JPS63138243A - Automatic measuring system for clamping degree of bulk substance by electromagnetic wave - Google Patents
Automatic measuring system for clamping degree of bulk substance by electromagnetic waveInfo
- Publication number
- JPS63138243A JPS63138243A JP28401086A JP28401086A JPS63138243A JP S63138243 A JPS63138243 A JP S63138243A JP 28401086 A JP28401086 A JP 28401086A JP 28401086 A JP28401086 A JP 28401086A JP S63138243 A JPS63138243 A JP S63138243A
- Authority
- JP
- Japan
- Prior art keywords
- electromagnetic wave
- soil
- compaction
- receiver
- degree
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000126 substance Substances 0.000 title abstract 4
- 239000000758 substrate Substances 0.000 claims abstract description 4
- 238000005056 compaction Methods 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 22
- 239000013590 bulk material Substances 0.000 claims description 4
- 239000002689 soil Substances 0.000 abstract description 21
- 238000005259 measurement Methods 0.000 abstract description 13
- 238000000034 method Methods 0.000 description 11
- 230000005855 radiation Effects 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 239000010426 asphalt Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 238000009430 construction management Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011549 displacement method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Abstract
Description
【発明の詳細な説明】
[産業,トの利用分野j
本発明は、例えば盛十村・路床材−lma材・アス7ア
ルト舗装材・砕石材等のバラ物質の締固め度合を電磁波
を用いて自動的に測定するシステムに関するものである
。[Detailed Description of the Invention] [Fields of Application in Industry] The present invention uses electromagnetic waves to measure the degree of compaction of loose materials such as roadbed materials, lma materials, asphalt paving materials, and crushed stone materials. The present invention relates to a system for automatically measuring using
[従来技術とその問題点]
一般に、締固めは、盛土中の空隙を減らして、有害な沈
下を防いで盛土の支持力を増し、またノリ面の安定を図
るために行なわれる。[Prior Art and Its Problems] Generally, compaction is carried out to reduce voids in embankments, prevent harmful subsidence, increase the bearing capacity of embankments, and stabilize the sloping surface.
従来、盛土を締固めるには、選定された盛土材に適した
締固め工法により、各層ごとに一様な薄い層に敷き広げ
て所定の回数ずつ締固めを行い、所要の締固め度合を得
るようにしている。Conventionally, to compact an embankment, each layer is spread in a thin uniform layer and compacted a predetermined number of times to obtain the required degree of compaction, using a compaction method suitable for the selected embankment material. That's what I do.
ところで、締固めは、目で見ただけでは判らないので、
施工中学に管理を厳重にしなければならず、所要の締固
め度合になっているかどうかを調べなければならない。By the way, compaction cannot be determined just by looking at it, so
Strict control must be exercised during construction, and it must be checked whether the required degree of compaction is achieved.
従来の締固め試験としては、砂置換法、rt r (ラ
ジオアイソトープ》法、C B R (cal iro
r++ia bearing ratio)法等が主に
採用されている。Conventional compaction tests include the sand displacement method, the RTR (radioisotope) method, and the CBR (cal iro
The r++ia bearing ratio) method is mainly adopted.
上記砂置換法は、地盤に穿った穴の体積を砂によって置
換し、土の体積を間接的に測って地盤の密度を測定する
方法である。しかしながら、本方法は測定時間が長くて
測定点を数多く測定できないのみならず、地盤仕上げ面
を破壊してしまう等の問題点があった。The sand replacement method is a method in which the volume of a hole drilled in the ground is replaced with sand, and the volume of the soil is indirectly measured to measure the density of the ground. However, this method not only takes a long time to measure, making it impossible to measure a large number of measurement points, but also has problems such as destroying the finished ground surface.
また、上記RI法は、ガンマ線が土の中を透過する際に
土粒子中に吸収される割合が土の密度と一定の関係にあ
るという原理を利用した測定法である。しかしながら、
がンマ線等の放射線は、被曝障害等の問題点があって、
放射線の管理が大変であるばかりでなく、測定に手間が
かがる等の問題点があった。The RI method is a measurement method that utilizes the principle that the rate at which gamma rays are absorbed into soil particles when they pass through the soil has a constant relationship with the density of the soil. however,
Radiation such as gamma rays has problems such as radiation damage,
Not only was radiation management difficult, but there were also problems such as measurement being time consuming.
さらに、上記CBR法は、直径5cI11の貫入棒を0
.25cm貫入する時の荷重を1.370kgで割って
百分率で表わし、土の締固め度合を測定する方法である
。しかしながら、本方法も準備が大ががりとなるぽかり
でなく、表面の強度に影響され易いという問題点があっ
た。Furthermore, in the above CBR method, a penetrating rod with a diameter of 5 cI11 is
.. This method measures the degree of soil compaction by dividing the load when penetrating 25 cm by 1.370 kg and expressing it as a percentage. However, this method also has problems in that it requires extensive preparation and is easily influenced by the strength of the surface.
上記いずれの方法も測定が非連続的であるため、全体を
満遍無くしかもリアルタイムで測定できないのみならず
、正確に把握することが出来ない。In any of the above methods, measurement is discontinuous, so not only cannot the whole be measured evenly and in real time, but also cannot be accurately grasped.
従って、ムラのない均質な仕上がりの締固め施工管理に
は採用できない等の問題点があった。Therefore, there are problems in that it cannot be used for compaction construction management that produces an even and homogeneous finish.
1発明の0的1
本発明は、上記従来の問題点を解決するためになされた
もので、その0的とするところは、非接触・非破壊的で
同一箇所を繰返して測定することが出来、測定時間も極
めて短くリアルタイムの測定が可能で、多数の箇所での
測定が短時間に出来、高品質で均一に締固められた土構
造物の施工が可能となる電磁波によるバラ物質の締固め
度合の自動測定システムを提供することにある。1.0 points of the invention 1. The present invention was made in order to solve the above-mentioned conventional problems, and its zero point is that the same point can be repeatedly measured without contact or non-destructively. The compaction of loose materials using electromagnetic waves allows for extremely short measurement times and enables real-time measurements, allows measurements to be taken at multiple locations in a short time, and enables the construction of high-quality, uniformly compacted earth structures. The purpose of the present invention is to provide an automatic degree measurement system.
[発明の構成1
本発明の電磁波によるバラ物質の締固め度合の自動測定
システムは、基盤上に敷均して締固めたバラ物質上で電
磁波発射手段と電磁波受信手段等から成る測定装置を移
動させながらバラ物質中に電磁波を発射して、上記基盤
との境界面で反射させ、該反射した電磁波を受信して、
バラ物質の締固めによる電気特性の変化を連続的に計測
することを特徴とするものであり、また、上記計測値に
基づいて締固め度合の分布を表示または記録することを
特徴とするものである。[Structure 1 of the Invention The system for automatically measuring the degree of compaction of loose materials using electromagnetic waves according to the present invention moves a measuring device comprising electromagnetic wave emitting means, electromagnetic wave receiving means, etc. over loose materials that have been spread and compacted on a base. While emitting electromagnetic waves into the loose material, reflecting them at the interface with the substrate, and receiving the reflected electromagnetic waves,
This device is characterized by continuously measuring changes in electrical properties due to compaction of bulk materials, and is also characterized by displaying or recording the distribution of the degree of compaction based on the measured values. be.
尚、上記基盤としては、下層盛土やコンクリート層・ア
スファルト層等の層であっ゛て、その上の締固め層とは
明確な境界面を有し、電磁波を反射することのできる表
面でなければならない。In addition, the above-mentioned foundation must be a layer such as a lower embankment, a concrete layer, an asphalt layer, etc., and must have a clear interface with the compacted layer above it and a surface that can reflect electromagnetic waves. No.
また、上記バラ物質としては、盛土材・路床材・路盤材
・アス7アル)M装材・砕石材等が含まれる。In addition, the above-mentioned bulk materials include embankment materials, roadbed materials, roadbed materials, AS7A M covering materials, crushed stone materials, and the like.
さらに、上記測定装置を移動させる手段としては、台車
あるいは自走式締固め磯等に搭載する。Further, as a means for moving the measuring device, it is mounted on a trolley, a self-propelled compaction rock, or the like.
[実施例1
以下、本発明の一実施例について図面を参照しながら説
明する。[Embodiment 1] Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
図において、1は基盤であって、その上に被締固め材と
しての土2が敷均され、ローラー等で転圧されて締固め
られる。In the figure, reference numeral 1 denotes a base, on which soil 2 as a material to be compacted is leveled and compacted by rolling with rollers or the like.
該土2の表面上には、台車3が移動するようになってい
る。該台車3には、送信アンテナ4および受信アンテナ
5が所定間隔で;投置されている。A cart 3 is adapted to move on the surface of the soil 2. A transmitting antenna 4 and a receiving antenna 5 are placed on the trolley 3 at predetermined intervals.
該送信アンテナ・tは発信器6により発生した電磁波W
を上記土2中に発射する。The transmitting antenna t transmits an electromagnetic wave W generated by the transmitter 6.
Fire into the soil 2 above.
上記送信アンテナ4がら発射された電磁波Wは、土2中
を斜め下方に向かって透過し、基盤1と土2との境界で
反射されて斜め上刃に向がって進み、上記受信アンテナ
5により受信される。送信アンテナ4から発射されて、
受信アンテナ5により受信されるまでの間に土2中に透
過される電磁波〜Vは、途中の土2の粒子や水分により
その速度が低下したりエネルギーが載設される。The electromagnetic wave W emitted from the transmitting antenna 4 passes diagonally downward through the soil 2, is reflected at the boundary between the base 1 and the soil 2, and travels toward the diagonally upper blade, and then passes through the soil 2 to the receiving antenna 5. received by. Emitted from the transmitting antenna 4,
The electromagnetic waves ~V transmitted through the soil 2 before being received by the receiving antenna 5 have their speed reduced or energy deposited due to particles and moisture in the soil 2 along the way.
1肥受信アンテナ5により受信された反射電磁波Wは受
信器7に送られる。The reflected electromagnetic wave W received by the multi-layer receiving antenna 5 is sent to the receiver 7.
また、上記発信器6および受イゴ器7は解析器8および
表示器5)等に順次接続されている。Further, the transmitter 6 and the receiver 7 are sequentially connected to an analyzer 8, a display 5), and the like.
次に−I−記実施例装置による計測繰作について説明す
る。Next, measurement operations using the apparatus of the embodiment described in -I- will be explained.
まず、締固めた土2上に測定装置を搭載した台1113
を走らせながら締固めに最も強く影響される周波数の電
磁波Wを発イ3器6から発信し、基盤1と−12との境
界から反射してくる電磁波〜■を受44アンテナ5によ
り受信して受信器7に送る。First, a table 1113 with a measuring device mounted on the compacted soil 2
While running, an electromagnetic wave W with a frequency that is most strongly affected by compaction is transmitted from the transmitter 3 6, and the electromagnetic wave ~■ reflected from the boundary between the foundations 1 and -12 is received by the receiver 44 antenna 5. It is sent to receiver 7.
この受信された電磁波Wの信号は解析器8に送られ、こ
こで電磁波Wによる土2の電気特性(例えば、伝播速度
ν、比誘電率ε、載設率等)が計算される。これらの電
気特性(伝播速度ν、比誘電率ε、減衰率等)は、土2
の締固め度合によって変化するので、このような電気特
性を読取ることにより、土2の締固め度合を知ることが
できる。The signal of the received electromagnetic wave W is sent to the analyzer 8, where the electrical characteristics of the soil 2 due to the electromagnetic wave W (for example, propagation velocity ν, relative dielectric constant ε, mounting ratio, etc.) are calculated. These electrical properties (velocity of propagation ν, relative dielectric constant ε, attenuation rate, etc.) are
The degree of compaction of the soil 2 can be determined by reading such electrical characteristics.
以上のようにして測定・解析された電気特性は表示器9
によりリアルタイムでグラフにして表示され、直ちに目
視することができると共に、その測定結果は全測定域に
おける締固め度合の分布としてデーター保存(記録・記
憶等)されたり、相対的比較されるようになっている。The electrical characteristics measured and analyzed as described above are displayed on the display 9.
In addition to displaying graphs in real time and allowing immediate visual inspection, the measurement results can be stored (recorded, memorized, etc.) as a distribution of the degree of compaction in the entire measurement area, and can be compared relatively. ing.
従って、締固め管′理者は上記締固め度合の分布の記録
に基づいて、ある一定の値(予め設定されたW理基準)
に達するまで、上記測定装置により確認しながら締固め
作業を繰り返す。Therefore, the compaction manager must set a certain value (preset W management standard) based on the record of the distribution of the degree of compaction.
The compaction work is repeated while checking with the measuring device mentioned above until the compaction is reached.
尚、上記送信アンテナ4や受信アンテナ5等の測定装置
は、台車3により移動させる代わりに、ロードローラ等
の締固め装置にg!r戟して移動させるようにしてもよ
い。Note that the measuring devices such as the transmitting antenna 4 and the receiving antenna 5 are moved by a compaction device such as a road roller instead of being moved by the trolley 3. It may also be moved by ramming.
[発明の効果1
(1)本発明システムは、基盤上に敷均して締固めたバ
ラ物質上で電磁波発射手段と電磁波受信手段等から成る
測定装置を移動させながらバラ物質中に電磁波を発射し
て、上記基盤との境界面で反射させ、詠反射した電磁波
を受信して、バラ物質の締固めによる電気特性の変化を
連続的に計測するようにしたので、締固めバラ物質を非
接触・非破壊的に測定することが出来、測定時間も極め
て短いのて゛、多数の箇所での測定はもとより連続的な
測定が可能であり、高品質で均一に締固められた土構造
物の施工が可能となる。[Effects of the Invention 1 (1) The system of the present invention emits electromagnetic waves into the bulk material while moving a measuring device consisting of an electromagnetic wave emitting means, an electromagnetic wave receiving means, etc. on the bulk material that has been spread and compacted on a base. The electromagnetic waves are reflected at the interface with the base, and the reflected electromagnetic waves are received to continuously measure the changes in electrical properties due to the compaction of loose materials.・Since it can be measured non-destructively and the measurement time is extremely short, it is possible to measure not only in many places but also continuously, and to construct high-quality and uniformly compacted earth structures. It becomes possible.
(2)計測値に栽づいて締固め度合の分布を表示または
記録するようにしたので、全体の締固め度合の管理が極
めて容易となる。(2) Since the distribution of the degree of compaction is displayed or recorded based on the measured values, it becomes extremely easy to manage the overall degree of compaction.
図は本発明の測定システムを実施する装置の概念図であ
る。
1・・・基盤、2・・・土、3・・・台車、4・・・送
信アンテナ、5・・・受信アンテナ、6・・・発信器、
7・・・受信器、8・・・解析器、9・・・表示器、W
・・・電磁波。The figure is a conceptual diagram of an apparatus implementing the measurement system of the present invention. 1... Base, 2... Soil, 3... Trolley, 4... Transmitting antenna, 5... Receiving antenna, 6... Transmitter,
7...Receiver, 8...Analyzer, 9...Display device, W
...Electromagnetic waves.
Claims (2)
射手段と電磁波受信手段等から成る測定装置を移動させ
ながらバラ物質中に電磁波を発射して、上記基盤との境
界面で反射させ、該反射した電磁波を受信して、バラ物
質の締固めによる電気特性の変化を連続的に計測するこ
とを特徴とする電磁波によるバラ物質の締固め度合の自
動測定システム。(1) Electromagnetic waves are emitted into the bulk material while moving a measuring device consisting of an electromagnetic wave emitting means, an electromagnetic wave receiving means, etc. over the bulk material that has been spread and compacted on the substrate, and 1. An automatic measuring system for measuring the degree of compaction of loose materials using electromagnetic waves, characterized by reflecting electromagnetic waves, receiving the reflected electromagnetic waves, and continuously measuring changes in electrical properties due to compaction of loose materials.
たは記録することを特徴とする前記特許請求の範囲第1
項に記載の電磁波によるバラ物質の締固め度合の自動測
定システム。(2) The first aspect of claim 1 is characterized in that the distribution of the degree of compaction is displayed or recorded based on the measured values.
An automatic measuring system for the degree of compaction of bulk materials using electromagnetic waves as described in 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28401086A JPS63138243A (en) | 1986-11-28 | 1986-11-28 | Automatic measuring system for clamping degree of bulk substance by electromagnetic wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28401086A JPS63138243A (en) | 1986-11-28 | 1986-11-28 | Automatic measuring system for clamping degree of bulk substance by electromagnetic wave |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63138243A true JPS63138243A (en) | 1988-06-10 |
Family
ID=17673128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28401086A Pending JPS63138243A (en) | 1986-11-28 | 1986-11-28 | Automatic measuring system for clamping degree of bulk substance by electromagnetic wave |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63138243A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020079796A (en) * | 2015-01-15 | 2020-05-28 | トランステック システムズ、 インコーポレイテッド | System for measurement and monitoring of physical properties of material under test from vehicle |
JP2020115114A (en) * | 2019-01-18 | 2020-07-30 | 鹿島建設株式会社 | Soil measuring method and soil measuring device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5051001A (en) * | 1973-08-23 | 1975-05-07 | ||
JPS5590845A (en) * | 1978-12-29 | 1980-07-09 | Sumitomo Electric Ind Ltd | Dielectric constant surveilance device |
-
1986
- 1986-11-28 JP JP28401086A patent/JPS63138243A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5051001A (en) * | 1973-08-23 | 1975-05-07 | ||
JPS5590845A (en) * | 1978-12-29 | 1980-07-09 | Sumitomo Electric Ind Ltd | Dielectric constant surveilance device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020079796A (en) * | 2015-01-15 | 2020-05-28 | トランステック システムズ、 インコーポレイテッド | System for measurement and monitoring of physical properties of material under test from vehicle |
JP2020115114A (en) * | 2019-01-18 | 2020-07-30 | 鹿島建設株式会社 | Soil measuring method and soil measuring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5952561A (en) | Real time asphalt pavement quality sensor using a differential approach | |
CN108717082A (en) | A kind of compaction of earth rock material quality continuous assessment method based on integrated sonic detection technology | |
US6122601A (en) | Compacted material density measurement and compaction tracking system | |
Shangguan et al. | Innovative approach for asphalt pavement compaction monitoring with ground-penetrating radar | |
Leng et al. | Field application of ground-penetrating radar for measurement of asphalt mixture density: case study of Illinois route 72 overlay | |
Agliata et al. | Non-invasive estimation of moisture content in tuff bricks by GPR | |
Porubiaková et al. | A comparison of dielectric constants of various asphalts calculated from time intervals and amplitudes | |
JPS63138243A (en) | Automatic measuring system for clamping degree of bulk substance by electromagnetic wave | |
JP3108754B2 (en) | Construction management method of embankment material | |
Diamanti et al. | A GPR-based sensor to measure asphalt pavement density | |
FI20205493A1 (en) | Method for operating a movable compaction device during material compaction work | |
JP2987751B2 (en) | Method and apparatus for measuring density using electromagnetic waves | |
Xu | Quality inspection method of layered compacted subgrade and engineering example analysis | |
JPS63138242A (en) | Method for measuring clamping degree of bulk substance by electromagnetic wave | |
Yuan et al. | Use of seismic pavement analyzer to monitor degradation of flexible pavements under Texas mobile load simulator | |
Heitor et al. | Characterising compacted fills at Penrith Lakes development site using shear wave velocity and matric suction | |
Sheeran et al. | Experimental study of pulse velocities in compacted soils | |
JPH0785063B2 (en) | Method and device for measuring the degree of compaction of soil by electromagnetic waves | |
Kim et al. | Feasibility study of the IE-SASW method for nondestructive evaluation of containment building structures in nuclear power plants | |
Hu | Nondestructive field assessment of flexible pavement and foundation layers | |
JPS63138241A (en) | Method for measuring clamping degree of bulk substance by electromagnetic wave | |
McCabe | Quality control in concrete pavement: Early detection of near-surface honeycombing with GPR | |
Janoo et al. | Pavement subgrade performance study: Project overview | |
Kirkham et al. | The compaction of concrete slabs by surface vibration: first series of experiments | |
Orbán et al. | Non-Destructive Testing of masonry arch bridges-an overview |