JPS625182B2 - - Google Patents

Info

Publication number
JPS625182B2
JPS625182B2 JP54060025A JP6002579A JPS625182B2 JP S625182 B2 JPS625182 B2 JP S625182B2 JP 54060025 A JP54060025 A JP 54060025A JP 6002579 A JP6002579 A JP 6002579A JP S625182 B2 JPS625182 B2 JP S625182B2
Authority
JP
Japan
Prior art keywords
film
weight
aluminum silicate
silicate gel
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54060025A
Other languages
Japanese (ja)
Other versions
JPS55151042A (en
Inventor
Nobuo Fukushima
Kyohiko Nakae
Takayuki Terasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP6002579A priority Critical patent/JPS55151042A/en
Priority to US06/148,230 priority patent/US4490502A/en
Priority to GB8015812A priority patent/GB2052522B/en
Priority to IT6776180A priority patent/IT1133090B/en
Priority to FR8010881A priority patent/FR2456753A1/en
Publication of JPS55151042A publication Critical patent/JPS55151042A/en
Priority to US06/391,976 priority patent/US4481254A/en
Publication of JPS625182B2 publication Critical patent/JPS625182B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は保温性、無滴性の改良されたオレフイ
ン系樹脂を主体とする農業用フイルムに関する。
さらに詳しくはオレフイン系樹脂(A)100重量部に
対し、含水アルミニウムシリケートゲル(B)2〜20
重量部を配合してなる組成物であつて、該オレフ
イン系樹脂の屈折率nAと該含水アルミニウムシ
リケートゲルの屈折率nBの比、nA/nBが0.99
以上1.01以下の範囲である組成物を製膜してなる
農業用フイルムに関する。 従来、農業用ハウス、トンネルハウス等の被覆
材としてはポリ塩化ビニルフイルム、ポリエチレ
ンフイルムやエチレン−酢酸ビニル共重合体フイ
ルム等のオレフイン系樹脂フイルム等が使用され
ているが、ポリ塩化ビニルフイルムは使用中にフ
イルム中に含まれる可塑剤がフイルム表面にブリ
ードする影響で塵埃が吸着して光線透過性が著し
く損なわれハウス内の温度上昇を妨げるという欠
点があると共に使用後焼却処理をすると塩酸ガス
が発生するため廃棄処理がむづかしいという問題
がある。 また、オレフイン系樹脂フイルムはフイルム中
に可塑剤を含まず、化学的構造も安定しているた
め、長期の使用中に光線透過性はほとんど変らな
いし、焼却しても有害ガスの発生がない点ではポ
リ塩化ビニルフイルムよりすぐれているが、この
フイルムはポリ塩化ビニルフイルムに比べて保温
性については劣つている。そのためオレフイン系
樹脂フイルムは前記光線透過性が持続する長所を
もちながらも、従来あまりハウス被覆用フイルム
として利用されなかつたものである。 一般に、温室、ハウスにおける被覆用フイルム
の保温性というのは、夜間におけるハウス内の温
度の低下を防止する特性であつて、昼間太陽光線
によつてハウス内の地中に吸収された熱が夜間に
は地面から輻射線となつて輻射されることによ
り、ハウス内の温度を外気の温度より高く保つの
であるが被覆フイルムの地面から輻射する輻射線
の透過率が大きいと地面からの輻射線はハウス外
に散逸してしまつてハウス内の地温は低下し、そ
の結果ハウス内の温度を外気より高く保つことが
できなくなる。従つて、被覆用フイルムの保温性
の良否は前記輻射線の吸収、または反射率の如何
によるものであり、その率の高いもの程良いこと
になる。 また、温室、ハウスにおける被覆用フイルムに
要求される特性として、フイルムの水滴防止性が
ある。被覆用フイルムの水滴防止性というのは被
覆用フイルムをハウスとして用いると内部に水蒸
気がフイルム内面に凝結した小さな水滴が形成さ
れ難い特性のことであるが、オレフイン系樹脂フ
イルムは水滴に対するぬれが小さいことから、水
滴防止性に劣ることが指摘されてきた。このた
め、ふつう水滴防止剤を混合し、フイルム表面の
ぬれを改良しているが、水滴防止効果の持続性と
水滴防止剤のフイルム表面へのブリード過多によ
るフイルムの光線透過性を低下させるという問題
点を生じるためいまだ良好な水滴防止性フイルム
が得られていない。 オレフイン系樹脂フイルムの保温性を改良した
被覆用フイルムとしては、オレフイン系樹脂に燐
酸塩化合物や酸化硅素や脱水カオリナイト等特定
の無機フイラーを添加してなる被覆用フイルムが
ある。しかし、これらの方法は、オレフイン系樹
脂の保温性は改良されているものの、ポリ塩化ビ
ニルフイルムに比べると未だ不充分なものであ
り、さらに最大の問題点は無機フイラーの添加に
より、得られるフイルムの透明性、特に平行光線
透明性がポリ塩化ビニルフイルムやエチレン−酢
酸ビニル共重合体フイルムに比べると劣ることで
ある。一般に農業用被覆フイルムとして要求され
る光線透過性は、全光線透過率で80〜85%以上必
要と言われているが、全光線透過率がこの要望を
満たしていても、その内容、即ち平行光線透過性
と散乱光線透過性のいずれの寄与が大きいかによ
り作物に与える影響は大きく異なる。例えば本来
夏の作物であるトマト、キユウリ、スイカ等をは
じめ一般に果菜類は平行光線による生育が好まし
く、散乱光を用いた場合には色づきや果実の生育
に問題が生ずることが多く、またレタスやキヤベ
ツのような葉菜類や水稲の育苗等にはむしろ散乱
光の方が葉の生育が良好になるため好ましいこと
が近年徐々に明らかになつてきている。しかしな
がら、今なお、水稲栽培を除いて、農家では果菜
類は当然のこと、葉菜類に対しても平行光線透過
性の良好な透明ポリ塩化ビニルフイルムを使用す
ることが多いが、これはハウスやトンネルの内部
作物の生育状況が外から透視できる利点が大きい
ことにも起因している。 かかる理由から上述のようなポリオレフインに
特定の無機フイラーを添加して、ポリオレフイン
フイルムの欠点であつた保温性を改良する技術が
早くから提供されているにも拘らず未だ一般には
使用されていないのが現状である。 さらに上述のようなポリオレフインに特定の無
機フイラーを添加してなる従来技術では水滴防止
性が付与されず、通常無滴剤とか湿潤剤と称され
る化合物を多量添加することにより水滴防止性を
付与しなければならない。 かかる問題点を解決する方法として、近年ポリ
オレフインにポリアセタール等特定の高分子化合
物を添加することにより平行線透過性が良好でか
つ保温性を改良しようとする試みもなされている
が、この場合には、保温性の改良効果が未だ不十
分である。 本発明者らは上述のようなオレフイン系樹脂に
おける農業用フイルムとしての問題点を除去し、
保温性、平行光線透過性、水滴防止性にすぐれた
農業用フイルムを安価に提供するため、鋭意研究
を重ねた結果、オレフイン系樹脂の屈折率とほぼ
等しい屈折率を有する含水アルミニウムシリケー
トゲルの粉末を添加した組成物を製膜することに
より、従来技術に比べ極めてすぐれた平行光線透
過性、保温性、水滴防止性を兼ね備えたフイルム
が得られることを見い出し本発明を完成した。 即ち、本発明はオレフイン系樹脂(A)100重量部
に対し、アルミニウムシリケートゲル(B)2〜20重
量部配合してなる組成物であつて、該オレフイン
系樹脂の屈折率nAとアルミニウムシリケートゲ
ルの屈折率nBの比nA/nBが0.98以上1.02以下
の範囲である組成物を製膜してなる農業用フイル
ムに関する。 本発明の第1の特徴は、オレフイン系樹脂に無
機フイラーを添加するにも拘らず、平行光線透過
率の非常にすぐれた透明フイルムが得られる上
に、従来のオレフイン系樹脂フイルムの欠点であ
つた保温性は大巾に改良されポリ塩化ビニルフイ
ルムに比肩しうる程度にまで高められる点にあ
る。この保温性改良効果は、含水アルミニウムシ
リケートゲルは水を多量に吸着するため、含水ア
ルミニウムシリケートゲルの赤外線不透過能に加
えて水の赤外線不透過能の相乗効果により保温性
が大巾に改良されるものと考えられる。 本発明の第2の特徴は前述の含水アルミニウム
シリケートゲルの多量の含水により、フイルムに
水滴防止効果を現出しうる点にある。さらに著し
い水滴防止性能を付与する目的で少量の無滴剤、
湿潤剤を併用した場合にはこれらが含水アルミニ
ウムシリケートゲルに吸着され、徐々に放出され
るため、その効果の持続性にすぐれる点にある。 本発明の第3の特徴は所望の屈折率を有する含
水アルミニウムシリケートゲルは、従来技術とし
て公知の製法により一般に安価に入手しうる上、
オレフイン系樹脂への添加も従来農業用フイルム
を製造する際の添加剤処方時に同時に添加しうる
ので、従来技術の製造工程がそのまま使用でき、
フイルム化も容易なため、結果として従来のオレ
フイン系樹脂農業用フイルムと大差ない価格で性
能を大巾に改良した本発明によるフイルムを提供
しうる点にある。 本発明の第4の特徴はオレフイン系樹脂を主体
とした本発明組成物は本質的に焼却処理が容易で
あり、焼却時に塩酸ガスのような有害物を発生し
ないため使用後の廃棄処理が容易なことにある。 上述したような特徴は従来技術にくらべ本発明
の有利な点である。以下本発明をさらに詳細に説
明する。 本発明において使用されるオレフイン系樹脂と
しては、α−オレフインの単独重合体、α−オレ
フインを主成分とする異種単量体との共重合体で
あり、例えばポリエチレン、ポリプロピレン、エ
チレン−プロピレン共重合体、エチルン−ブテン
共重合体、エチレン−4−メチル−1−ペンテン
共重合体、エチレン−酢酸ビニル共重合体、エチ
レン−アクリル酸共重合体等が挙げられる。これ
らのうち、密度が0.910〜0.935の低密度ポリエチ
レンやエチレン−α−オレフイン共重合体および
酢酸ビニル含有量が30重量%以下のエチレン−酢
酸ビニル共重合体が透明性や耐候性や価格の点か
な農業用フイルムとして好ましい。 さらに、酢酸ビニル含有量が5重量%以上25重
量%以下のエチレン−酢酸ビニル共重合体はこれ
らのうちでも透明性、柔軟性、耐候性等の点でよ
り好ましい。 上述したようなオレフイン系樹脂の屈折率(25
℃D線使用)は一般に1.48〜1.52の間にあり、例
えば密度が0.935以下の低密度ポリエチレンでは
1.51〜1.52の範囲にあり、酢酸ビニル含有量が30
重量%以下のエチレン−酢酸ビニル共重合体の屈
折率は1.48〜1.51の範囲にある。 本発明において使用される含水アルミニウムシ
リケートゲルは含水複合酸化物ゲルであり、その
組成は本発明の主旨に従つて自づと決定される。
即ち、本発明の実施に当つて使用されるオレフイ
ン系樹脂の屈折率を25℃相対湿度65%の条件下で
例えばD(Na)線を用いて測定し、得られた屈
折率nAに可及的近接する屈折率nBを有するよう
に含水アルミニウムシリケートゲルの組成を決定
する。この際nAとnBの比nA/nBが0.98以上
1.02以下、より好ましくは0.99以上1.01以下の範
囲に入るようなnBを有する組成の含水アルミニ
ウムシリケートゲルを用いないと得られるフイル
ムの平行光線透過率が悪化するので好ましくな
い。オレフイン系樹脂の屈折率は一般に1.48〜
1.52の範囲に入り、このオレフイン系樹脂の屈折
率nAに対し、本発明の組成物の最も好ましい屈
折率比nA/nB0.99〜1.01に対応する含水アルミ
ニウムシリケートゲルの屈折率を算出するとnB
は1.47〜1.54となり、これらの範囲に含まれる屈
折率を有する含水アルミニウムシリケートゲルが
本発明の組成物に最も適したものである。含水ア
ルミニウムシリケートゲルの組成は上記nB
1.47〜1.54から一義的に決定される。すなわちn
Bが1.47に対応する組成として、シリカ90重量
%、アルミナ7重量%、不純物3重量%、nB
1.54に対応する組成として、シリカ60重量%、ア
ルミナ37重量%、不純物3重量%となる。したが
つて本発明の組成物において最も好ましい含水ア
ルミニウムシリケートゲルの組成は水分を除外し
た組成としてシリカ90〜60重量%、アルミナ7〜
37重量%及び3重量%以下の不純物から成る組成
を有するものであり、さらにこれらの含水アルミ
ニウムシリケートゲルのうち25℃相対湿度65%で
の吸着水分が10%以上、より好ましくは20%以上
を有するものが本発明に好ましく利用される。該
吸着水分が10%以下では本発明の主旨である保温
性の改良効果や水滴防止効果に乏しいため好まし
くない。さらにかような含水アルミニウムシリケ
ートゲルは使用に際し、微粉末であることが必要
であり、その平均粒子径が10μ以下、より好まし
くは5μ以下であることが望ましい。また粒子径
が20μを越える粒子は全粒子中に3重量%以内、
より好ましくは0.1重量%以内であることが望ま
しい。 平均粒径が該範囲を越えると得られるフイルム
の外観を悪化させ表面凹凸による平行光線透過性
を悪化させるのみならず、フイルム物性も低下す
るので好ましくない。 また該含水アルミニウムシリケートゲルのオレ
フイン系樹脂への配合割合はオレフイン系樹脂
100重量部に対し2〜20重量部が好ましく、3〜
10重量部がより好ましい。該配合物の配合量が2
重量部未満では得られるフイルムの保温性や水滴
防止性の改良効果があまり認められず、また配合
量が20重量部を越えると、得られるフイルムの強
度が低下するので好ましくない。 本発明の実施方法はオレフイン系樹脂と含水ア
ルミニウムシリケートゲルをロール型またはバン
バリー型の混合機あるいは押出機などで混合もし
くは混練するといつた通常の方法で混入し、次い
で例えばインフレーシヨン加工、カレンダー加
工、Tダイ加工等の通常の成形加工方法でフイル
ム状に成形する。通常フイルム加工は130〜250℃
の加工温度で行なわれるので、本発明に使用する
含水アルミニウムシリケートゲルは、この温度域
における吸着水を脱離するため、加工温度程度の
温度で吸着水をとりのぞくための予備乾燥が必要
である。 以上のようにして得られるフイルム中には、含
水アルミニウムシリケートゲルの分散をより良好
にするために、例えばソルビタンモノステアレー
トのようなソルビタン脂肪酸エステルやグリセリ
ンモノステアレートのようなグリセリン脂肪酸エ
ステルなどの分散剤を本発明の組成物に対して、
0.2〜2重量部添加して用いることも有効であ
り、また適当な安定剤、紫外線吸収剤、帯電防止
剤やさらに必要に応じて水滴防止剤などを適宜混
入することも有効である。 本発明によつて得られたオレフイン系樹脂フイ
ルムは、温室、ハウス等の被覆用フイルムとして
用いた場合、保温性に関しては従来技術に比べ著
しい改良効果が見られ、ポリ塩化ビニルのフイル
ムに比肩しうる程度に優れた性能を有するととも
に、平行光線透過性もポリ塩化ビニルと同等であ
る上、経時変化はむしろポリ塩化ビニルフイルム
よりも良好であり、水滴防止性に関してもすぐれ
た特性を有し、農業用フイルムとしてきわめて有
用である。 次に実施例をあげて本発明を説明するが、これ
ら実施例は単に例示的なものであつて、それらに
限定されるものではない。実施例および比較例に
示した保温性の測定は断熱材でつくつた約30cm立
方の箱の1つの面に試料を設けた保温性測定装置
を用いて、箱内に挿入した100℃の加熱ブロツク
による装置内の温度変化をサーミスターにて測定
した。標準試料のガラス板(約2mm厚)が示す値
との温度差を保温性として〔△T℃〕で示した。 また透過性の測定はJIS K−6714に準拠してヘ
イズメーターを用いて曇価ならびに全光線透過率
を測定しその尺度とした。この際、平行光線透過
率は以下の式を用いて求めた。 平行光線透過率=全光線透過率−曇価 無機粉末の屈折率は浸漬法により測定し、ポリ
マーフイルムの屈折率はAbbeの屈折計を用いて
測定した。測定は25℃65%RHの室内でD線を用
いて行なつた。 また、水滴防止性の試験は次に示す方法で行な
つた。100c.c.のビーカーに水(30℃)を入れ、検
体フイルムにて覆い、しかるのち、恒温槽(30
℃)にビーカーをつけて、日当りのよい場所に放
置し、所定の経時後の状態を観察した。その評価
結果は以下の基準で表わした。 〇:小水滴が全くない。 △:一部に小水滴が認められる。 ×:小水滴が全面にわたつて付着する。 実施例 1 酢酸ビニル含有量が15重量%のエチレン−酢酸
ビニル共重合体(MI=2g/10分、屈折率nA
1.498)100重量部と予め150℃で2時間乾燥した
Al2O326重量%、SiO267重量%、灼熱減量7重量
%で示される含水アルミニウムシリケートゲル
(屈折率nB=1.493、25℃相対温度65%での吸着
水分21%、平均粒径4μ)5重量部と分散剤とし
てグリセリンモノステアレート0.3重量部をブラ
ベンダープラストグラフで150℃8分間混練した
後、170℃でプレス成形し厚さ100μのフイルムを
作成した。得られたフイルムは第1表に示す通り
透明で保温性、水滴防止性に優れたものであつ
た。 実施例 2 実施例1において酢酸ビニル含有量が15重量%
のエチレン−酢酸ビニル共重合体の代りに酢酸ビ
ニル含有量が25重量%のエチレン−酢酸ビニル共
重合体(MI=2g/10分、屈折率nA=1.489)
を用いた以外は実施例1と同様にして厚さ100μ
のフイルムを作成し、フイルム成形および測定を
実施し、結果を第1表に示した。 実施例 3 実施例1において酢酸ビニル含有量が15重量%
のエチレン−酢酸ビニル共重合体の代りに酢酸ビ
ニル含有量が5重量%のエチレン−酢酸ビニル共
重合体(MI=2g/10分、屈折率nA=1.505)
を用いた以外は実施例1と同様にしてフイルム成
形および測定を実施し、結果を第1表に示した。 比較例 7 実施例1においてエチレン−酢酸ビニル共重合
体の代りに密度が0.924の低密度ポリエチレン
(MI=1.8g/10分、屈折率nA=1.515)を用いた
以外は実施例1と同様にしてフイルム成形および
測定を実施し、結果を第1表に示した。 実施例 4 実施例1において、含水アルミニウムシリケー
トゲルの配合量を15重量部に変えた以外は実施例
1と同様にしてフイルム成形および測定を実施
し、結果を第1表に示した。 実施例 5 実施例1において、分散剤のグリセリンモノス
テアレートを添加しない以外は実施例1と同様に
してフイルム成形および測定を実施し、結果を第
1表に示した。 比較例 1〜4 実施例1〜3及び比較例7の配合物においてそ
れぞれ含水アルミニウムシリケートゲルを除いた
ほかは同様の手法に従つてフイルム成形および測
定を実施し、結果を第1表に示した。 比較例 5 実施例1において、含水アルミニウムシリケー
トゲルをシリカゲル(屈折率nB=1.465、25℃相
対湿度65%での吸着水分29%、平均粒径4μ)に
変えた以外は実施例1と同様にしてフイルム成形
および測定を実施し、結果を第1表に示した。 比較例 6 実施例1において含水アルミニウムシリケート
ゲルを無水カオリナイト(組成式:Al2O3
2SiO2・2H2O、屈折率1.560、25℃、相対湿度65
%での吸着水分が3.0%、平均粒径4μ)に変え
た以外は実施例1と同様にしてフイルム成形およ
び測定を実施し、結果を第1表に示した。
The present invention relates to an agricultural film mainly composed of an olefin resin with improved heat retention and drip-free properties.
More specifically, for 100 parts by weight of olefin resin (A), 2 to 20 parts of hydrated aluminum silicate gel (B)
parts by weight, the ratio of the refractive index nA of the olefinic resin to the refractive index nB of the hydrous aluminum silicate gel, nA / nB , is 0.99.
The present invention relates to an agricultural film formed from a composition having a molecular weight of 1.01 or less. Conventionally, olefin resin films such as polyvinyl chloride film, polyethylene film, and ethylene-vinyl acetate copolymer film have been used as covering materials for agricultural greenhouses, tunnel houses, etc.; The disadvantage is that the plasticizer contained in the film bleeds onto the film surface, attracting dust, which significantly impairs the light transmittance and prevents the temperature from rising inside the greenhouse.In addition, if the film is incinerated after use, it releases hydrochloric acid gas. There is a problem in that it is difficult to dispose of as it is generated. In addition, olefin resin film does not contain plasticizers and has a stable chemical structure, so its light transmittance hardly changes during long-term use, and no harmful gases are generated even when incinerated. Although it is superior to polyvinyl chloride film, this film is inferior to polyvinyl chloride film in terms of heat retention. Therefore, although olefin resin films have the above-mentioned advantage of long-lasting light transmittance, they have not been widely used as house covering films in the past. In general, the heat retention properties of the covering film for greenhouses and greenhouses are the properties that prevent the temperature inside the greenhouse from dropping at night. The temperature inside the house is kept higher than the temperature of the outside air by being radiated from the ground as radiation, but if the transmittance of the radiation radiating from the ground of the covering film is high, the radiation rays from the ground are As it dissipates outside the greenhouse, the soil temperature inside the greenhouse decreases, and as a result, it becomes impossible to maintain the temperature inside the greenhouse higher than the outside temperature. Therefore, the quality of the heat retaining property of the coating film depends on the radiation absorption or reflectance, and the higher the reflectance, the better. In addition, one of the characteristics required of a coating film for greenhouses and greenhouses is water drop resistance. The water droplet resistance of a coating film refers to the property that when the coating film is used as a house, it is difficult for small water droplets to form due to internal water vapor condensing on the film's inner surface, but olefin resin films have low wettability to water droplets. Therefore, it has been pointed out that the water droplet prevention property is inferior. For this reason, a water droplet prevention agent is usually mixed to improve the wetting of the film surface, but there are problems with the sustainability of the water droplet prevention effect and the excessive bleeding of the water droplet prevention agent onto the film surface, which reduces the light transmittance of the film. Because of the formation of spots, a film with good water droplet prevention properties has not yet been obtained. Examples of coating films with improved heat retention properties of olefin resin films include coating films made by adding specific inorganic fillers such as phosphate compounds, silicon oxide, and dehydrated kaolinite to olefin resins. However, although these methods have improved the heat retention properties of olefin resins, they are still insufficient compared to polyvinyl chloride films, and the biggest problem is that the resulting film The transparency, especially the parallel light transparency, is inferior to that of polyvinyl chloride film or ethylene-vinyl acetate copolymer film. In general, it is said that the light transmittance required for agricultural covering films is 80 to 85% or more in terms of total light transmittance, but even if the total light transmittance satisfies this requirement, The effects on crops vary greatly depending on which of light transmittance and scattered light transmittance contributes more. For example, fruits and vegetables, such as tomatoes, cucumbers, and watermelons, which are originally summer crops, generally prefer to grow under parallel light.If scattered light is used, problems often occur with color change and fruit growth; In recent years, it has gradually become clear that scattered light is preferable for raising seedlings of leafy vegetables such as cabbage and rice, as it improves the growth of the leaves. However, with the exception of wet rice cultivation, farmers still often use transparent polyvinyl chloride film, which has good parallel light transmittance, for not only fruit and vegetable crops but also for greenhouses and tunnels. This is also due to the fact that it has the great advantage of being able to see the growth status of crops inside from the outside. For this reason, although the technology to improve the heat retention, which was a drawback of polyolefin film, by adding a specific inorganic filler to polyolefin as described above has been provided for a long time, it is still not generally used. This is the current situation. Furthermore, the conventional technology in which a specific inorganic filler is added to polyolefin as described above does not provide water drop prevention properties, but water drop prevention properties are imparted by adding a large amount of a compound that is usually called a dripless agent or a wetting agent. Must. As a way to solve these problems, attempts have been made in recent years to improve parallel light transmittance and heat retention by adding specific polymer compounds such as polyacetal to polyolefin, but in this case, However, the effect of improving heat retention is still insufficient. The present inventors have removed the above-mentioned problems with olefin resins as agricultural films,
In order to provide agricultural films with excellent heat retention, parallel light transmittance, and water droplet resistance at low prices, we have conducted intensive research and developed a hydrated aluminum silicate gel powder that has a refractive index that is almost the same as that of olefin resins. The present invention was completed based on the discovery that by forming a film from a composition containing the following, a film having parallel light transmittance, heat retention, and water droplet prevention properties that are extremely superior to those of the prior art can be obtained. That is, the present invention provides a composition in which 2 to 20 parts by weight of aluminum silicate gel (B) is blended with 100 parts by weight of olefin resin (A), wherein the refractive index n A of the olefin resin and aluminum silicate are The present invention relates to an agricultural film formed from a composition in which the ratio n A /n B of the gel refractive index n B is in the range of 0.98 or more and 1.02 or less. The first feature of the present invention is that even though an inorganic filler is added to the olefin resin, a transparent film with very good parallel light transmittance can be obtained, and it also overcomes the drawbacks of conventional olefin resin films. The heat retention properties have been greatly improved and are comparable to those of polyvinyl chloride film. This heat retention improvement effect is due to the synergistic effect of the infrared opacity of water in addition to the infrared opacity of hydrated aluminum silicate gel, which greatly improves heat retention, since hydrated aluminum silicate gel adsorbs a large amount of water. It is considered that The second feature of the present invention is that the above-mentioned water-containing aluminum silicate gel contains a large amount of water, so that the film can have an effect of preventing water droplets. In addition, a small amount of non-drip agent is added for the purpose of providing remarkable water drop prevention performance.
When a humectant is used in combination, the moisturizing agent is adsorbed to the hydrous aluminum silicate gel and gradually released, resulting in excellent long-lasting effects. A third feature of the present invention is that a hydrous aluminum silicate gel having a desired refractive index is generally available at low cost by a manufacturing method known in the prior art;
Since it can be added to the olefin resin at the same time when formulating additives when manufacturing conventional agricultural films, the manufacturing process of the conventional technology can be used as is.
Since it is easy to form into a film, it is possible to provide a film according to the present invention which has greatly improved performance at a price not much different from that of conventional olefin resin agricultural films. The fourth feature of the present invention is that the composition of the present invention, which is mainly composed of olefin resin, is essentially easy to incinerate, and does not generate harmful substances such as hydrochloric acid gas when incinerated, making it easy to dispose of it after use. That's true. The above-mentioned features are advantages of the present invention over the prior art. The present invention will be explained in more detail below. The olefin resin used in the present invention is a homopolymer of α-olefin, or a copolymer with a different monomer containing α-olefin as a main component, such as polyethylene, polypropylene, or ethylene-propylene copolymer. Copolymer, ethylne-butene copolymer, ethylene-4-methyl-1-pentene copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer and the like. Among these, low-density polyethylene with a density of 0.910 to 0.935, ethylene-α-olefin copolymer, and ethylene-vinyl acetate copolymer with a vinyl acetate content of 30% by weight or less are preferred in terms of transparency, weather resistance, and price. It is preferable as a film for kana agriculture. Further, among these, ethylene-vinyl acetate copolymers having a vinyl acetate content of 5% by weight or more and 25% by weight or less are more preferable in terms of transparency, flexibility, weather resistance, etc. The refractive index (25
℃D line) is generally between 1.48 and 1.52; for example, in low-density polyethylene with a density of 0.935 or less,
1.51 to 1.52 with vinyl acetate content of 30
The refractive index of the ethylene-vinyl acetate copolymer below weight percent is in the range of 1.48 to 1.51. The hydrous aluminum silicate gel used in the present invention is a hydrous composite oxide gel, and its composition is determined according to the gist of the present invention.
That is, the refractive index of the olefin resin used in carrying out the present invention is measured using, for example, a D(Na) ray at 25° C. and a relative humidity of 65%, and the refractive index n A obtained is The composition of the hydrous aluminum silicate gel is determined so that it has a refractive index nB as close as possible to that of the gel. In this case , the ratio n A and n B is 0.98 or more .
Unless a hydrous aluminum silicate gel having a composition with n B of 1.02 or less, more preferably 0.99 or more and 1.01 or less is used, the parallel light transmittance of the resulting film will deteriorate, which is not preferable. The refractive index of olefin resin is generally 1.48~
1.52, and calculate the refractive index of the hydrous aluminum silicate gel corresponding to the most preferable refractive index ratio n A /n B of the composition of the present invention from 0.99 to 1.01 with respect to the refractive index n A of this olefinic resin. n B
is 1.47 to 1.54, and a hydrous aluminum silicate gel having a refractive index within these ranges is most suitable for the composition of the present invention. The composition of the hydrous aluminum silicate gel is the above n B =
Uniquely determined from 1.47 to 1.54. i.e. n
The composition corresponding to B is 1.47 is 90% by weight of silica, 7% by weight of alumina, 3% by weight of impurities, and nB .
The composition corresponding to 1.54 is 60% by weight of silica, 37% by weight of alumina, and 3% by weight of impurities. Therefore, the most preferable composition of the hydrous aluminum silicate gel in the composition of the present invention is 90 to 60% by weight of silica and 7 to 60% by weight of alumina, excluding water.
It has a composition consisting of impurities of 37% by weight or less and 3% by weight or less, and furthermore, among these hydrous aluminum silicate gels, the adsorbed moisture at 25°C and 65% relative humidity is 10% or more, more preferably 20% or more. Those having the above are preferably used in the present invention. If the adsorbed water content is less than 10%, it is not preferable because the effect of improving heat retention and preventing water droplets, which are the gist of the present invention, is insufficient. Furthermore, when using such a hydrous aluminum silicate gel, it is necessary that it is a fine powder, and it is desirable that the average particle size is 10 μm or less, more preferably 5 μm or less. In addition, particles with a particle size exceeding 20μ are within 3% by weight of the total particles.
More preferably, it is within 0.1% by weight. If the average particle size exceeds this range, it is not preferable because it not only deteriorates the appearance of the resulting film and deteriorates parallel light transmittance due to surface irregularities, but also deteriorates the physical properties of the film. In addition, the blending ratio of the hydrous aluminum silicate gel to the olefin resin is
It is preferably 2 to 20 parts by weight, and 3 to 20 parts by weight per 100 parts by weight.
10 parts by weight is more preferred. The amount of the compound is 2
If the amount is less than 20 parts by weight, the effect of improving the heat retention and water droplet prevention properties of the resulting film will not be significant, and if the amount exceeds 20 parts by weight, the strength of the resulting film will decrease, which is not preferable. The method of carrying out the present invention is to mix an olefinic resin and a hydrous aluminum silicate gel by a conventional method such as mixing or kneading in a roll type or Banbury type mixer or extruder, and then, for example, by inflation processing or calendering. , and is formed into a film using a normal forming method such as T-die processing. Usually film processing is 130~250℃
Since the hydrous aluminum silicate gel used in the present invention desorbs adsorbed water in this temperature range, it is necessary to pre-dry it at a temperature around the processing temperature to remove the adsorbed water. In order to improve the dispersion of the hydrous aluminum silicate gel, the film obtained as described above contains, for example, sorbitan fatty acid esters such as sorbitan monostearate, glycerin fatty acid esters such as glycerin monostearate, etc. A dispersant is added to the composition of the present invention,
It is also effective to add 0.2 to 2 parts by weight, and it is also effective to mix in suitable stabilizers, ultraviolet absorbers, antistatic agents, and if necessary, water drop preventive agents. When the olefin resin film obtained by the present invention is used as a coating film for greenhouses, greenhouses, etc., it shows a remarkable improvement in heat retention compared to the conventional technology, and is comparable to polyvinyl chloride films. In addition to having excellent performance to the extent that it can absorb moisture, its parallel light transmittance is also equivalent to that of polyvinyl chloride, and its change over time is actually better than that of polyvinyl chloride film, and it also has excellent properties in terms of water drop resistance. It is extremely useful as an agricultural film. Next, the present invention will be explained with reference to Examples, but these Examples are merely illustrative and are not limited thereto. The heat retention measurements shown in the Examples and Comparative Examples were carried out using a heat retention measurement device in which a sample was placed on one side of a box approximately 30 cm cubic in size made of heat insulating material. The temperature change inside the device was measured using a thermistor. The temperature difference from the value shown by the standard sample glass plate (approximately 2 mm thick) was expressed as the heat retention property [△T°C]. Transmittance was measured by measuring haze value and total light transmittance using a haze meter in accordance with JIS K-6714. At this time, the parallel light transmittance was determined using the following formula. Parallel light transmittance = total light transmittance - haze value The refractive index of the inorganic powder was measured by the immersion method, and the refractive index of the polymer film was measured using an Abbe refractometer. The measurements were carried out in a room at 25° C. and 65% RH using the D line. In addition, a water drop prevention test was conducted using the following method. Fill a 100c.c. beaker with water (30℃), cover it with a sample film, and then place it in a constant temperature bath (30℃).
The beaker was placed in a sunny place and the condition was observed after a predetermined period of time. The evaluation results were expressed using the following criteria. ○: There are no small water droplets. △: Small water droplets are observed in some areas. ×: Small water droplets adhere to the entire surface. Example 1 Ethylene-vinyl acetate copolymer with a vinyl acetate content of 15% by weight (MI = 2 g/10 min, refractive index n A =
1.498) 100 parts by weight and pre-dried at 150℃ for 2 hours
Hydrous aluminum silicate gel (refractive index n B = 1.493 , 21 % adsorbed moisture at 25 °C relative temperature 65%, average particle size 4μ) and 0.3 parts by weight of glycerin monostearate as a dispersant were kneaded in a Brabender Plastograph at 150°C for 8 minutes, and then press-molded at 170°C to form a film with a thickness of 100μ. As shown in Table 1, the obtained film was transparent and had excellent heat retention and water droplet prevention properties. Example 2 In Example 1, the vinyl acetate content was 15% by weight.
Ethylene-vinyl acetate copolymer with a vinyl acetate content of 25% by weight instead of the ethylene-vinyl acetate copolymer (MI = 2 g/10 min, refractive index n A = 1.489)
The thickness was 100μ in the same manner as in Example 1 except that
A film was prepared, film molded and measured, and the results are shown in Table 1. Example 3 In Example 1, the vinyl acetate content was 15% by weight.
Ethylene-vinyl acetate copolymer with a vinyl acetate content of 5% by weight instead of the ethylene-vinyl acetate copolymer (MI = 2 g/10 min, refractive index n A = 1.505)
Film molding and measurement were carried out in the same manner as in Example 1, except that the following was used, and the results are shown in Table 1. Comparative Example 7 Same as Example 1 except that low density polyethylene with a density of 0.924 (MI = 1.8 g/10 min, refractive index n A = 1.515) was used instead of the ethylene-vinyl acetate copolymer in Example 1. Film molding and measurements were carried out using the following methods, and the results are shown in Table 1. Example 4 Film molding and measurements were carried out in the same manner as in Example 1 except that the amount of hydrous aluminum silicate gel was changed to 15 parts by weight. The results are shown in Table 1. Example 5 Film molding and measurements were carried out in the same manner as in Example 1 except that the dispersant glycerin monostearate was not added, and the results are shown in Table 1. Comparative Examples 1-4 Film molding and measurements were carried out in the same manner as in Examples 1-3 and Comparative Example 7, except that the hydrous aluminum silicate gel was removed, and the results are shown in Table 1. . Comparative Example 5 Same as Example 1 except that the hydrous aluminum silicate gel was changed to silica gel (refractive index n B = 1.465, adsorbed moisture 29% at 25° C. relative humidity 65%, average particle size 4 μ). Film molding and measurements were carried out using the following methods, and the results are shown in Table 1. Comparative Example 6 In Example 1, the hydrous aluminum silicate gel was replaced with anhydrous kaolinite (compositional formula: Al 2 O 3
2SiO 2 2H 2 O, refractive index 1.560, 25℃, relative humidity 65
Film molding and measurement were carried out in the same manner as in Example 1, except that the adsorbed water content was changed to 3.0% (average particle size: 4 μm), and the results are shown in Table 1.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 オレフイン系樹脂(A)100重量部に対し、含水
アルミニウムシリケートゲル(B)2〜20重量部を配
合してなる組成物であつて、該オレフイン系樹脂
の屈折率nAと該含水アルミニウムシリケートゲ
ルの屈折率nBの比nA/nBが0.99以上1.01以下
の範囲である組成物を製膜してなる農業用フイル
ム。 2 該オレフイン系樹脂(A)が密度0.935以下の低
密度ポリエチレンもしくはエチレン−α−オレフ
イン共重合体もしくはエチレン−酢酸ビニル共重
合体であり、かつ該含水アルミニウムシリケート
ゲルが水分を除外した組成として、シリカ90〜60
重量%、アルミナ7〜37重量%、及び3重量%以
下の不純物からなる成分に水を含んでなる含水ア
ルミニウムシリケートゲルである特許請求の範囲
第1項記載の農業用フイルム。 3 該含水アルミニウムシリケートゲルが25℃相
対湿度65%で10%以上の吸着水分を有する含水ア
ルミニウムシリケートゲルである特許請求の範囲
第1項及び第2項記載の農業用フイルム。
[Scope of Claims] 1. A composition comprising 100 parts by weight of an olefin resin (A) and 2 to 20 parts by weight of a hydrous aluminum silicate gel (B), wherein the olefin resin has a refractive index n. An agricultural film formed from a composition in which the ratio n A /n B of A and the refractive index n B of the hydrous aluminum silicate gel is in the range of 0.99 or more and 1.01 or less. 2. The olefin resin (A) is a low-density polyethylene with a density of 0.935 or less, an ethylene-α-olefin copolymer, or an ethylene-vinyl acetate copolymer, and the hydrous aluminum silicate gel has a composition excluding water, Silica 90~60
2. The agricultural film according to claim 1, which is a hydrous aluminum silicate gel comprising water as a component consisting of 7 to 37% by weight of alumina, and 3% by weight or less of impurities. 3. The agricultural film according to claims 1 and 2, wherein the hydrated aluminum silicate gel has an adsorbed moisture content of 10% or more at 25° C. and 65% relative humidity.
JP6002579A 1979-05-15 1979-05-15 Improved film for agriculture Granted JPS55151042A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6002579A JPS55151042A (en) 1979-05-15 1979-05-15 Improved film for agriculture
US06/148,230 US4490502A (en) 1979-05-15 1980-05-09 Agricultural plastic film
GB8015812A GB2052522B (en) 1979-05-15 1980-05-13 Agricultural plastic film
IT6776180A IT1133090B (en) 1979-05-15 1980-05-14 PLASTIC FILM FOR AGRICULTURAL USE
FR8010881A FR2456753A1 (en) 1979-05-15 1980-05-14 PLASTIC FILM FOR AGRICULTURE
US06/391,976 US4481254A (en) 1979-05-15 1982-06-24 Agricultural plastic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6002579A JPS55151042A (en) 1979-05-15 1979-05-15 Improved film for agriculture

Publications (2)

Publication Number Publication Date
JPS55151042A JPS55151042A (en) 1980-11-25
JPS625182B2 true JPS625182B2 (en) 1987-02-03

Family

ID=13130107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6002579A Granted JPS55151042A (en) 1979-05-15 1979-05-15 Improved film for agriculture

Country Status (1)

Country Link
JP (1) JPS55151042A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900001379B1 (en) * 1985-09-13 1990-03-09 이데미쯔세끼유가가꾸 가부시기가이샤 Polyethylene resin composition
WO1998049226A1 (en) * 1997-04-25 1998-11-05 Cryovac, Inc. Polymeric film including microspheres
CN106084308A (en) * 2016-06-26 2016-11-09 周荣 A kind of modified starch base ground membrane preparation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5174846A (en) * 1974-12-18 1976-06-29 Asahi Dow Ltd
JPS5232938A (en) * 1975-09-09 1977-03-12 Re Purasuteiku Do Karumoo Sa Polyolefin composition* infrared rays absorption film material comprising composition thereof and method for increase of produce using composition thereof2

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5174846A (en) * 1974-12-18 1976-06-29 Asahi Dow Ltd
JPS5232938A (en) * 1975-09-09 1977-03-12 Re Purasuteiku Do Karumoo Sa Polyolefin composition* infrared rays absorption film material comprising composition thereof and method for increase of produce using composition thereof2

Also Published As

Publication number Publication date
JPS55151042A (en) 1980-11-25

Similar Documents

Publication Publication Date Title
JPH0148145B2 (en)
CA1075927A (en) Polyolefin compositions
US4559381A (en) Polymeric covering materials for growing plants or crops
US4189866A (en) Polymer-optical brightener combinations in transparent film form useful as glazing materials capable of modifying plant growth rate
JPS625182B2 (en)
JPS625183B2 (en)
JPS6144091B2 (en)
JPS6144092B2 (en)
JPS6313832B2 (en)
JPS6037792B2 (en) agricultural film
US4220736A (en) Agricultural covering film or sheet and method for thermal insulation from a blend of an olefin resin and an acetal resin
US4266370A (en) Agricultural covering film or sheet and method for thermal insulation
JPH0411107B2 (en)
JPS5950251B2 (en) agricultural cladding
US4651467A (en) Method for protecting plants using polymeric film containing anhydrous borax
JP2815679B2 (en) Agricultural multilayer film
JP3776350B2 (en) Agricultural film
JPH0351580B2 (en)
JP2815678B2 (en) Multilayer film for agriculture
JP2003311890A (en) Agricultural flexible multilayered film
JPS6183243A (en) Heat insulating film for agriculture
JP6952364B2 (en) Agricultural film
JPS61126152A (en) Agricultural covering film
JPS61218647A (en) Agricultural film
JPH0461024B2 (en)