JPS6313832B2 - - Google Patents

Info

Publication number
JPS6313832B2
JPS6313832B2 JP54152265A JP15226579A JPS6313832B2 JP S6313832 B2 JPS6313832 B2 JP S6313832B2 JP 54152265 A JP54152265 A JP 54152265A JP 15226579 A JP15226579 A JP 15226579A JP S6313832 B2 JPS6313832 B2 JP S6313832B2
Authority
JP
Japan
Prior art keywords
film
resin
ethylene
less
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54152265A
Other languages
Japanese (ja)
Other versions
JPS5684956A (en
Inventor
Nobuo Fukushima
Kyohiko Nakae
Takayuki Terasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP15226579A priority Critical patent/JPS5684956A/en
Publication of JPS5684956A publication Critical patent/JPS5684956A/en
Publication of JPS6313832B2 publication Critical patent/JPS6313832B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Description

【発明の詳細な説明】 本発明は保温性、透明性、耐摩擦強度の改良さ
れたオレフイン系樹脂を主体とする農業用フイル
ムに関する。 従来、農業用ハウス、トンネルハウス等の温室
栽培に用いられる温室被覆材としてはポリ塩化ビ
ニルフイルム、ポリエチレンフイルムやエチレン
−酢酸ビニル共重合体フイルム等のポリオレフイ
ン系樹脂フイルムが主として使用されている。こ
れらのうちポリ塩化ビニルフイルムは保温性、透
明性、強靭性、耐久性等にすぐれているので近年
までこの分野で多用されてきた。しかしながら、
ポリ塩化ビニルフイルムは使用中にフイルム中に
含まれる可塑剤がフイルム表面にブリードする影
響で塵埃が吸着して光線透過性が著しく損なわれ
るハウス内の温度上昇を妨げるという欠点がある
と共に使用後焼却処理をすると塩酸ガスが発生す
るため廃棄処理がむづかしいという問題がある。 さらに低温では柔軟性を失い、耐衝撃性が不良
になるので寒冷地での使用に耐えないという問題
もある。 一方、オレフイン系樹脂フイルムはフイルム中
に可塑剤を含まず、化学的構造も安定しているた
め、長期の使用中に光線透過性はほとんど変らな
いし、焼却しても有害ガスの発生がない点ではポ
リ塩化ビニルフイルムよりすぐれているが、この
フイルムはポリ塩化ビニルフイルムに比べて保温
性については劣つている。そのためオレフイン系
樹脂フイルムは前記光線透過性が持続する長所を
もちながらも、従来あまりハウス被覆用フイルム
として利用されなかつたものである。 またオレフイン系樹脂のうちでもエチレン−酢
酸ビニル共重合体フイルムは透明性、柔軟性、耐
寒性等の利点が認められ、近年農業用被覆資材と
して注目されているが保温性がポリ塩化ビニルに
比べ劣るという上述した問題点のほかに摩擦強度
が劣るという問題もあり、具体的にはパイプハウ
スのパイプ部やマイカー線押え部で被覆資材を換
気のため開閉する際や風にあおられた時に摩擦さ
れフイルムが破損するという問題がある。 一般に、温室、ハウスにおける被覆用フイルム
の保温性というのは、夜間におけるハウス内の温
度の低下を防止する特性であつて、昼間太陽光線
によつてハウス内の地中に吸収された熱が夜間に
は地面から輻射線となつて輻射されることによ
り、ハウス内の温度を外気の温度より高く保つの
であるが被覆フイルムの地面から輻射する輻射線
の透過率が大きいと地面からの輻射線はハウス外
に散逸してしまつてハウス内の地温は低下し、そ
の結果ハウス内の温度を外気より高く保つことが
できなくなる。従つて、被覆用フイルムの保温性
の良否は前記輻射線の吸収、または反射率の如何
によるものであり、その率の高いもの程良いこと
になる。 オレフイン系樹脂フイルムの保温性を改良した
被覆用フイルムとしては、オレフイン系樹脂に燐
酸塩化合物や酸化硅素や脱水カオリナイト等特定
の無機フイラーを添加してなる被覆用フイルムが
ある。しかし、これらの方法は、オレフイン系樹
脂の保温性は改良されているものの、ポリ塩化ビ
ニルフイルムに比べると未だ不充分なものであ
り、さらに最大の問題点は無機フイラーの添加に
より、通常のフイルム加工法例えばTダイキヤス
ト法やインフレーシヨン法では溶融樹脂が延伸さ
れながら冷却固化するためフイルム表面が凹凸状
になることである。 このためハウスのパイプ部やマイカー線押え部
での摩擦によるフイルムの破損が起りやすくなつ
たり、さらに重要な問題としてフイルムの透明性
特に平行光線透過性がポリ塩化ビニルフイルムや
エチレン−酢酸ビニル共重合体フイルムに比べる
と劣ることである。一般に農業用被覆フイルムと
して要求される光線透過性は全光線透過率で80〜
85%以上必要と言われているが、全光線透過率が
この要望を満たしていても、その内容即ち、平行
光線透過性と散乱光線透過性のいずれの寄与が大
きいかにより、作物に与える影響は大きく異な
る。例えば本来夏の作物であるトマト、キユウ
リ、スイカ等をはじめ、一般に果菜類は平行光線
による生育が好ましく散乱光を用いた場合には、
色づきや果実の生育に問題が生ずることが多く、
またレタスやキヤベツのような葉菜類や水稲の育
苗等にはむしろ散乱光の方が葉の生育が良好にな
るため好ましいことが近年徐々に明らかになつて
きている。しかしながら、今なお水稲栽培を除い
て、農家では果菜類は当然のこと、葉菜類に対し
ても平行光線透過性の良好な透明ポリ塩化ビニル
フイルムを使用することが多いが、これは、ハウ
スやトンネルの内部作物の生育状況が外から透視
できる利点が大きいことにも起因している。 かかる理由から上述のようなポリオレフインに
特定の無機フイラーを添加してポリオレフインフ
イルムの欠点であつた保温性を改良する技術が早
くから提供されているにも拘ず未だ一般には使用
されていないのが現状である。 かかる問題点を解決する方法として近年、ポリ
オレフインにポリアセタール等特定の高分子化合
物を添加することにより平行光線透過性が良好で
かつ保温性を改良しようとする試みもなされてい
るが、この場合には、保温性の改良効果が未だ不
十分である。 本発明者らは上述のようなオレフイン系樹脂に
おける農業用フイルムとしての問題点を除去し、
保温性、平行光線透過性、耐摩擦性にすぐれた農
業用フイルムを安価に提供するため、鋭意検討を
重ねた結果、一次粒子が40mμ以下で、平均二次
粒子径が5μを越え10μ以下で、かつ実質的に20μ
以上の二次粒子が存在しない酸化珪素を配合して
成る組成物から成るフイルムの内外面にアイオノ
マー樹脂を設けることにより従来技術に比べすぐ
れた平行光線透過性、保温性、耐摩擦特性を兼ね
備えたフイルムが得られることを見い出し本発明
を完成した。 本発明の第1の特徴はオレフイン系樹脂に無機
フイラーを添加するにも拘ず、内外面にフイラー
を含まない樹脂層を設けることによりフイルム加
工時に生成する表面凹凸が著しく改良され結果と
して外部ヘイズが著しく低下するため平行光線透
過率のすぐれた透明フイルムが得られる上に、従
来のポリオレフインフイルムの欠点であつた保温
性は大巾に改良されポリ塩化ビニルフイルムに比
肩しうる程度にまで高められる点にある。 本発明の第2の特徴は内外面に耐摩擦特性にす
ぐれたフイラーを含まない樹脂層を設けることに
より、得られるフイルムの耐摩擦特性が著しく良
好になり、ポリ塩化ビニルフイルムの強靭性と比
肩しうる程度にまで高められる点にある。 本発明の第3の特徴は所望の粒子径を有する酸
化珪素は従来技術として公知の製法により一般に
安価に入手しうる上、オレフイン系樹脂への添加
も従来農業用フイルムを製造する際の添加剤処方
時に同時に添加しうるので従来技術の製造工程が
そのまま使用でき、フイルム化も一般に容易なた
め、結果として従来のオレフイン系樹脂農業用フ
イルムと大差ない価格で性能を大巾に改良した本
発明によるフイルムを提供しうる点にある。 本発明の第4の特徴はオレフイン系樹脂を主体
とした本発明組成物は本質的に焼却処理が容易で
あり、焼却時に塩酸ガスのような有害物を発生し
ないため使用後の廃棄処理が容易なことにある。 上述したような特徴は従来技術にくらべ本発明
の有利な点である。 以下本発明をさらに詳細に説明する。 本発明において中間層に使用されるオレフイン
系樹脂としては、α−オレフインの単独重合体、
α−オレフインを主成分とする異種単量体との共
重合体であり、例えばポリエチレン、ポリプロピ
レン、エチレン−プロピレン共重合体、エチレン
−ブテン共重合体、エチレン−4−メチル−1−
ペンテン共重合体、エチレン−酢酸ビニル共重合
体、エチレン−アクリル酸共重合体等が挙げられ
る。これらのうち、密度が0.910〜0.935の低密度
ポリエチレンやエチレン−α−オレフイン共重合
体および酢酸ビニル含有量が30%重量%以下のエ
チレン−酢酸ビニル共重合体が透明性や耐候性や
価格の点から農業用フイルムとして好ましい。 さらに酢酸ビニル含有量が5重量%以上25重量
%以下のエチレン−酢酸ビニル共重合体はこれら
のうちでも特に透明性、柔軟性、耐候性等の点で
より好ましい。 本発明において内外層に使用される樹脂は中間
層の有する保温性を損なわず耐摩擦特性の良好な
樹脂が好ましい。本発明者らが鋭意検討した知見
によるとハウス被覆資材はハウス骨材(例えば鉄
パイプ、竹等)及び骨材間のフイルムを安定させ
る目的で使用される押えひも(通常マイカー線と
呼ばれる)等の部分で換気のための裾の開閉や風
によるフイルムの振動等により摩擦され摩擦によ
る樹脂の発熱及び摩耗さらには太陽光によるフイ
ルムの加熱も加わつて劣化し破損に至るのであ
る。 本発明において内外層に使用されるアイオノマ
ー樹脂はα−オレフインとα,β−不飽和カルボ
ン酸共重合体の金属イオン架橋構造を有する樹脂
で、通常α−オレフインとしてはエチレンを、
α,β−不飽和カルボン酸としてはメタアクリル
酸を用いメタアクリル酸の割合が1〜5モル%の
共重合体で、金属イオンとしてはNa+、Zn++
用いたものが例えばデユポン社より商品名サーリ
ンとして販売されているものである。本発明に好
ましく使用されるものは密度が0.935g/cm3以上
0.975g/cm3以下、メルトインデツクス0.5/10分
以上7g/10分以下のものが好ましく、金属イオ
ンはNa+、Zn++タイプのものが好ましい。 本発明において使用される酸化珪素は、一次粒
子が40mμ以下でかつ実質的に20μ以上の二次粒
子が存在せず平均二次粒子径が5μを越え10μ以下
であるものが好ましい。これらのうちでも特に実
質的に無定形の酸化珪素が本発明には好適であ
る。 一般にオレフイン系樹脂の屈折率(20℃D線)
は1.48から1.52の間にあり、特に農業用に通常利
用されている低密度ポリエチレンやエチレン−酢
酸ビニル共重合体の屈折率は1.49から1.51の間に
ある。一方、通常樹脂充填材用に用いられる酸化
珪素の屈折率は1.45から1.48の範囲にある。但し
石英等特別な結晶性酸化珪素はこの限りでない。
かような理由でフイラー/樹脂界面において光の
散乱が生ずるためフイルム表面での光の散乱(外
部ヘイズで定量化しうる)以外にフイルム内での
光の散乱(内部ヘイズで定量化しうる)の問題が
生ずるのである。 かような問題点が存在するため本発明の目的の
一つを達成するためには上述したような特定の粒
子径を有する酸化珪素を用いることにより相対的
に内部ヘイズを小さくし同時に内外面にフイラー
を含まない樹脂層を設けることにより外部ヘイズ
を大巾に低下させる必要があるのである。 また該酸化珪素のオレフイン系樹脂への配合割
合はオレフイン系樹脂100重量部に対し2〜25重
量部が好ましく、3〜15重量部がより好ましい。
該配合物の配合量が2重量部未満では得られるフ
イルムの保温性の改良効果があまり認められず、
また配合量が25重量部を越えると得られるフイル
ムの強度が低下するので好ましくない。 本発明の実施の方法はオレフイン系樹脂と酸化
珪素粉末をロール型またはバンバリー型の混合機
あるいは押出機などで混合もしくは混練するとい
つた通常の方法で混入し、次いで例えばインフレ
ーシヨン加工、カレンダー加工、Tダイ加工等の
通常の成形加工方法でフイルム状に成形する。通
常フイルム加工は130〜250℃の加工温度で好適に
行なわれる。 かかる酸化珪素を含むオレフイン系樹脂から成
るフイルムの内外面にアイオノマー樹脂を設ける
方法としては、それぞれのフイルムを形成してド
ライラミネート、ヒートラミネート法等により積
層フイルムとする方法、複合酸化物を含むオレフ
イン系樹脂フイルムにアイオノマー樹脂を押出ラ
ミネートする方法、多層押出法により積層フイル
ムを同時に成形する方法等、既存の技術を用いれ
ばよく、特に多層押出法により成形する方法が成
形の容易さ、得られるフイルムの層間接着性、透
明性、コスト等の点で好ましい。さらに農業用途
では広巾フイルムが好まれるので多層インフレ加
工法が望ましい。 また、かかる酸化珪素を含むオレフイン系樹脂
からなるフイルム(中間層)と内外面に設ける樹
脂層(内外層)の厚さは最終用途、目的に応じて
決定されるので一概に規定されないが、中間層は
要求される保温性のレベルや酸化珪素の樹脂への
配合割合にもよるが、通常は30μから200μ程度で
十分であり、内外層は中間層の外部ヘイズを低下
させるレベルと耐摩擦性が発現される厚みでよ
く、通常は10μから20μ程度で十分である。 以上のようにして得られるフイルム中には、中
間層に酸化珪素の分散をより良好にするために、
例えばソルビタンモノステアレートのようなソル
ビタン脂肪酸エステルやグリセリンモノステアレ
ートのようなグリセリン脂肪酸エステルなどの分
散剤を本発明の組成物に対して0.2〜2重量部添
加して用いることも有効であり、中間層、内外層
ともにまた適当な安定剤、紫外線吸収剤、帯電防
止剤やさらに必要に応じて水滴防止剤などを適宜
混入することも有効である。 本発明によつて得られるオレフイン系樹脂フイ
ルムは、温度、ハウス等の被複用フイルムとして
用いた場合、保温性に関しては従来技術に比べ著
しい改良効果が見られ、ポリ塩化ビニルのフイル
ムに比肩しうる程度に優れた性能を有するととも
に、平行光線透過性もポリ塩化ビニルと比べ遜色
なく経時変化はむしろポリ塩化ビニルフイルムよ
りも良好であり、またオレフイン系樹脂に無機フ
イラー類を添加して保温性を改良しようとする技
術に比べ平行光線透過性は著しく良好であり、耐
摩擦強度や強靭性についても著しく良好でポリ塩
化ビニルフイルムと同等であり農業用フイルムと
してきわめて有用である。 次に実施例をあげて本発明を説明するが、これ
ら実施例は単に例示的なものであつて、これらに
限定されるものではない。実施例および比較例に
示した保温性の測定は断熱材でつくつた約30cm立
方の箱の1つの面に試料を設けた保温性測定装置
を用いて、箱内に挿入した100℃の加熱ブロツク
による装置内の温度変化をサーミスターにて測定
した。標準試料のガラス板(約2mm厚)が示す値
との温度差を保温性として〔△T℃〕で示した。 また透明性の測定はJIS K−6714に準拠してヘ
イズメーターを用いて曇価ならびに全光線透過率
を測定しその尺度とした。この際、平行光線透過
率は以下の式を用いて求めた。 平行光線透過率=全光線透過率−曇価 また、水滴防止性の試験は次に示す方法で行な
つた。100c.c.のビーカーに水(30℃)を入れ、検
体フイルムにて覆い、しかるのち、恒温槽(30
℃)にビーカーをつけて、日当りのよい場所に放
置し、所定の経時後の状態を観察した。その評価
結果は以下の基準で表わした。 〇:小水滴が全くない。 △:一部に小水滴群が認められる。 ×:全面にわたつて小数滴が付着する。 また耐摩擦性能は次に示す方法で行なつた。予
め重量を測定した検体フイルムを200φmm円筒状
治具の円断面部にしわが入らないようにはりつけ
て固定し、 #180のペーパーでフイルムと接触す
る面を充分に磨いたリング状の100φmm鉄製回転
子を固定されたフイルムをフイルム面から垂直に
20mm押さえつけた上、摩擦発熱による極端は温度
上昇を防ぐために水20c.c.をフイルム面に注ぎ
240rpmの速度で回転させフイルムが破れるまで
の時間並びに1時間当りのフイルムの摩耗減量を
測定した。 実施例 1 酢酸ビニル含有量が15重量%のエチレン−酢酸
ビニル共重合体(MI=2g/10分)100重量部に
一次粒子径が16mμ、二次粒子径が6μで20μ以上
の粒子が存在しない無定形酸化珪素8重量部と、
分散剤としてグリセリンモノステアレート0.3重
量部を5バンバリーミキサーで樹脂温130〜150
℃10分間混練後、押出機により造粒ペレツトを製
造した。以下上記混合物をフイラー混合樹脂と呼
ぶことにする。 二種三層インフレダイス(口径150mm)を装備
した多層インフレ装置を使用し該ダイスの中間層
には口径40mmの押出機を通して上記フイラー混合
樹脂を溶融ゾーン180℃、ダイス温度190℃の条件
で9Kg/hrの吐出量で供給し、内層と外層には三
井ポリケミカル社製ハイミラン1650(密度0.95、
メルトインデツクス1.5、エチレン−メタクリル
酸共重合体のZnイオンタイプ)を溶融ゾーン215
℃、ダイス温度190℃の条件で4.2Kg/hrの吐出量
で供給し、各層に供給した樹脂は該ダイスの内部
で貼合し三層サンドイツチ構造の管状体をブロー
アツプレシオ2.4、フロストライン距離200mm、引
取速度4.9m/分の条件で引取り、折径365mm各層
の厚みが内層0.013mm、中間層0.05mm、外層0.013
mmで構成される三層サンドイツチ構造のフイルム
を得た。得られたフイルムの保温性、全光線透過
率、平行光線透過率、ヘイズ、引裂強度、打抜衝
撃強度、耐摩擦性を測定した結果をまとめて表1
に示した。 実施例 2 実施例1において内外層にハイミラン1650の
代りにハイミラン1707(密度0.95g/cm3、メル
トインデツクス0.9g/10分エチレン−メタクリ
ル酸共重合体のNaイオンタイプ)を用いて押出
条件を溶融ゾーン220℃、ダイス195℃に変更した
以外は実施例1をくり返しフイルムを得た。得ら
れたフイルムの物性を表1にまとめて示す。 比較例 1 実施例1において中間層に用いたフイラー混合
樹脂のベースに用いたエチレン−酢酸ビニル共重
合体単独を用いて口径100mmのスパイラルダイス
を装備した口径50mm押出機を用いて溶融ゾーン
180℃、ダイス177℃の条件で管状体をブローアツ
プレイシヨ2.4、フロストライン距離200mm、引取
速度5m/分で引き取り厚さ0.075mmの単層フイ
ルムを得た。得られたフイルムの物性を表1にま
とめて示した。 比較例 2 実施例1において中間層に用いたフイラー混合
樹脂中の無定形酸化珪素の配合割合を5.4重量部
に代えた以外は実施例1の方法でフイラー混合樹
脂ペレツトを製造し、このペレツトを用いて比較
例1の押出機と押出条件によりフイラー混合樹脂
の単層フイルムを得た。得られたフイルムはやや
梨地状であつた。フイルムの物性を表1にまとめ
て示した。 比較例 3 実施例1において中間層に用いたフイラー混合
樹脂中の無定形酸化硅素の代りに平均粒子径15μ
の石英粉末を同量用いた以外は実施例1をくり返
し、フイルムを得た。得られたフイルムは不透明
であつた。物性を表1にまとめて示した。 比較例 4 実施例1において内外層に用いたハイミラン
1650の代りに密度が0.925g/cm3、メルトインデ
ツクス1.7g/10分の高圧法低密度ポリエチレン
(スミカセンF208−1)を用いて押出条件を溶
融ゾーン173℃、ダイス168℃に変更した以外は実
施例1をくり返しフイルムを得た。得られたフイ
ルムの物性を表1にまとめて示す。 比較例 5 実施例1において内外層に用いたハイミラン
1650の代りに密度が0.920g/cm3、メルトインデ
ツクス2g/10分のチーグラー触媒系で得られた
エチレン−4−メチル−1−ペンテンコポリマー
(4−メチル−1−ペンテン含有量9重量%)を
用いて押出条件を溶融ゾーン175℃、ダイス168℃
に変更した以外は実施例1をくり返しフイルムを
得た。得られたフイルムの物性を表1にまとめて
示す。 比較例 6 実施例1において内外層に用いたハイミラン
1650の代りに密度が0.920g/cm3、メルトインデ
ツクス1.5g/10分のチーグラー系触媒で重合さ
れたエチレン−ブテンコポリマー(ブテン−1含
有量10重量%)を用いて押出条件を溶融ゾーン
175℃、ダイス168℃に変更した以外は実施例1を
くり返しフイルムを得た。得られたフイルムの物
性を表1にまとめて示す。 比較例 7 実施例1において内外層に用いたハイミラン
1650の代りに密度が0.94g/cm3、メルトインデツ
クス0.6g/10分、酢酸ビニル含有量15重量%の
エチレン−酢酸ビニル共重合体を用いて押出条件
を溶融ゾーン175℃、ダイス168℃に変更した以外
は実施例1をくり返しフイルムを得た。得られた
フイルムの物性を表1にまとめて示す。 比較例 8 実施例1において内外層に用いたハイミラン
1650の代りにメルトインデツクス10g/10分、ア
クリル酸含有量20重量%のエチレン−アクリル酸
共重合体を用いて押出条件を溶融ゾーン170℃、
ダイス168℃に変更した以外は実施例1をくり返
しフイルムを得た。得られたフイルムの物性を表
1にまとめて示す。 比較例 9 実施例1において中間層に用いたフイラー混合
樹脂のベースに用いたエチレン−酢酸ビニル共重
合体の代りに密度が0.925g/cm3、メルトインデ
ツクス1.7g/10分、屈折率nA1.501の高圧法ポリ
エチレン(スミカセンF208−1)を用い、内
外層に用いたハイミラン1650の代りにも同じス
ミカセンF208−1を用い押出条件を内外層、
中間層ともに溶融ゾーン173℃、ダイス168℃に変
更した以外は実施例1をくり返し透明フイルムを
得た。得られたフイルムの物性を表1にまとめて
示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an agricultural film mainly composed of an olefin resin that has improved heat retention, transparency, and abrasion resistance. Conventionally, polyolefin resin films such as polyvinyl chloride films, polyethylene films, and ethylene-vinyl acetate copolymer films have been mainly used as greenhouse covering materials for greenhouse cultivation such as agricultural greenhouses and tunnel houses. Among these, polyvinyl chloride film has been widely used in this field until recently because it has excellent heat retention, transparency, toughness, and durability. however,
Polyvinyl chloride film has the disadvantage that during use, the plasticizer contained in the film bleeds onto the film surface, which attracts dust, which significantly impairs light transmittance, and prevents the temperature from rising inside the greenhouse, and it must be incinerated after use. There is a problem in that it is difficult to dispose of because hydrochloric acid gas is generated during treatment. Furthermore, it loses its flexibility at low temperatures and has poor impact resistance, making it unsuitable for use in cold regions. On the other hand, olefin resin film does not contain plasticizers and has a stable chemical structure, so its light transmittance hardly changes during long-term use, and no harmful gases are generated even when incinerated. Although it is superior to polyvinyl chloride film, this film is inferior to polyvinyl chloride film in terms of heat retention. Therefore, although olefin resin films have the above-mentioned advantage of long-lasting light transmittance, they have not been widely used as house covering films in the past. Furthermore, among olefin resins, ethylene-vinyl acetate copolymer film has been recognized for its advantages such as transparency, flexibility, and cold resistance, and has recently attracted attention as an agricultural covering material, but its heat retention properties are lower than that of polyvinyl chloride. In addition to the above-mentioned problem of inferiority, there is also the problem of inferior friction strength. Specifically, when the covering material is opened and closed for ventilation at the pipe part of a pipe house or the car wire holding part, or when it is blown by the wind, it is rubbed. There is a problem that the film is damaged. In general, the heat retention properties of the covering film for greenhouses and greenhouses are the properties that prevent the temperature inside the greenhouse from dropping at night. The temperature inside the house is kept higher than the temperature of the outside air by being radiated from the ground as radiation, but if the transmittance of the radiation radiating from the ground of the covering film is high, the radiation rays from the ground are As it dissipates outside the greenhouse, the soil temperature inside the greenhouse decreases, and as a result, it becomes impossible to maintain the temperature inside the greenhouse higher than the outside temperature. Therefore, the quality of the heat retaining property of the coating film depends on the radiation absorption or reflectance, and the higher the reflectance, the better. Examples of coating films with improved heat retention properties of olefin resin films include coating films made by adding specific inorganic fillers such as phosphate compounds, silicon oxide, and dehydrated kaolinite to olefin resins. However, although these methods have improved the heat retention properties of olefin resins, they are still insufficient compared to polyvinyl chloride films, and the biggest problem is that the addition of inorganic fillers makes it difficult to use ordinary films. In processing methods such as the T-die casting method and the inflation method, the molten resin is cooled and solidified while being stretched, so that the surface of the film becomes uneven. For this reason, the film is more likely to be damaged due to friction at the pipe section of the house or the car wire holding section, and more importantly, the transparency of the film, especially its parallel light transmittance, is lower than that of polyvinyl chloride film or ethylene-vinyl acetate copolymer film. This is inferior to the combined film. Generally, the light transmittance required for agricultural covering films is 80~80 in terms of total light transmittance.
It is said that 85% or more is required, but even if the total light transmittance satisfies this requirement, the impact on crops will depend on whether the contribution is greater, parallel light transmittance or scattered light transmittance. are very different. For example, fruits and vegetables, including tomatoes, cucumbers, and watermelons, which are originally summer crops, generally prefer to grow using parallel light, and when using scattered light,
Problems with coloration and fruit growth often occur.
In addition, it has gradually become clear in recent years that scattered light is preferable for raising seedlings of leafy vegetables such as lettuce and cabbage, and paddy rice, as it improves the growth of the leaves. However, with the exception of wet rice cultivation, farmers still often use transparent polyvinyl chloride film, which has good parallel light transmittance, for not only fruit and vegetable crops, but also for greenhouses and tunnels. This is also due to the fact that it has the great advantage of being able to see the growth status of crops inside from the outside. For this reason, although the technology for improving the heat retention, which was a drawback of polyolefin films, by adding a specific inorganic filler to polyolefins as described above has been provided for a long time, it is still not generally used. It is. As a way to solve these problems, attempts have been made in recent years to improve parallel light transmittance and heat retention by adding specific polymeric compounds such as polyacetal to polyolefin, but in this case, However, the effect of improving heat retention is still insufficient. The present inventors have removed the above-mentioned problems with olefin resins as agricultural films, and
In order to provide an agricultural film with excellent heat retention, parallel light transmittance, and abrasion resistance at a low price, we have conducted extensive research and found that the primary particle size is 40 mμ or less, and the average secondary particle size is more than 5 μm and 10 μm or less. , and substantially 20μ
By providing an ionomer resin on the inner and outer surfaces of a film made of a composition containing silicon oxide that does not contain the above secondary particles, the film has superior parallel light transmittance, heat retention, and friction resistance properties compared to conventional technology. They discovered that a film could be obtained and completed the present invention. The first feature of the present invention is that although an inorganic filler is added to the olefin resin, by providing a resin layer that does not contain filler on the inner and outer surfaces, surface irregularities generated during film processing are significantly improved, resulting in reduced external haze. This significantly reduces the transmittance of parallel light, making it possible to obtain a transparent film with excellent parallel light transmittance.In addition, heat retention, which was a drawback of conventional polyolefin films, has been greatly improved and is now comparable to that of polyvinyl chloride film. At the point. The second feature of the present invention is that by providing a filler-free resin layer with excellent friction resistance on the inner and outer surfaces, the friction resistance of the resulting film is significantly improved, and its toughness is comparable to that of polyvinyl chloride film. The point is that it can be improved to the extent that it is possible. The third feature of the present invention is that silicon oxide having a desired particle size can be generally obtained at low cost by a manufacturing method known in the prior art, and that it can be added to olefin resins as an additive when manufacturing agricultural films. Since it can be added at the same time during formulation, the manufacturing process of the conventional technology can be used as is, and it is generally easy to form a film.As a result, the present invention has greatly improved performance at a price not much different from that of conventional olefin resin agricultural films. The point is that it can provide film. The fourth feature of the present invention is that the composition of the present invention, which is mainly composed of olefin resin, is essentially easy to incinerate, and does not generate harmful substances such as hydrochloric acid gas when incinerated, making it easy to dispose of it after use. That's true. The above-mentioned features are advantages of the present invention over the prior art. The present invention will be explained in more detail below. In the present invention, the olefin resin used in the intermediate layer includes an α-olefin homopolymer,
It is a copolymer with different monomers mainly composed of α-olefin, such as polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-4-methyl-1-
Examples include pentene copolymers, ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers, and the like. Among these, low-density polyethylene with a density of 0.910 to 0.935, ethylene-α-olefin copolymer, and ethylene-vinyl acetate copolymer with a vinyl acetate content of 30% by weight or less are good for transparency, weather resistance, and price. From this point of view, it is preferable as an agricultural film. Further, among these, ethylene-vinyl acetate copolymers having a vinyl acetate content of 5% by weight or more and 25% by weight or less are particularly preferred in terms of transparency, flexibility, weather resistance, etc. In the present invention, the resin used for the inner and outer layers is preferably a resin that does not impair the heat retention properties of the intermediate layer and has good friction resistance. According to the findings of the present inventors, the house covering materials include house aggregates (e.g. iron pipes, bamboo, etc.) and holding cords (usually called mica wire) used to stabilize the film between the aggregates. Friction occurs when the hem is opened and closed for ventilation, the film vibrates due to the wind, etc., and the friction causes heat generation and abrasion of the resin.Furthermore, the film is heated by sunlight, which causes deterioration and breakage. The ionomer resin used for the inner and outer layers in the present invention is a resin having a metal ion crosslinked structure of α-olefin and α,β-unsaturated carboxylic acid copolymer. Usually, the α-olefin is ethylene,
A copolymer using methacrylic acid as the α,β-unsaturated carboxylic acid and containing 1 to 5 mol% of methacrylic acid, and using Na + and Zn ++ as the metal ions is available from DuPont Co., Ltd., for example. It is sold under the trade name Surlyn. Those preferably used in the present invention have a density of 0.935 g/cm 3 or more.
It is preferably 0.975 g/cm 3 or less, a melt index of 0.5/10 min or more and 7 g/10 min or less, and the metal ion is preferably of the Na + or Zn ++ type. The silicon oxide used in the present invention preferably has primary particles of 40 μm or less, substantially no secondary particles of 20 μm or more, and an average secondary particle size of more than 5 μm and 10 μm or less. Among these, substantially amorphous silicon oxide is particularly suitable for the present invention. Generally, the refractive index of olefin resin (20℃ D line)
is between 1.48 and 1.52, and the refractive index of low-density polyethylene and ethylene-vinyl acetate copolymer, which are commonly used for agricultural purposes, is between 1.49 and 1.51. On the other hand, the refractive index of silicon oxide commonly used for resin fillers is in the range of 1.45 to 1.48. However, this does not apply to special crystalline silicon oxides such as quartz.
For this reason, light scattering occurs at the filler/resin interface, so in addition to light scattering on the film surface (which can be quantified by external haze), there is also the problem of light scattering within the film (which can be quantified by internal haze). occurs. Because of these problems, in order to achieve one of the objects of the present invention, it is necessary to use silicon oxide having a specific particle size as described above to relatively reduce the internal haze, and at the same time to reduce the inner and outer haze. It is necessary to significantly reduce the external haze by providing a resin layer that does not contain filler. The blending ratio of the silicon oxide to the olefin resin is preferably 2 to 25 parts by weight, more preferably 3 to 15 parts by weight, based on 100 parts by weight of the olefin resin.
If the amount of the compound is less than 2 parts by weight, the effect of improving the heat retention of the resulting film is not very noticeable,
Moreover, if the amount is more than 25 parts by weight, the strength of the resulting film will decrease, which is not preferable. The method of carrying out the present invention is to mix the olefin resin and silicon oxide powder by a conventional method such as mixing or kneading in a roll type or Banbury type mixer or extruder, and then, for example, by inflation processing or calender processing. , and is formed into a film using a normal forming method such as T-die processing. Usually film processing is suitably carried out at a processing temperature of 130 to 250°C. Methods for providing ionomer resin on the inner and outer surfaces of a film made of olefin resin containing silicon oxide include a method of forming each film into a laminated film by dry lamination, heat lamination, etc.; Existing techniques may be used, such as extrusion lamination of an ionomer resin onto a resin film, or simultaneous molding of a laminated film using a multilayer extrusion method.In particular, a multilayer extrusion method is preferred because of its ease of molding and the resulting film. It is preferable in terms of interlayer adhesion, transparency, cost, etc. Furthermore, since wide films are preferred for agricultural applications, a multilayer inflation process is desirable. In addition, the thicknesses of the film (intermediate layer) made of the olefin resin containing silicon oxide and the resin layers (inner and outer layers) provided on the inner and outer surfaces are determined depending on the end use and purpose, and are not necessarily specified. The layers depend on the required level of heat retention and the ratio of silicon oxide to the resin, but usually 30μ to 200μ is sufficient, and the inner and outer layers have a level that reduces the external haze of the middle layer and has abrasion resistance. The thickness can be any thickness that allows the expression to occur, and usually a thickness of about 10μ to 20μ is sufficient. In the film obtained as described above, in order to improve the dispersion of silicon oxide in the intermediate layer,
For example, it is also effective to use a dispersant such as sorbitan fatty acid ester such as sorbitan monostearate or glycerin fatty acid ester such as glycerin monostearate by adding 0.2 to 2 parts by weight to the composition of the present invention, It is also effective to mix appropriate stabilizers, ultraviolet absorbers, antistatic agents, and, if necessary, water drop preventive agents into both the intermediate layer and the inner and outer layers. When the olefin resin film obtained by the present invention is used as a film for multiple applications such as temperature control and greenhouses, it shows a remarkable improvement in heat retention compared to the conventional technology, and is comparable to polyvinyl chloride films. In addition to having excellent performance to the extent that it absorbs water, its parallel light transmittance is comparable to that of polyvinyl chloride, and its change over time is even better than that of polyvinyl chloride film.Additionally, inorganic fillers are added to the olefin resin for heat retention. The parallel light transmittance is significantly better than that of technologies that attempt to improve the film, and the abrasion resistance and toughness are also significantly better and are comparable to polyvinyl chloride film, making it extremely useful as an agricultural film. Next, the present invention will be explained with reference to Examples, but these Examples are merely illustrative and are not limited thereto. The heat retention measurements shown in the Examples and Comparative Examples were carried out using a heat retention measurement device in which a sample was placed on one side of a box approximately 30 cm cubic in size made of heat insulating material. The temperature change inside the device was measured using a thermistor. The temperature difference from the value shown by the standard sample glass plate (approximately 2 mm thick) was expressed as the heat retention property [△T°C]. Transparency was measured by measuring haze value and total light transmittance using a haze meter in accordance with JIS K-6714. At this time, the parallel light transmittance was determined using the following formula. Parallel light transmittance=total light transmittance−haze value In addition, a water drop prevention test was conducted by the method shown below. Fill a 100c.c. beaker with water (30℃), cover it with a sample film, and then place it in a constant temperature bath (30℃).
The beaker was placed in a sunny place and the condition was observed after a predetermined period of time. The evaluation results were expressed using the following criteria. ○: There are no small water droplets. △: Small water droplets are observed in some areas. ×: A small number of droplets adhere to the entire surface. Furthermore, the friction resistance performance was measured using the following method. A pre-weighed sample film was fixed by attaching it to the circular section of a 200φmm cylindrical jig without wrinkles, and a ring-shaped 100φmm iron rotor was thoroughly polished with #180 paper on the surface that would contact the film. the fixed film perpendicularly from the film surface.
After pressing down 20 mm, pour 20 c.c. of water onto the film surface to prevent extreme temperature rise due to frictional heat generation.
The film was rotated at a speed of 240 rpm, and the time until the film was torn and the loss of film abrasion per hour were measured. Example 1 In 100 parts by weight of ethylene-vinyl acetate copolymer (MI = 2 g/10 min) with a vinyl acetate content of 15% by weight, there are particles with a primary particle size of 16 mμ, a secondary particle size of 6 μ, and particles of 20 μ or more 8 parts by weight of amorphous silicon oxide,
Add 0.3 parts by weight of glycerin monostearate as a dispersant to a resin temperature of 130 to 150 using a Banbury mixer.
After kneading at ℃ for 10 minutes, granulated pellets were produced using an extruder. Hereinafter, the above mixture will be referred to as filler mixed resin. Using a multilayer inflation device equipped with a two- and three-layer inflation die (diameter 150mm), the filler mixed resin was passed through an extruder with a diameter of 40mm into the middle layer of the die, and the weight of the filler mixture was 9 kg at a melting zone of 180℃ and a die temperature of 190℃. /hr, and Mitsui Polychemical's Himilan 1650 (density 0.95,
Melt index 1.5, Zn ion type of ethylene-methacrylic acid copolymer) melting zone 215
The resin supplied to each layer was laminated inside the die to form a tubular body with a three-layer sandwich structure at a blow-out ratio of 2.4 and a frost line distance. 200 mm, taken at a taking speed of 4.9 m/min, folded diameter: 365 mm, thickness of each layer: inner layer 0.013 mm, middle layer 0.05 mm, outer layer 0.013
A film with a three-layer sandwich structure composed of mm was obtained. Table 1 summarizes the results of measuring the heat retention, total light transmittance, parallel light transmittance, haze, tear strength, punching impact strength, and abrasion resistance of the obtained film.
It was shown to. Example 2 In Example 1, Himilan 1707 (density 0.95 g/cm 3 , melt index 0.9 g/10 minutes, Na ion type of ethylene-methacrylic acid copolymer) was used instead of Himilan 1650 for the inner and outer layers, and the extrusion conditions were changed. A film was obtained by repeating Example 1 except that the melting zone was changed to 220°C and the die was changed to 195°C. The physical properties of the obtained film are summarized in Table 1. Comparative Example 1 Using the ethylene-vinyl acetate copolymer alone used as the base of the filler mixed resin used for the intermediate layer in Example 1, a melting zone was produced using a 50 mm diameter extruder equipped with a 100 mm diameter spiral die.
The tubular body was taken at a blow-up rate of 2.4, a frost line distance of 200 mm, and a take-up speed of 5 m/min under conditions of 180° C. and 177° C. to obtain a single-layer film with a thickness of 0.075 mm. The physical properties of the obtained film are summarized in Table 1. Comparative Example 2 Filler mixed resin pellets were produced by the method of Example 1, except that the blending ratio of amorphous silicon oxide in the filler mixed resin used for the intermediate layer in Example 1 was changed to 5.4 parts by weight, and the pellets were A monolayer film of filler-mixed resin was obtained using the extruder and extrusion conditions of Comparative Example 1. The obtained film had a slightly matte texture. The physical properties of the film are summarized in Table 1. Comparative Example 3 In place of the amorphous silicon oxide in the filler mixed resin used for the intermediate layer in Example 1, an average particle size of 15μ was used.
Example 1 was repeated except that the same amount of quartz powder was used to obtain a film. The resulting film was opaque. The physical properties are summarized in Table 1. Comparative Example 4 Himilan used for the inner and outer layers in Example 1
Except that high-pressure low-density polyethylene (Sumikasen F208-1) with a density of 0.925 g/cm 3 and a melt index of 1.7 g/10 min was used instead of 1650, and the extrusion conditions were changed to a melt zone of 173°C and a die of 168°C. Example 1 was repeated to obtain a film. The physical properties of the obtained film are summarized in Table 1. Comparative Example 5 Himilan used for the inner and outer layers in Example 1
Ethylene-4-methyl-1-pentene copolymer (4-methyl-1-pentene content 9% by weight) obtained with a Ziegler catalyst system with a density of 0.920 g/cm 3 and a melt index of 2 g/10 min instead of 1650. ) using extrusion conditions: melt zone 175℃, die 168℃
A film was obtained by repeating Example 1 except for changing the following. The physical properties of the obtained film are summarized in Table 1. Comparative Example 6 Himilan used for the inner and outer layers in Example 1
Instead of 1650, an ethylene-butene copolymer (butene-1 content 10% by weight) polymerized with a Ziegler catalyst with a density of 0.920 g/cm 3 and a melt index of 1.5 g/10 min was used, and the extrusion conditions were changed to melt zone.
A film was obtained by repeating Example 1 except that the temperature was changed to 175°C and the die temperature to 168°C. The physical properties of the obtained film are summarized in Table 1. Comparative Example 7 Himilan used for the inner and outer layers in Example 1
Instead of 1650, an ethylene-vinyl acetate copolymer with a density of 0.94 g/cm 3 , a melt index of 0.6 g/10 min, and a vinyl acetate content of 15% by weight was used, and the extrusion conditions were set to 175°C in the melt zone and 168°C in the die. A film was obtained by repeating Example 1 except for changing the following. The physical properties of the obtained film are summarized in Table 1. Comparative Example 8 Himilan used for the inner and outer layers in Example 1
Instead of 1650, an ethylene-acrylic acid copolymer with a melt index of 10 g/10 minutes and an acrylic acid content of 20% by weight was used, and the extrusion conditions were set to a melt zone of 170°C,
A film was obtained by repeating Example 1 except that the die temperature was changed to 168°C. The physical properties of the obtained film are summarized in Table 1. Comparative Example 9 In place of the ethylene-vinyl acetate copolymer used as the base of the filler mixed resin used for the intermediate layer in Example 1, the density was 0.925 g/cm 3 , the melt index was 1.7 g/10 min, and the refractive index was n. A 1.501 high-pressure polyethylene (Sumikasen F208-1) was used, and the same Sumikasen F208-1 was used instead of Himilan 1650 used for the inner and outer layers, and the extrusion conditions were changed for the inner and outer layers.
A transparent film was obtained by repeating Example 1 except that for both the intermediate layer, the melting zone was changed to 173°C and the die temperature was changed to 168°C. The physical properties of the obtained film are summarized in Table 1. 【table】

Claims (1)

【特許請求の範囲】 1 オレフイン系樹脂100重量部に対し、一次粒
子が40mμ以下で、平均二次粒子径が5μを越え
10μ以下で、かつ実質的に20μ以上の二次粒子が
存在しない酸化珪素を2〜25重量部配合してなる
組成物から成るフイルムの内外面にアイオノマー
樹脂層が設けられ、平行光線透過率が70%以上で
あることを特徴とする農業用フイルム。 2 オレフイン系樹脂が密度0.935g/cm3以下の
低密度ポリエチレンもしくはエチレン−α−オレ
フイン共重合体である特許請求の範囲1項記載の
農業用フイルム。 3 オレフイン系樹脂がエチレン−酢酸ビニル共
重合体である特許請求の範囲1項記載の農業用フ
イルム。 4 内外層に使用するアイオノマー樹脂がエチレ
ン−メタクリル酸共重合体の亜鉛イオンもしくは
ナトリウムイオン架橋構造を有する樹脂で密度が
0.935g/cm3以上0.975g/cm3以下、メルトインデ
ツクス0.5g/10分以上7g/10分以下の特性値
を有する樹脂であることを特徴とする特許請求の
範囲1項記載の農業用フイルム。
[Claims] 1. Primary particles are 40 mμ or less and the average secondary particle diameter is more than 5 μm based on 100 parts by weight of olefin resin.
Ionomer resin layers are provided on the inner and outer surfaces of a film made of a composition containing 2 to 25 parts by weight of silicon oxide with a particle size of 10μ or less and substantially free of secondary particles of 20μ or more. An agricultural film characterized by having a carbon content of 70% or more. 2. The agricultural film according to claim 1, wherein the olefin resin is a low-density polyethylene or an ethylene-α-olefin copolymer having a density of 0.935 g/cm 3 or less. 3. The agricultural film according to claim 1, wherein the olefin resin is an ethylene-vinyl acetate copolymer. 4 The ionomer resin used for the inner and outer layers is a resin with a zinc ion or sodium ion crosslinked structure of ethylene-methacrylic acid copolymer, and has a high density.
Agricultural use according to claim 1, which is a resin having characteristic values of 0.935 g/cm 3 or more and 0.975 g/cm 3 or less, and a melt index of 0.5 g/10 minutes or more and 7 g/10 minutes or less. film.
JP15226579A 1979-11-24 1979-11-24 Agricultural film Granted JPS5684956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15226579A JPS5684956A (en) 1979-11-24 1979-11-24 Agricultural film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15226579A JPS5684956A (en) 1979-11-24 1979-11-24 Agricultural film

Publications (2)

Publication Number Publication Date
JPS5684956A JPS5684956A (en) 1981-07-10
JPS6313832B2 true JPS6313832B2 (en) 1988-03-28

Family

ID=15536704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15226579A Granted JPS5684956A (en) 1979-11-24 1979-11-24 Agricultural film

Country Status (1)

Country Link
JP (1) JPS5684956A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516940A (en) * 1991-07-10 1993-01-26 Gifu Plast Ind Co Ltd Storage container
US5728476A (en) * 1993-09-20 1998-03-17 The Amtico Company Limited Floor coverings

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296020A (en) * 1985-10-08 1987-05-02 株式会社クラレ Agricultural cover material having light diffusivity
JPH0745233B2 (en) * 1988-02-02 1995-05-17 住友化学工業株式会社 Agricultural film
BE1007454A3 (en) * 1993-09-10 1995-07-04 Sommer Sa Coating products soil or walls and method of making.
CN111363210A (en) * 2020-03-18 2020-07-03 陕西科技大学 Ionic crosslinked rubber and preparation, recovery and secondary vulcanization method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516940A (en) * 1991-07-10 1993-01-26 Gifu Plast Ind Co Ltd Storage container
US5728476A (en) * 1993-09-20 1998-03-17 The Amtico Company Limited Floor coverings

Also Published As

Publication number Publication date
JPS5684956A (en) 1981-07-10

Similar Documents

Publication Publication Date Title
JPH0148145B2 (en)
US4490502A (en) Agricultural plastic film
US4214034A (en) Agricultural covering multilayer film or sheet structure and method for thermal insulation
JPS6313832B2 (en)
JPS6381038A (en) Laminated porous film
JP3219319B2 (en) Agricultural film
JPH0411107B2 (en)
JPS6037792B2 (en) agricultural film
JPH0351580B2 (en)
JPS625183B2 (en)
JPS6144092B2 (en)
JP2000139244A (en) Crop culturing covering film and its use
JPS61106644A (en) Agricultural film
JP2815679B2 (en) Agricultural multilayer film
JPS625182B2 (en)
JP2003191392A (en) Agricultural film
KR830002435B1 (en) Agricultural Film Manufacturing Method
JP2003311890A (en) Agricultural flexible multilayered film
JPH0578580B2 (en)
JPH081882A (en) Laminated film made of polyolefinic resin
JP2815678B2 (en) Multilayer film for agriculture
JPS6144091B2 (en)
JPS6031671B2 (en) Agricultural coating film
JPS61218647A (en) Agricultural film
JPH01182037A (en) Laminated film for agricultural use