、広帯域バンドと狭帯域バンド
の端子があり、広帯域バンドからは、原波形が、狭帯域
バンドからは選定した周波数の波形が実効値で出力され
る。次に、オシロスコープ8は両成分の波形を受信器7
の狭帯域バンドの端子から携帯用計算機12内に取り込
み、平面電磁波の理論などに基づき、現地において大地
の見掛け比抵抗値および誘電率を算出し、プリントアウ
トする。この際、現地において、統計処理をすることに
より、異常データーは、除去するのである。そして、本
発明の人工の電磁波による地下構造の探査方法で行なわ
れる一地点の測定のための所要時間は、30分程度であ
り、比較的短時間で測定し得る。そして、本発明の人工
の電磁波による地下構造の探査方法は、測定値の一方
に、発信設備を位置させ、その位置から、適切に離れた
位置に受信設備を位置させて地下構造の探査を行うので
あり、その測定値を換算式に代入して、地下構造の所望
の地層や岩盤を知り得る。
The method for exploring an underground structure using electromagnetic waves according to the present invention is an exploration method using the above-described device. Therefore, the width of both electrodes is not limited to 1 Km, but both electrodes 6 are installed about 1 Km apart, 500 V, 5 A, with a maximum output of 2.5 KW, an alternating current is sent to the ground for measurement. Generates electromagnetic waves of the required frequency, the waveform of the oscillating electromagnetic wave is a rectangular wave, those frequencies are, for example, 7.8, 20.4, 40.0, 80.0, 160.0, 320.
0, 640.0, 1280.0, 2560.0, 5120.0HZ total 10 types,
It oscillates various things from 1.25KHZ to 1MHZ. Then, the receiver 7 receives a total of 12 types of frequencies and various frequencies of 1.25 KHZ to 1 MHZ by adding 14.0 HZ of natural electromagnetic waves and 17.4 KHZ oscillated from an Omega station to these frequencies.
The distance is not limited because it is an appropriate distance depending on the topography and area of the place to be searched, and the receiver 7 is installed with the electrodes 11 separated by about 30 m. The magnetic field sensor coils 10 are set so as to be orthogonal to each other.
The magnetel-rich meter body 9 is composed of a notch filter that removes noise relating to the commercial power source peculiar to the region to be searched and a bandpass filter that extracts a necessary frequency from the received waves. The effective values of the electric field and magnetic field that have passed through the bandpass filter are digitally displayed on the magnetel likmeter body 9. Further, the magnetel licmeter main body 9 has terminals for a wide band and a narrow band, and an original waveform is output from the wide band and a waveform of a selected frequency is output from the narrow band as an effective value. Next, the oscilloscope 8 outputs the waveforms of both components to the receiver 7
The narrow band terminal is taken into the portable computer 12, the apparent specific resistance value and the permittivity of the ground are calculated and printed out at the site based on the theory of plane electromagnetic waves. At this time, abnormal data is removed by performing statistical processing locally. The time required for measuring one point performed by the method for exploring the underground structure using the artificial electromagnetic wave of the present invention is about 30 minutes, which can be measured in a relatively short time. Then, the method of exploring the underground structure by the artificial electromagnetic wave of the present invention, the transmitting equipment is located at one of the measured values, and the receiving equipment is located at a position appropriately distant from the location, and the underground structure is explored. Therefore, by substituting the measured value into the conversion formula, it is possible to know the desired stratum or bedrock of the underground structure.

発明の効果 本発明は、7HZ〜1MHZの人工の電磁波を利用して、その
電磁波が地下数m〜地下数kmの地下構造の深いところか
ら浅いところの間の地下の地層や岩石などの媒質を透過
する時、導電性などの電気的性質に応じた磁場と電場が
大地に形成され、地表で磁場の強さと電場の強さを測定
することで、地下の媒質の電気的性質の比抵抗を求める
とともに地下数十mまでの地下構造の誘電率を求めて、
地下の地層や岩石を探査して、地下構造の地層や岩石の
状態を知り、地下構造全体を把握し解明することを特徴
とする人工の電磁波による地下構造の探査方法であるか
ら、今までの平面電磁波の理論による地下構造の探査に
は、無視されてきた誘電率を活性することにより、比抵
抗と誘電率から地下構造の地下水の分布を探査して、地
下構造の岩盤の亀裂の状態を知り、地下構造全体を把握
し解明し得る。そこで、本発明の人工の電磁波による地
下構造の探査方法は、建設工事でも、土木工事、特に、
トンネル工事などの地下工事のために効果があり、ま
た、地すべり地の地下水の分布を探査し、地下水脈を把
握し、断層の有無を確認して、地すべりを予知し得る効
果がある。
Effects of the Invention The present invention utilizes an artificial electromagnetic wave of 7HZ to 1MHZ to generate a medium such as an underground stratum or a rock between a deep area and a shallow area of an underground structure of several meters to several kilometers underground. When penetrating, a magnetic field and electric field are formed on the ground according to electrical properties such as conductivity, and by measuring the strength of the magnetic field and the electric field at the surface of the earth, the resistivity of the electrical properties of the underground medium can be determined. As well as obtaining the dielectric constant of the underground structure up to several tens of meters underground,
Since it is a method of exploring underground structures by artificial electromagnetic waves, which is characterized by exploring underground strata and rocks to know the state of underground strata and rocks and grasping and elucidating the entire underground structure. For the exploration of underground structures based on the theory of plane electromagnetic waves, by activating the dielectric constant that has been neglected, the distribution of groundwater in the underground structure is explored from the resistivity and the dielectric constant, and the state of cracks in the rock of the underground structure is investigated. Know and understand and understand the entire underground structure. Therefore, the method of exploring the underground structure by the artificial electromagnetic wave of the present invention, even in the construction work, civil engineering, especially,
It is effective for underground works such as tunnel construction, and also has the effect of predicting landslides by exploring the distribution of groundwater in landslide areas, grasping groundwater veins, and confirming the presence of faults.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の人工の電磁波による地下構造の探査
方法において使用される構成部材である人工発振器の概
略説明図であり、第2図は、第1図で示した人工発信器
のブロック図であり、第3図は、第1図で示した人工発
信器とは別の実施例の人工発振器の概略説明図であり、
第4図は、第3図で示した人工発振器のブロック図であ
り、第5図は、本発明の人工の電磁波による地下構造の
探査方法において使用される構成部材である人工発振器
とは別の構成部材の一つの受信機の概略説明図であり、
第6図は、第5図で示した受信機のブロック図である。 1……人工発振器、2……発電機 3……昇圧トランス、4……発振器本体 5……整流器、6……銅電極 7……受信器、8……オッシロスコープ 9……マグネテルリクメーター本体、10……磁場センサ
ー用コイル 11……電場センサー用電極、12……携帯用計算機
FIG. 1 is a schematic explanatory view of an artificial oscillator which is a constituent member used in the method for exploring an underground structure by artificial electromagnetic waves of the present invention, and FIG. 2 is a block of the artificial oscillator shown in FIG. FIG. 3 is a schematic explanatory view of an artificial oscillator of another embodiment different from the artificial oscillator shown in FIG. 1,
FIG. 4 is a block diagram of the artificial oscillator shown in FIG. 3, and FIG. 5 is different from the artificial oscillator which is a constituent member used in the method for exploring the underground structure by the artificial electromagnetic wave of the present invention. It is a schematic explanatory view of one of the components of the receiver,
FIG. 6 is a block diagram of the receiver shown in FIG. 1 ... Artificial oscillator, 2 ... Generator, 3 ... Step-up transformer, 4 ... Oscillator body, 5 ... Rectifier, 6 ... Copper electrode, 7 ... Receiver, 8 ... Ossiscope, 9 ... Magnetel likmeter body , 10 ... coil for magnetic field sensor 11 ... electrode for electric field sensor, 12 ... portable calculator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】7HZ〜1MHZの人工の電磁波を利用して、そ
の電磁波が地下数m〜地下数kmの地下構造の深いところ
から浅いところの間の地下の地層や岩石などの媒質を透
過する時、導電性などの電気的性質に応じた磁場と電場
が大地に形成され、地表で磁場の強さと電場の強さを測
定することで、地下の媒質の電気的性質の比抵抗を求め
るとともに地下数十mまでの地下構造の誘電率を求め
て、地下の地層や岩石を探査して、地下構造の地層や岩
石の状態を知り、地下構造全体を把握し解明することを
特徴とする人工の電磁波による地下構造の探査方法。
1. An artificial electromagnetic wave of 7HZ to 1MHZ is used, and the electromagnetic wave penetrates underground media such as rocks and rocks between deep and shallow underground structures of several meters to several kilometers underground. At this time, a magnetic field and electric field are formed on the ground according to electrical properties such as conductivity, and by measuring the strength of the magnetic field and the electric field at the surface of the earth, the specific resistance of the electrical property of the underground medium is obtained. An artificial feature characterized by obtaining the permittivity of underground structures up to several tens of meters underground, exploring underground strata and rocks, knowing the state of underground strata and rocks, and grasping and elucidating the entire underground structure. Method for exploring underground structures by electromagnetic waves.
JP61287286A 1986-12-02 1986-12-02 Method for exploring underground structures using artificial electromagnetic waves Expired - Lifetime JPH0772751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61287286A JPH0772751B2 (en) 1986-12-02 1986-12-02 Method for exploring underground structures using artificial electromagnetic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61287286A JPH0772751B2 (en) 1986-12-02 1986-12-02 Method for exploring underground structures using artificial electromagnetic waves

Publications (2)

Publication Number Publication Date
JPS63139278A JPS63139278A (en) 1988-06-11
JPH0772751B2 true JPH0772751B2 (en) 1995-08-02

Family

ID=17715425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61287286A Expired - Lifetime JPH0772751B2 (en) 1986-12-02 1986-12-02 Method for exploring underground structures using artificial electromagnetic waves

Country Status (1)

Country Link
JP (1) JPH0772751B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750166B2 (en) * 1989-09-19 1995-05-31 財団法人電力中央研究所 Receiver for CSAMT method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146179A (en) * 1981-01-20 1982-09-09 Aerospatiale Method of calculating irradiation on ground and dielectric constant and conductivity of ground with electromagnetic pulse and exclusive simulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146179A (en) * 1981-01-20 1982-09-09 Aerospatiale Method of calculating irradiation on ground and dielectric constant and conductivity of ground with electromagnetic pulse and exclusive simulator

Also Published As

Publication number Publication date
JPS63139278A (en) 1988-06-11

Similar Documents

Publication Publication Date Title
US4994747A (en) Method and apparatus for detecting underground electrically conductive objects
CA2921822C (en) Borehole electric field survey with improved discrimination of subsurface features
US4446434A (en) Hydrocarbon prospecting method with changing of electrode spacing for the indirect detection of hydrocarbon reservoirs
Munkholm et al. Electromagnetic noise contamination on transient electromagnetic soundings in culturally disturbed environments
US20220299671A1 (en) Concealed mineral resource prediction method and logging system based on petro-electromagnetism
US20230333276A1 (en) Method and system for exploring hidden karst pipelines
US2244484A (en) Method of and means for analyzing and determining the geologic strata below the surface of the earth
US4393350A (en) Method for rapidly detecting subterranean tunnels by detecting a non-null value of a resultant horizontal magnetic field component
CA1143791A (en) Hydrocarbon prospecting method and apparatus for the indirect detection of hydrocarbon reservoirs
CN110376651B (en) Time-frequency electromagnetic device based on horizontal bipolar current source and geophysical exploration method
CN110501746A (en) Roller three-dimensional controllable source electrical method monitoring and evaluation drilling fracturing method
JPH0772751B2 (en) Method for exploring underground structures using artificial electromagnetic waves
Jämtlid et al. Electrical borehole measurements for the mapping of fracture zones in crystalline rock
Li et al. Study on transient electromagnetic response of high resistivity goafs and its application
Pellerin et al. A parametric study of the vertical electric source
CN115112319B (en) Rapid analysis method for curtain leakage detection
Wang* et al. The use of time-frequency domain EM technique to monitor hydraulic fracturing
Abdul-Razzak et al. THE SIMULTANEOUS USE OF EM CONDUCTIVITY AND RADIOHM RESISTIVITY TECHNIQUES IN SOLUTION CHANNEL DETECTION
JP3204910B2 (en) Underground electromagnetic survey method
Clerc et al. Transmitter-Receiver Induction Techniques and Probes Developed for Surface and Borehole Measurements Application to Archaeology and Mineral Exploration
Lile Long Wire Electromagnetic Measurements (Turam EM)
Chen Application of CSAMT Method for Gold-Copper Deposits, Chinkuashih Area, Northern Taiwan
CN117970505A (en) Method for detecting underground water by unconventional controllable audio magnetotelluric sounding method
Lowe et al. Electromagnetic and electrical methods applied to mapping coked coal–A case study from the Bowen Basin, Eastern Australia
RU2642492C1 (en) Method for marine electrical exploration