JPS63139231A - Method for measuring fine particles in liquid - Google Patents

Method for measuring fine particles in liquid

Info

Publication number
JPS63139231A
JPS63139231A JP61167830A JP16783086A JPS63139231A JP S63139231 A JPS63139231 A JP S63139231A JP 61167830 A JP61167830 A JP 61167830A JP 16783086 A JP16783086 A JP 16783086A JP S63139231 A JPS63139231 A JP S63139231A
Authority
JP
Japan
Prior art keywords
specimen
fine particles
laser beam
converged
air bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61167830A
Other languages
Japanese (ja)
Inventor
Akira Mizuno
彰 水野
Morio Murayama
村山 守男
Masayoshi Maekawa
前川 昌儀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOUYOKO KAGAKU KK
Toyoko Kagaku Co Ltd
Original Assignee
TOUYOKO KAGAKU KK
Toyoko Kagaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOUYOKO KAGAKU KK, Toyoko Kagaku Co Ltd filed Critical TOUYOKO KAGAKU KK
Priority to JP61167830A priority Critical patent/JPS63139231A/en
Publication of JPS63139231A publication Critical patent/JPS63139231A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure solid fine particles while discriminating the same from air bubbles, by a method wherein intensive beam such as laser beam is converged to a liquid specimen, and the converged beam and a pressure wave due to ultrasonic vibration are simultaneously applied. CONSTITUTION:The laser beam emitted from a laser beam source 1 is converged by a converging lens 2 to be converged in a measuring cell 4 so as to become vertical to the flow of a specimen L having a definite flow speed. An ultrasonic vibrator 3 is arranged so as to be made vertical to the cell 4 and an ultrasonic wave is allowed to impinge against the specimen L so as to become vertical to the flow of said specimen L. When the specimen L passes through the cell 4 at the definite flow speed, the specimen L receives both of the converged laser beam and vibration due to the ultrasonic wave and, when solid fine particles and air bubbles are present, the laser beam passing through the cell 4 generates irregular reflection to be blocked by a beam stopper 6. This irregularly reflected laser beam is condensed to a photomultiplier tube 8 by a condensing lens 7 and divided into two kinds of the wave forms from the particles and the air bubbles to be sent to a signal processing circuit 9. The circuit 9 sorts the solid fine particles and the air bubbles and performs sorting at every particle size.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超細水中薬液等の中に存在する固体微粒子を
気泡と識別して111定することにより、これらの液体
の管理を行う几めの測定方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for managing ultra-fine water medicinal liquids by identifying solid particles present in such liquids as air bubbles. This is related to the method of measuring.

〔従来の技術〕[Conventional technology]

従来、液体中の微粒子の測定法には、顕微鏡法・光遮断
法・光散乱法・超音波散乱法がある。
Conventional methods for measuring fine particles in liquid include microscopy, light blocking method, light scattering method, and ultrasonic scattering method.

しかしながら、顕微鏡法では戸紙上に補促した固体微粒
子全目視し測定を行うため液体中の微粒子の瞬時の計測
が出来ず、液体中に気泡が含まれていたかどうかの判断
が出来ないという問題点がある。ま九、その他の方法で
は測定したものが固体微粒子か気泡かの判別が出来なか
った。
However, with the microscopy method, all of the solid particles placed on the paper are visually observed and measured, so the particles in the liquid cannot be measured instantaneously, making it impossible to determine whether or not the liquid contains air bubbles. There is. Also, with other methods, it was not possible to determine whether the measured object was solid particles or bubbles.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで本発明は液体中に気泡全存在している場合に、微
粒子と気泡とを正確に弁別しつつ測定しようとするもの
である。
Therefore, the present invention attempts to measure while accurately distinguishing between fine particles and bubbles when all bubbles are present in the liquid.

〔問題全解決する九めの手段〕[Ninth method to solve all problems]

上記した従来の技術における問題点全解決するための本
発明は、光散乱法音用いレーザー等の強い元金試料液体
に収束させ、その収束域に超音波振動による圧力波全同
時印加することにより、固体微粒子と気泡から得られる
電気信号波形に明確な差をつけ、固体微粒子と気泡とを
識別して測定する。
The present invention aims to solve all of the above-mentioned problems in the conventional technology by converging a strong source sample liquid such as a laser using a light scattering method and simultaneously applying pressure waves by ultrasonic vibration to the convergence area. , a clear difference is created between the electric signal waveforms obtained from solid particles and air bubbles, and solid particles and air bubbles are distinguished and measured.

〔作 用〕[For production]

液体中の粒子は照射光全散乱し、散乱光強度と粒径とは
相関がめるので、散乱光強度から粒径上京めることが出
来る。散乱光は光電子増倍管等上用いて電気信号に変換
して測定する。ところで一方、液体中に含まれる気泡は
測定域内に圧力を与えておくとその圧力分布に従ってそ
の体積が固体の微粒子に比べ大きく変化する。
Particles in a liquid completely scatter the irradiated light, and there is a correlation between the intensity of the scattered light and the particle size, so the particle size can be determined from the intensity of the scattered light. The scattered light is converted into an electrical signal using a photomultiplier tube, etc., and then measured. On the other hand, when pressure is applied within the measurement region, the volume of air bubbles contained in a liquid changes more greatly than that of solid particles, depending on the pressure distribution.

従って、気泡からの散乱光強度は超音波の周期と同一周
期で変化する。このため散乱光強度に対応した電気信号
は超音波の発振周波数と同一の周波数で変調音うける。
Therefore, the intensity of scattered light from the bubbles changes with the same period as the ultrasound period. Therefore, the electric signal corresponding to the intensity of the scattered light receives a modulated sound at the same frequency as the oscillation frequency of the ultrasonic wave.

このことから固体微粒子と気泡を区別することが可能と
なる。
This makes it possible to distinguish between solid particles and bubbles.

〔実施例〕〔Example〕

本発明方法による実施例を第1図、第2図について説明
する。
An embodiment of the method of the present invention will be described with reference to FIGS. 1 and 2.

ガラス、石英、ルビー、サファイア等で作られた測定セ
ル4を用意し、この中全縦方向に一定流速で試料液体を
流しておく。光源1から照射され九レーザー光は収束レ
ンズ2で収束され、高密度な状態となり、一定流速の試
料の流れに垂直にセル4内で収束される。
A measurement cell 4 made of glass, quartz, ruby, sapphire, etc. is prepared, and a sample liquid is allowed to flow in the entire lengthwise direction at a constant flow rate. Nine laser beams irradiated from a light source 1 are converged by a converging lens 2, become highly dense, and converged within a cell 4 perpendicular to the flow of the sample at a constant flow rate.

また、セルに対して垂直に超音波振動子3を接して配置
し、試料の流れに垂直になる様超音波を当てる。試料が
セル内金一定流速で通過する時、収束したレーザー光と
超音波にょる振動とを共に受けることになり、固体微粒
子や気泡が存在した場合には、セル4を通過し九レーザ
ー光が乱反射を起こす。セル全通過したレーザー光は、
ビーム止め6により阻止される。乱反射を起こし散乱し
たレーザー光は、集光レンズ7によシ、光電子増倍管8
に集められる。光電子増倍管に集められ九散乱光は、第
2図に示すように、粒子と気泡からの2種類の波形A、
Bに明確にわかれ信号処理回路9に送られる。信号処理
回路9では固体微粒子と気泡金遇別するとともに粒径サ
イズ毎に選別される。
Further, an ultrasonic transducer 3 is arranged perpendicularly to the cell in contact with the cell, and ultrasonic waves are applied perpendicularly to the flow of the sample. When the sample passes through the cell at a constant flow rate, it will receive both focused laser light and vibrations caused by ultrasonic waves.If solid particles or air bubbles are present, the sample will pass through cell 4 and the laser light will emit light. Causes diffuse reflection. The laser light that has passed through the entire cell is
It is blocked by a beam stop 6. The scattered laser light that caused the diffused reflection is sent to the condenser lens 7 and then to the photomultiplier tube 8.
are collected in. The nine scattered lights collected by the photomultiplier tube have two types of waveforms A and A from particles and bubbles, as shown in Figure 2.
The signal is clearly divided into B and sent to the signal processing circuit 9. In the signal processing circuit 9, solid fine particles and bubbles are distinguished, and the particles are sorted by particle size.

更に、セルの材質は被測定試料に応じて変えることによ
り、どのような試料(例えば腐食性の強いものンでも測
定可能であシ、レーザー光・は他の強力な光線にも置換
え得る。
Furthermore, by changing the material of the cell depending on the sample to be measured, any sample (for example, a highly corrosive sample) can be measured, and the laser beam can be replaced with other powerful light beams.

第6図は光散乱或いは超音波散乱を用いて液体中の微粒
子を測定する従来の方式の原理図であり、光透過性測定
セル4内に矢印方向に試料液体Lt−流し、この液体に
向けて強力な光ビーム或いは超音波1を当てる。液体中
の微粒子からは散乱光或いは散乱波Sが生じ、この強さ
に基づき微粒子の寸法、同時に数も知シ得るが、散乱波
は固体微粒子からでも気泡からでも生じるので両者の弁
別が出来ない欠点があるものである。この欠点を補なっ
たものが光遮断方式であり、この原理金第4図に示す0
第3図と同様に試料液体L’t−測定セル4に流し、こ
れと直角方向から光ビーム1を当て受光面P上の微粒子
Gの影Ii観測するものであるが、気泡は観測出来ない
ものである。
FIG. 6 is a principle diagram of a conventional method for measuring fine particles in a liquid using light scattering or ultrasonic scattering. A sample liquid Lt is flowed into the light transmittance measurement cell 4 in the direction of the arrow, and the sample liquid Lt is directed toward this liquid. A strong light beam or ultrasonic wave 1 is applied. Scattered light or scattered waves S are generated from fine particles in a liquid, and based on the intensity of this, the size and number of the fine particles can be determined, but since scattered waves are generated from both solid fine particles and air bubbles, it is not possible to distinguish between the two. It has its drawbacks. A method that compensates for this drawback is the light blocking method, and this principle is shown in Figure 4.
As in Fig. 3, the sample liquid L't- is poured into the measurement cell 4, and the light beam 1 is applied from a direction perpendicular to this to observe the shadow Ii of the fine particles G on the light receiving surface P, but no bubbles can be observed. It is something.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、固体微粒子と気泡とが夫々明確な
相異を示す波形として夫々取り出すことが出来、波形処
理技術の進歩と相俟ち固体微粒子及び気泡の寸法、数量
をも同時に知る事が出来、従来よシ遥かに精緻な液体管
理全行い得る。
According to the method of the present invention, solid particles and bubbles can be extracted as waveforms showing clear differences, and along with advances in waveform processing technology, it is possible to simultaneously know the dimensions and quantities of solid particles and bubbles. This allows for much more precise liquid management than conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法実施による概略図、第2図は第1図
装置によシ得られる固体微粒子と気泡のパルスの波形を
示し九図、第6図は従来の光散乱方式及び超音波散乱方
式の原理図、第4図は従来の光遮断方式の原理図である
。 1・・・レー?−源    2・・・収束レンズ3・・
・超音波振動子   4・・・測定セルフ・・・集光レ
ンズ    8・・・光電子増倍管9・・・信号処理回
路   L・・・試料液体特許出願人  東横化学株式
会社 第1図 時間 り試料液体 埠3図
Fig. 1 is a schematic diagram of the method according to the present invention; Fig. 2 shows the pulse waveforms of solid particles and bubbles obtained by the apparatus shown in Fig. 9; Fig. 6 shows the conventional light scattering method and ultrasonic FIG. 4 is a diagram showing the principle of the conventional light blocking method. 1...Re? - Source 2... Converging lens 3...
・Ultrasonic transducer 4...Measurement self-condensing lens 8...Photomultiplier tube 9...Signal processing circuit L...Sample liquid patent applicant Toyoko Kagaku Co., Ltd. Figure 1 Time limit Sample liquid tank diagram 3

Claims (1)

【特許請求の範囲】[Claims] 液体を一定速度で流し、液体中に浮遊する微粒子に光ビ
ームを収束して照射し、微粒子からの散乱光の強度に基
づく電気信号に変換し、該微粒子の粒径を計測するとと
もに照射光を横切る微粒子の数を計数する微粒子測定方
法において、光ビームを収束した上記照射測定域に超音
波振動による圧力波をも印加し、該測定域に存在する気
泡に対して、この体積を該超音波周波数で変化させ、上
記散乱光強度に基づく上記電気信号波を超音波周波数で
変調して気泡と固体微粒子とを識別することを特徴とす
る微粒子測定方法。
A liquid is flowed at a constant speed, a light beam is focused and irradiated onto fine particles suspended in the liquid, the intensity of the scattered light from the fine particles is converted into an electrical signal, the particle size of the fine particles is measured, and the irradiated light is In a particle measurement method that counts the number of particles passing through, a pressure wave caused by ultrasonic vibration is also applied to the irradiation measurement area where the light beam is focused, and the volume of the bubbles existing in the measurement area is A method for measuring particles, characterized in that the electric signal wave based on the intensity of the scattered light is modulated with an ultrasonic frequency to distinguish between air bubbles and solid particles.
JP61167830A 1986-07-18 1986-07-18 Method for measuring fine particles in liquid Pending JPS63139231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61167830A JPS63139231A (en) 1986-07-18 1986-07-18 Method for measuring fine particles in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61167830A JPS63139231A (en) 1986-07-18 1986-07-18 Method for measuring fine particles in liquid

Publications (1)

Publication Number Publication Date
JPS63139231A true JPS63139231A (en) 1988-06-11

Family

ID=15856879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61167830A Pending JPS63139231A (en) 1986-07-18 1986-07-18 Method for measuring fine particles in liquid

Country Status (1)

Country Link
JP (1) JPS63139231A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6434341B1 (en) 1998-11-10 2002-08-13 Fuji Photo Film Co., Ltd. Orientation regularizing apparatus and sorting apparatus for lens-fitted photo film unit
JP2007225335A (en) * 2006-02-21 2007-09-06 Toribo Tex Kk Fine particle counter, fine particle counting method using the same, lubrication objective part diagnostic system provided therewith
US7340957B2 (en) * 2004-07-29 2008-03-11 Los Alamos National Security, Llc Ultrasonic analyte concentration and application in flow cytometry
US7835000B2 (en) 2006-11-03 2010-11-16 Los Alamos National Security, Llc System and method for measuring particles in a sample stream of a flow cytometer or the like
US7837040B2 (en) 2007-04-09 2010-11-23 Los Alamos National Security, Llc Acoustic concentration of particles in fluid flow
US8083068B2 (en) 2007-04-09 2011-12-27 Los Alamos National Security, Llc Apparatus for separating particles utilizing engineered acoustic contrast capture particles
US8227257B2 (en) 2007-04-02 2012-07-24 Life Technologies Corporation Medium switching systems and methods using acoustic radiation pressure
US8266951B2 (en) 2007-12-19 2012-09-18 Los Alamos National Security, Llc Particle analysis in an acoustic cytometer
JP2015031665A (en) * 2013-08-06 2015-02-16 トライボテックス株式会社 Particle counter and particle counting method
JP2017138330A (en) * 2017-04-07 2017-08-10 トライボテックス株式会社 Particle counting device and particle counting method
US10976234B2 (en) 2008-01-16 2021-04-13 Life Technologies Corporation System and method for acoustic focusing hardware and implementations

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019486A (en) * 1973-06-01 1975-02-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019486A (en) * 1973-06-01 1975-02-28

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6434341B1 (en) 1998-11-10 2002-08-13 Fuji Photo Film Co., Ltd. Orientation regularizing apparatus and sorting apparatus for lens-fitted photo film unit
US10537831B2 (en) 2004-07-29 2020-01-21 Triad National Security, Llc Ultrasonic analyte concentration and application in flow cytometry
US7340957B2 (en) * 2004-07-29 2008-03-11 Los Alamos National Security, Llc Ultrasonic analyte concentration and application in flow cytometry
JP2007225335A (en) * 2006-02-21 2007-09-06 Toribo Tex Kk Fine particle counter, fine particle counting method using the same, lubrication objective part diagnostic system provided therewith
JP4719587B2 (en) * 2006-02-21 2011-07-06 トライボテックス株式会社 Fine particle counter, fine particle counting method using the same, and lubrication target part diagnosis system including the same
US7835000B2 (en) 2006-11-03 2010-11-16 Los Alamos National Security, Llc System and method for measuring particles in a sample stream of a flow cytometer or the like
US9494509B2 (en) 2006-11-03 2016-11-15 Los Alamos National Security, Llc System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source
US10969325B2 (en) 2007-04-02 2021-04-06 Life Technologies Corporation Particle analyzing systems and methods using acoustic radiation pressure
US8227257B2 (en) 2007-04-02 2012-07-24 Life Technologies Corporation Medium switching systems and methods using acoustic radiation pressure
US10254212B2 (en) 2007-04-02 2019-04-09 Life Technologies Corporation Particle analyzing systems and methods using acoustic radiation pressure
US8309408B2 (en) 2007-04-02 2012-11-13 Life Technologies Corporation Particle quantifying systems and methods using acoustic radiation pressure
US8846408B2 (en) 2007-04-02 2014-09-30 Life Technologies Corporation Particle analyzing systems and methods using acoustic radiation pressure
US8865476B2 (en) 2007-04-02 2014-10-21 Life Technologies Corporation Particle switching systems and methods using acoustic radiation pressure
US8900870B2 (en) 2007-04-02 2014-12-02 Life Technologies Corporation Methods for fusing cells using acoustic radiation pressure
US9457139B2 (en) 2007-04-02 2016-10-04 Life Technologies Corporation Kits for systems and methods using acoustic radiation pressure
US9134271B2 (en) 2007-04-02 2015-09-15 Life Technologies Corporation Particle quantifying systems and methods using acoustic radiation pressure
US8083068B2 (en) 2007-04-09 2011-12-27 Los Alamos National Security, Llc Apparatus for separating particles utilizing engineered acoustic contrast capture particles
US9733171B2 (en) 2007-04-09 2017-08-15 Los Alamos National Security, Llc Acoustic concentration of particles in fluid flow
US9909117B2 (en) 2007-04-09 2018-03-06 Los Alamos National Security, Llc Systems and methods for separating particles utilizing engineered acoustic contrast capture particles
US7837040B2 (en) 2007-04-09 2010-11-23 Los Alamos National Security, Llc Acoustic concentration of particles in fluid flow
US8266950B2 (en) 2007-12-19 2012-09-18 Los Alamos National Security, LLP Particle analysis in an acoustic cytometer
US8266951B2 (en) 2007-12-19 2012-09-18 Los Alamos National Security, Llc Particle analysis in an acoustic cytometer
US11287363B2 (en) 2007-12-19 2022-03-29 Triad National Security, Llc Particle analysis in an acoustic cytometer
US11287362B2 (en) 2007-12-19 2022-03-29 Triad National Security, Llc Particle analysis in an acoustic cytometer
US10976234B2 (en) 2008-01-16 2021-04-13 Life Technologies Corporation System and method for acoustic focusing hardware and implementations
JP2015031665A (en) * 2013-08-06 2015-02-16 トライボテックス株式会社 Particle counter and particle counting method
JP2017138330A (en) * 2017-04-07 2017-08-10 トライボテックス株式会社 Particle counting device and particle counting method

Similar Documents

Publication Publication Date Title
EP0424934B1 (en) Apparatus for counting particles suspended in a fluid
EP0214769B1 (en) Aerosol particle charge and size analyzer
US3835315A (en) System for determining parameters of a particle by radiant energy scattering techniques
US3676647A (en) Particle analyzing apparatus and method
JPS63139231A (en) Method for measuring fine particles in liquid
US3692412A (en) Apparatus for analysing suspended particles
BR9305886A (en) Process for determining total number of cells per volume of cell specimen
De Sarabia et al. Ultrasonic agglomeration of micron aerosols under standing wave conditions
US6104491A (en) System for determining small particle size distribution in high particle concentrations
US4722602A (en) Apparatus and method for analyzing particles in a medium
GB2358703A (en) An optical system for determining particle size distribution
US5380490A (en) Apparatus for measuring a test specimen
US6104490A (en) Multiple pathlength sensor for determining small particle size distribution in high particle concentrations
US6094266A (en) Detector for determining particle size distribution in an oscillating flow field
JPS61288139A (en) Fine particle detecting device
JP2000002648A (en) Method and apparatus for measurement of breakdown threshold value of fine particles as well as measuring apparatus for fine particles in liquid by using them
JPH11108822A (en) Method and device for measuring concentration
JPH07318476A (en) Particulate analyzer
JPH046465A (en) Method for treating specimen and method and apparatus for measuring specimen
SU815619A1 (en) Method of measuring non-uniformity concentration in liquids
Cox et al. Modelling the acoustic material signature in the presence of a surface-breaking crack
SU948449A1 (en) Apparatus for analysis of particle size in ferromagnetic pulp flow
WO2023163162A1 (en) In-droplet particle detection method, method for fractioning/dispensing droplet including particles, method for removing particles to outside from droplet after dispensing, and device therefor
JPH04249761A (en) Apparatus for inspecting foreign matter
SU1490603A1 (en) Method of photographic sedimentation analysis of particulate media