JPS63138734A - Pattern formation using three-layer resist - Google Patents

Pattern formation using three-layer resist

Info

Publication number
JPS63138734A
JPS63138734A JP28417386A JP28417386A JPS63138734A JP S63138734 A JPS63138734 A JP S63138734A JP 28417386 A JP28417386 A JP 28417386A JP 28417386 A JP28417386 A JP 28417386A JP S63138734 A JPS63138734 A JP S63138734A
Authority
JP
Japan
Prior art keywords
resin layer
polyimide resin
polyimide
layer
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28417386A
Other languages
Japanese (ja)
Inventor
Masuichi Eguchi
益市 江口
Yoshi Hiramoto
平本 叔
Fusako Matsuki
松木 房子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP28417386A priority Critical patent/JPS63138734A/en
Publication of JPS63138734A publication Critical patent/JPS63138734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To enable a high-resolution fine pattern to positively be obtained by a method wherein in a method for forming a pattern of a three-layer resist consisting of a polyimide system resin layer, an inorganic coating film and a photosensitive resin layer on a substrate, one having characteristics providing a good shield of the ultraviolet rays of an exposure machine is used as the polyimide system resin layer. CONSTITUTION:On a substrate, a polyimide resin layer, an inorganic coating film and a photosensitive resin layer are sequentially formed, and then the photosensitive resin layer, inorganic coating film and polyimide system resin layer are patterned in this order. As this polyimide system resin layer, a polyimide system resin having a permeability of 50% or less for 436nm ultraviolet rays at a film thickness of 2mum is used. If this ultraviolet ray permeability exceeds 50%, the effect of improving the resolution cannot be expected. The ultraviolet ray permeability is preferably 40% or less, more preferably 30% or less. With this, a fine pattern of a polyimide system resin excellent in the resolution is enabled to be formed by a three-layer resist.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、三層レジストによるパターン形成方法に関す
るものであり、ざらに詳しくは、ポリイミド系樹脂の微
細パターンを三層レジストにより形成する方法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for forming a pattern using a three-layer resist, and more specifically, relates to a method for forming a fine pattern of polyimide resin using a three-layer resist. It is something.

[従来の技術] ポリイミド系樹脂を用いた三層レジストによるパターン
形成方法としては、Pieter s、aurggra
ar、“)lultilayer−Resist Li
thography ” 、Sem1cOnducto
r International、 pp、55(Ju
ne 1983)などに記載の通り公知である。
[Prior Art] As a pattern forming method using a three-layer resist using a polyimide resin, Pieter's, Aurgra
ar, “) ultillayer-Resist Li
thography”, Sem1cOnducto
r International, pp, 55 (Ju
ne 1983) and others.

従来のポリイミド系樹脂を用いた三層レジストによるパ
ターン形成工程は次の通りである。
The conventional pattern forming process using a three-layer resist using a polyimide resin is as follows.

■ 基板上にポリイミド系樹脂層を形成する。■ Form a polyimide resin layer on the substrate.

通常、スピンナーによる塗布方法が用いられ、この被膜
により段差のめる基板が平坦化される。
Usually, a coating method using a spinner is used, and this coating flattens the substrate on which the steps are to be covered.

■ 次にポリイミド系樹脂層の上に中間層として無機被
膜を形成する。無機被膜としては、SiO2、Si3N
4などが用いられる。この無機被膜はポリイミド系樹脂
層と最上層の感光性樹脂とを化学的に分離する役割と、
後の工程でポリイミド系樹脂をドライエツチングする時
のマスクとしての機能を有する。
(2) Next, an inorganic film is formed as an intermediate layer on the polyimide resin layer. As the inorganic coating, SiO2, Si3N
4 etc. are used. This inorganic coating has the role of chemically separating the polyimide resin layer and the top layer photosensitive resin,
It functions as a mask when dry etching polyimide resin in a later process.

■ この無機被膜の上に感光性樹脂被膜を形成する。こ
の感光性樹脂はネカ、ポジどちらのタイプでも良いが、
通常、屏象度の点でポジタイプが好ましく用いられる。
■ A photosensitive resin film is formed on this inorganic film. This photosensitive resin can be either negative or positive type, but
Generally, positive type is preferably used in terms of visibility.

■ 感光性樹脂を露光、現像し、パターンを形成する。■ Expose and develop photosensitive resin to form a pattern.

露光は通常、解像度の点からq線(436nmの紫外線
)のステッパーが用いられる。
For exposure, a q-line (ultraviolet light of 436 nm) stepper is usually used from the viewpoint of resolution.

■ 次に0項で得られた感光性樹脂のパターンを中間層
である無機被膜に転写する。転写は感光性樹脂のパター
ンをマスクにウェット又はドライで中間層をエツチング
することにより行われる。
(2) Next, the pattern of the photosensitive resin obtained in Section 0 is transferred to the inorganic coating that is the intermediate layer. The transfer is performed by wet or dry etching of the intermediate layer using the photosensitive resin pattern as a mask.

■ このようにして得られた無機被膜をマスクにしてポ
リイミド系樹脂をドライエツチングするとポリイミド系
樹脂の微細パターンが得られる。
(2) By dry etching the polyimide resin using the thus obtained inorganic film as a mask, a fine pattern of the polyimide resin can be obtained.

ドライエツチングとしてはりアクティブイオンエツチン
グ(RIE)、プラズマエツチングなどが用いられる。
As dry etching, active ion etching (RIE), plasma etching, etc. are used.

■ 最後にポリイミド系樹脂をマスクにして基板面をド
ライエツチングする。ドライエツチング後、ポリイミド
系樹脂は剥離される。
■Finally, dry etching the substrate surface using polyimide resin as a mask. After dry etching, the polyimide resin is peeled off.

[発明が解決しようとする問題点] この方法の問題点はポリイミド系樹脂のq線における透
過率が高いことである。これはステッパーで最上層の感
光性樹脂を露光する際、光がポリイミド系樹脂の被膜を
透過して基板面、特に段差面で反射し、解像度を低下さ
せる。その対策としてポリイミド系樹脂に染料を添加す
る方法が、前述した公知文献に記載されている。しかし
ながらポリイミド系樹脂に染料を添加する方法は以下に
示す欠点がある。
[Problems to be Solved by the Invention] The problem with this method is that the polyimide resin has a high transmittance in the q-ray. This is because when the top layer of photosensitive resin is exposed with a stepper, light passes through the polyimide resin coating and is reflected on the substrate surface, particularly on the stepped surface, reducing resolution. As a countermeasure against this problem, a method of adding a dye to a polyimide resin is described in the above-mentioned known literature. However, the method of adding dye to polyimide resin has the following drawbacks.

■ ポリイミド系樹脂のキュア温度(350℃〜400
℃)で染料が熱分解し、退色する。
■ Cure temperature of polyimide resin (350℃~400℃
The dye thermally decomposes and fades at temperatures (℃).

■ 染料には半導体素子の信頼性を低下させる金属性不
純物が多く含まれており、容易に精製除去できない。
■Dye contains many metallic impurities that reduce the reliability of semiconductor devices, and cannot be easily purified and removed.

本発明は、かかる問題点を解消せしめ、かつ解像度に優
れたポリイミド系樹脂の微細パターンを三層レジストに
より形成する方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and provide a method for forming a fine pattern of polyimide resin with excellent resolution using a three-layer resist.

[問題点を解決するための手段] かかる本発明の目的は、基板上にポリイミド系樹脂層、
無機被膜および感光性樹脂層を順次形成し、ついで該感
光性樹脂層、無機被膜およびポリイミド系樹脂層をこの
順序でパターン加工する三層レジストのパターン形成方
法において、該ポリイミド系樹脂層として、膜厚2μm
での436nmの紫外線透過率が50%以下であるポリ
イミド系樹脂を用いることを特徴とする三層レジストに
よるパターン形成方法により達成される。
[Means for Solving the Problems] The object of the present invention is to provide a polyimide resin layer on a substrate,
In a three-layer resist pattern forming method in which an inorganic coating and a photosensitive resin layer are sequentially formed, and then the photosensitive resin layer, the inorganic coating and the polyimide resin layer are patterned in this order, the polyimide resin layer is formed by forming a film. Thickness 2μm
This is achieved by a pattern forming method using a three-layer resist, which is characterized by using a polyimide resin whose ultraviolet transmittance at 436 nm is 50% or less.

本発明でいう基板とは半導体素子用に通常使用されるも
ので、例えばシリコンウェハが好ましく用いられる。
The substrate referred to in the present invention is one commonly used for semiconductor devices, and for example, a silicon wafer is preferably used.

本発明でいう無機被膜としては、Sio2 、Si3N
4、PSG(リンケイ酸ガラス)、TiO2などが挙げ
られ、特にCVD法のSio2が好ましく用いられる。
The inorganic coating referred to in the present invention includes Sio2, Si3N
4, PSG (phosphosilicate glass), TiO2, etc., and CVD method Sio2 is particularly preferably used.

膜厚は数百人〜数μの範囲が好ましく用いられる。The film thickness is preferably in the range of several hundred to several microns.

本発明でいう感光性樹脂とは、q線に感度を有するもの
であれば良く、解像度の点からキノンジアジド系のポジ
タイプのフォトレジストが好ましく用いられる。
The photosensitive resin referred to in the present invention may be any resin as long as it is sensitive to q-rays, and a quinonediazide-based positive type photoresist is preferably used from the viewpoint of resolution.

本発明でいうポリイミド系樹脂とは、イミド環を有する
ポリマをいい、その他の環状構造、例えば、イミダゾピ
ロロン環、イソインドロキナゾリン環などを含んでいて
も良い。
The polyimide resin in the present invention refers to a polymer having an imide ring, and may also contain other cyclic structures such as an imidazopyrrolone ring and an isoindoquinazoline ring.

本発明においては、かかるポリイミド系樹脂のうち、膜
厚2μmでの436nmの紫外線(g線)透過率が50
%以下の特性を有するものが用いられる。
In the present invention, among such polyimide resins, the transmittance of ultraviolet rays (g-line) at 436 nm at a film thickness of 2 μm is 50
% or less is used.

該紫外線透過率が50%を上まわる場合には、解像度の
向上効果が期待できない。
If the ultraviolet transmittance exceeds 50%, no improvement in resolution can be expected.

本発明で使用可能なポリイミド系樹脂としては、例えば
、ジアミノフルオレン、ジアミノキサントンまたはジア
ミノフルオレノンと芳香族テトラカルボン酸無水物から
誘導されるポリイミド等を挙げることができる。2,7
−ジアミノフルオレンとピロメリット酸二無水物、2,
7−ジアミノフルオレンとベンゾフェノンテトラカルポ
ン酸二無水物、2,7−ジアミノフルオレンと3.3−
Examples of polyimide resins that can be used in the present invention include polyimides derived from diaminofluorene, diaminoxanthone, or diaminofluorenone and aromatic tetracarboxylic acid anhydrides. 2,7
-diaminofluorene and pyromellitic dianhydride, 2,
7-diaminofluorene and benzophenone tetracarboxylic dianhydride, 2,7-diaminofluorene and 3.3-
.

4.4′−ビフェニルテトラカルボン酸二無水物、2.
7−ジアミノフルオレンとビフェニルエーテルテトラカ
ルボン酸二無水物から誘導されるポリイミド系樹脂が良
好な紫外線遮蔽特性を示し、特に好ましいが、これらに
限定されない。
4.4'-biphenyltetracarboxylic dianhydride, 2.
Polyimide resins derived from 7-diaminofluorene and biphenyl ether tetracarboxylic dianhydride exhibit good UV-shielding properties and are particularly preferred, but not limited thereto.

また本発明の方法に用いられるポリイミド系樹脂に該当
するポリマは、ホモポリマであっても良いし、ヘテロポ
リマであっても良い。
Further, the polymer corresponding to the polyimide resin used in the method of the present invention may be a homopolymer or a heteropolymer.

好ましい紫外線透過率は、40%以下、より好ましくは
30%以下である。
The preferred ultraviolet transmittance is 40% or less, more preferably 30% or less.

[発明の効果] 本発明は基板上にポリイミド系樹脂層、無機被膜、感光
性樹脂層からなる三層レジストのパターン形成方法にお
いて、該ポリイミド系樹脂として露光機の紫外線(43
5nm )を良く遮蔽する特性を有するものを用いたの
で、高解像度の微細パターンを確実に得ることができる
。また、本発明によれば第3成分として染料をポリイミ
ド系樹脂に添加する方法の欠点であるキュア時の退色を
解消できるのみならず、半導体素子の信頼性に悪影響を
及ぼす金属性不純物も原料段階で容易に精製除去できる
利点がある。
[Effects of the Invention] The present invention provides a method for forming a pattern on a three-layer resist consisting of a polyimide resin layer, an inorganic coating, and a photosensitive resin layer on a substrate.
Since a material having a property of effectively blocking 5 nm) was used, a fine pattern with high resolution can be reliably obtained. In addition, according to the present invention, not only can discoloration during curing, which is a drawback of the method of adding dye as a third component to polyimide resin, can be eliminated, but also metallic impurities, which have a negative impact on the reliability of semiconductor devices, can be eliminated from the raw material stage. It has the advantage of being easily purified and removed.

次に実施例に基づいて本発明の詳細な説明する。Next, the present invention will be explained in detail based on examples.

実施例1 メタノールで再結晶した2、7−ジアミツフルオレン1
9.63(lを蒸溜したジメチルアセトアミド270g
に溶解しアミン溶液を調合した。無水酢酸で再結晶した
ピロメリット酸二無水物21.81gを粉末でアミン溶
液に添加後、30’Cで5時間攪拌し、粘度16.4ポ
アズ/25℃のワニスを1qた。このワニスを1μmの
メンブレンフィルターでろ過し、塗布液を作製した。
Example 1 2,7-Diamitsufluorene 1 recrystallized from methanol
270 g of dimethylacetamide distilled from 9.63 (l)
An amine solution was prepared by dissolving it in After adding 21.81 g of pyromellitic dianhydride recrystallized from acetic anhydride as a powder to the amine solution, the mixture was stirred at 30'C for 5 hours to obtain 1q of varnish having a viscosity of 16.4 poise/25°C. This varnish was filtered through a 1 μm membrane filter to prepare a coating solution.

次にアルミ配線を施したシリコンウェハにスピンナでこ
の塗布液を塗布し、100°C1200’C1350℃
で各々30分熱処理して膜厚2μmのポリイミド樹脂の
被膜を形成した。なお使用したシリコンウェハは接着性
改善のため、γ−アミノプロピルトリエトキシシランで
処理したものを用いた。
Next, apply this coating solution to a silicon wafer with aluminum wiring using a spinner, and heat it at 100°C, 1200°C, and 1350°C.
Each was heat-treated for 30 minutes to form a polyimide resin film with a thickness of 2 μm. The silicon wafer used was treated with γ-aminopropyltriethoxysilane to improve adhesion.

ついでこのポリイミド樹脂の被膜の上にCVD法により
、5ioz層を1500人形成した。さらにスピンナで
シップレイ社製のポジ型感光性樹脂 AZ−1400を
1μmの膜厚になるよう塗布した。続いて日本光学■製
のステッパー(g線用) N5R−1505G3Aを用
いて露光後、シップレイ社製現像液 HF−314で現
像し、感光性樹脂のパターンを得た。っいで140℃で
30分ベーキングした後、これをマスクに弗酸/弗化ア
ンモニウムの1710の緩衝液で5i02膜をエツチン
グした。次に02プラズマでポリイミド樹脂をエツチン
グした。このようにして解像度1.5μmの微細なポリ
イミドのパターンを得た。得られたパターンをマスクに
シリコンウェハの表面をエツチングした後、ポリイミド
樹脂を02プラズマで完全に除去した。ポリイミドを除
去後のウェハの表面には金属性の不純物が残存していな
かった。
Next, 1,500 5ioz layers were formed on this polyimide resin film by CVD. Further, using a spinner, a positive photosensitive resin AZ-1400 manufactured by Shipley was applied to a film thickness of 1 μm. Subsequently, after exposure using a stepper (for g-line) N5R-1505G3A manufactured by Nippon Kogaku, it was developed with a developer HF-314 manufactured by Shipley to obtain a photosensitive resin pattern. After baking at 140° C. for 30 minutes, the 5i02 film was etched with a 1710 buffer solution of hydrofluoric acid/ammonium fluoride using this as a mask. Next, the polyimide resin was etched using 02 plasma. In this way, a fine polyimide pattern with a resolution of 1.5 μm was obtained. After etching the surface of the silicon wafer using the obtained pattern as a mask, the polyimide resin was completely removed using 02 plasma. No metallic impurities remained on the surface of the wafer after polyimide was removed.

また、ポリイミド樹脂の紫外線透過率を測定するため、
別途パイレックスガラス板に上記ワニスを塗布し、10
0℃、200℃、350°Cで各々30分熱処理し、ポ
リイミド樹脂の被膜を形成した。被膜は溌い黄色を呈し
、この被膜の紫外−可視スペクトルを測定(日立製作新
製323型自記分光光度計使用)したところ、膜厚2μ
mで436nmの透過率が5%と良く光を遮蔽すること
がわかった。
In addition, to measure the ultraviolet transmittance of polyimide resin,
Separately, apply the above varnish to a Pyrex glass plate, and
Heat treatment was performed at 0°C, 200°C, and 350°C for 30 minutes each to form a polyimide resin film. The film had a bright yellow color, and when the ultraviolet-visible spectrum of this film was measured (using a new model 323 self-recording spectrophotometer manufactured by Hitachi), the film thickness was 2 μm.
It was found that the transmittance at 436 nm at m was 5%, and the light was well blocked.

なお金属性の不純物の残査の分析は、西独ATOMI 
KA社製二次イオン質量分析装置A−DIDA30OO
を用いて行なった。
Analysis of residual impurities in money attributes is carried out by West German ATOMI.
KA secondary ion mass spectrometer A-DIDA30OO
This was done using

比較例1 ジアミン成分として4,4−−ジアミノジフェニルエー
テルを用いた以外は実施例1と全く同様に実施した。得
られたポリイミドのパターンの解像度は2.5μmであ
った。また、この被膜の紫外−可視スペクトルを測定し
たところ、膜厚2μmで436nmの透過率は60%で
あった。透過率の値より、解像度の低下は露光時の基板
面での反射光の影響を受けていることがわかる。
Comparative Example 1 The same procedure as in Example 1 was carried out except that 4,4-diaminodiphenyl ether was used as the diamine component. The resolution of the resulting polyimide pattern was 2.5 μm. Further, when the ultraviolet-visible spectrum of this film was measured, the transmittance at 436 nm was 60% at a film thickness of 2 μm. From the transmittance value, it can be seen that the decrease in resolution is affected by the light reflected on the substrate surface during exposure.

比較例2 メタノールで再結晶した4、4−−ジアミノジフェニル
エーテル20.02jjを蒸溜したジメチルアセトアミ
ド270gに溶解し、アミン溶液を調合した。
Comparative Example 2 20.02jj of 4,4-diaminodiphenyl ether recrystallized from methanol was dissolved in 270g of distilled dimethylacetamide to prepare an amine solution.

無水酢酸で再結晶したピロメリット酸二無水物21.8
1gを粉末でアミン溶液に添加後、30℃で5時間攪拌
し、粘度13.Oポア1フ25°Cのワニスを17た。
Pyromellitic dianhydride recrystallized from acetic anhydride 21.8
After adding 1 g of powder to the amine solution, the mixture was stirred at 30°C for 5 hours until the viscosity was 13. O pore 1 was filled with varnish at 25°C.

このワニスに染料としてメチルバイオレット6.3gを
添加し、1μmのメンブランフィルタ−でろ過した。こ
のワニスをパイレックスガラス板に塗布し、100℃、
200℃、350℃で各々30分熱処理した基板と、1
00℃、200℃で各々30分熱処理した基板を作製し
た。350℃まで熱処理した基板は色調が赤から淡い黄
色に退色し、436nmの透過率(膜厚2μm)も58
%と染料を添加した効果が無−かった。一方200℃ま
で熱処理した基板は赤色の色調を呈し、436nmの遮
敵効果が良好であったので、この熱処理条件で実施例1
と同様にアルミ配線を施したシリコンウェハに塗布し、
ポリイミドのパターンを形成した。得られたポリイミド
のパターンは1.5μmと良好な解像度を示したが、0
2プラズマで除去後、金属性の不純物が残存していた。
6.3 g of methyl violet was added as a dye to this varnish, and the mixture was filtered through a 1 μm membrane filter. This varnish was applied to a Pyrex glass plate and heated to 100℃.
A substrate heat-treated at 200°C and 350°C for 30 minutes each, and 1
Substrates were prepared by heat treatment at 00°C and 200°C for 30 minutes each. The color tone of the substrate heat-treated to 350°C faded from red to pale yellow, and the transmittance at 436 nm (film thickness 2 μm) also decreased to 58
% and the addition of dye had no effect. On the other hand, the substrate heat-treated to 200°C exhibited a red color and had a good shielding effect at 436 nm.
Similarly, apply it to a silicon wafer with aluminum wiring,
A polyimide pattern was formed. The obtained polyimide pattern showed a good resolution of 1.5 μm, but
After removal using 2 plasma, metallic impurities remained.

実施例1、比較実施例1〜2の効果より、本発明の方法
を用いると、キュア時の退色が無いので高解像度の微細
パターンが得られ、かつ半導体素子に悪影響を及ぼす金
属性不純物も基板表面に残存しないことがわかる。
From the effects of Example 1 and Comparative Examples 1 and 2, when the method of the present invention is used, a fine pattern with high resolution can be obtained because there is no discoloration during curing, and metallic impurities that have an adverse effect on semiconductor devices can be removed from the substrate. It can be seen that it does not remain on the surface.

Claims (1)

【特許請求の範囲】[Claims] 基板上にポリイミド系樹脂層、無機被膜および感光性樹
脂層を順次形成し、ついで該感光性樹脂層、無機被膜お
よびポリイミド系樹脂層をこの順序でパターン加工する
三層レジストのパターン形成方法において、該ポリイミ
ド系樹脂層として、膜厚2μmでの436nmの紫外線
透過率が50%以下であるポリイミド系樹脂を用いたこ
とを特徴とする三層レジストによるパターン形成方法。
A method for forming a three-layer resist pattern, in which a polyimide resin layer, an inorganic coating, and a photosensitive resin layer are sequentially formed on a substrate, and then the photosensitive resin layer, the inorganic coating, and the polyimide resin layer are patterned in this order, A pattern forming method using a three-layer resist, characterized in that a polyimide resin having a UV transmittance of 50% or less at 436 nm at a film thickness of 2 μm is used as the polyimide resin layer.
JP28417386A 1986-12-01 1986-12-01 Pattern formation using three-layer resist Pending JPS63138734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28417386A JPS63138734A (en) 1986-12-01 1986-12-01 Pattern formation using three-layer resist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28417386A JPS63138734A (en) 1986-12-01 1986-12-01 Pattern formation using three-layer resist

Publications (1)

Publication Number Publication Date
JPS63138734A true JPS63138734A (en) 1988-06-10

Family

ID=17675124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28417386A Pending JPS63138734A (en) 1986-12-01 1986-12-01 Pattern formation using three-layer resist

Country Status (1)

Country Link
JP (1) JPS63138734A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714762A (en) * 1993-04-27 1995-01-17 Internatl Business Mach Corp <Ibm> Manufacture of circuit element by photolithography, thermostatic polyimide film, mixed polyimide and semiconductor device
US5519246A (en) * 1992-02-28 1996-05-21 Mitsubishi Denki Kabushiki Kaisha Nonvolatile memory apparatus using an ultraviolet impermeable resin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519246A (en) * 1992-02-28 1996-05-21 Mitsubishi Denki Kabushiki Kaisha Nonvolatile memory apparatus using an ultraviolet impermeable resin film
JPH0714762A (en) * 1993-04-27 1995-01-17 Internatl Business Mach Corp <Ibm> Manufacture of circuit element by photolithography, thermostatic polyimide film, mixed polyimide and semiconductor device

Similar Documents

Publication Publication Date Title
Yoda et al. New photosensitive high temperature polymers for electronic applications
EP0478321B1 (en) Photosenstive resin composition for forming polyimide film pattern and method of forming polyimide film pattern
KR101342024B1 (en) Coating-type underlayer film forming composition containing naphthalene resin derivative for lithography
EP0300326A1 (en) Hydroxypolyimides and high temperature resistant positive photoresists
JP3024008B2 (en) Photoimageable polyimide coating
JP2011095491A5 (en)
JPH0815519A (en) Color paste and its production
EP0092524B1 (en) Radiation-sensible coating composition and its use
JPS59160139A (en) Photosensitive polymer composition
JPS63138734A (en) Pattern formation using three-layer resist
JPS6173144A (en) Photoresist composition and photoresist pattern forming method
JPH0369095B2 (en)
JPS5843449A (en) Photosensitive polymer composition
JP2000098601A (en) Positive type photosensitive polyamic acid composition and pattern forming method
WO2020246565A1 (en) Photosensitive polyimide resin composition
KR20220158678A (en) Manufacturing method of resin composition, wiring board and conductive pattern
JPH03157427A (en) Polyimide resin precursor
JPH10115709A (en) Red paste for color filter, color filter formed by using the same and liquid crystal display device
EP0274354B1 (en) Photostructurable polyimide compositions, polyimides on the basis of benzhydrol tetracarboxylic acid and their fabrication
JP3274245B2 (en) Manufacturing method of color filter
JPH07198927A (en) Pigment dispersion liquid, its production, pigment dispersion polyimide precursor composition, its production and color filter
JPH0940886A (en) Pigment-dispersed thermosetting resin solution composition, its production and color filter
JPS60122938A (en) Thermally stable positive resist
JP3253193B2 (en) Negative photoresist and method for producing the same
JP2890491B2 (en) Actinic radiation sensitive polymer composition