JPS63138214A - Method and device for measuring powder flow rate by attenuation of sound wave - Google Patents

Method and device for measuring powder flow rate by attenuation of sound wave

Info

Publication number
JPS63138214A
JPS63138214A JP28434786A JP28434786A JPS63138214A JP S63138214 A JPS63138214 A JP S63138214A JP 28434786 A JP28434786 A JP 28434786A JP 28434786 A JP28434786 A JP 28434786A JP S63138214 A JPS63138214 A JP S63138214A
Authority
JP
Japan
Prior art keywords
powder
flow rate
concentration
calculator
attenuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28434786A
Other languages
Japanese (ja)
Inventor
Atsushi Morihara
淳 森原
Mitsuhiro Matsuo
松尾 光広
Shuntaro Koyama
俊太郎 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP28434786A priority Critical patent/JPS63138214A/en
Publication of JPS63138214A publication Critical patent/JPS63138214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To execute an exact measurement which is excellent in its responsiveness, by calculating a powder flow rate from the product of a powder concentration calculated by measuring an attenuation of a sound wave by powder, and a powder speed calculated by measuring a delay time between measuring points. CONSTITUTION:Powder 70 is carried by passing through the inside of a carrying pipe 80. A sound wave generator 11 generates a sound wave between 1kHz and 1kHz, and this sound wave is emitted to the inside of the carrying pipe 80 by a sound wave element 12. The emitted sound wave is attenuated due to existence of the powder 70 and reaches a sound wave element 22. The sound wave transmitted to the element 22 is detected by a sound wave detector 21, and converted to a powder concentration by a concentration detector 31. The same measurement is executed between the elements 11, 12 and sound wave elements 14, 24 separated in the flow direction of the powder 70, as well. Results of detection of detectors 31, 32 are sent to a powder average flow rate calculator 60 through an average concentration calculator 40 and a speed computing element 50. In such a way, the measurement of a powder flow rate, which is excellent in its responsiveness can be executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、石英焚きボイラ、石炭ガス化等に用いられる
粉体を気流搬送する装置に係わり、特に精度が高く応答
の速い粉体流量計測方法および装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a device for pneumatically conveying powder used in quartz-fired boilers, coal gasification, etc., and particularly relates to a powder flow rate measurement device with high accuracy and quick response. METHODS AND APPARATUS.

〔従来の技術〕[Conventional technology]

石炭は、豊富な埋蔵量を持つ有用なエネルギー源である
が、固体であるためにその扱いが難しい。
Coal is a useful energy source with abundant reserves, but its solid state makes it difficult to handle.

しかし、石炭を微粉砕すれば、気流で搬送することによ
り様々な用途に使用することができる。これにより、利
用分野が大幅に広がり、特に発電の分野での使用が有望
視されている。そして、その発電の分野では、特に負荷
の変動が不可欠であり、微粉炭燃料供給量すなわち粉体
流量の精度の高い応答の速い計測が必要である。
However, if coal is pulverized, it can be used for a variety of purposes by being transported by air current. This has greatly expanded the range of applications, and its use is particularly promising in the field of power generation. In the field of power generation, load fluctuations are especially essential, and accurate and quick-response measurement of the pulverized coal fuel supply amount, that is, the powder flow rate, is required.

粉体の流量は一般に、粉体の速度と粉体の濃度の積で表
わされ、流量の計測法には、直接粉体の供給量を求める
方法や、粉体の速度と濃度を別々に求めて、その積によ
り算出する間接的な方法がある。” 直接粉体の供給量を求める方法は1重量減少法である1
重量減少法とは、粉体を供給するホッパ等の装置にホッ
パ中の粉体の重量を計測する装置を設けて、粉体重量の
減少の割合から粉体の流量を算出するものである。粉体
流量絶対値の信頼性は最も高い。
The flow rate of powder is generally expressed as the product of powder velocity and powder concentration. Methods for measuring the flow rate include directly determining the amount of powder supplied, and measuring the powder velocity and concentration separately. There is an indirect method of calculating by calculating the product. ” The method to directly determine the amount of powder supplied is the 1 weight reduction method.
The weight reduction method is a method in which a device such as a hopper that supplies powder is equipped with a device that measures the weight of the powder in the hopper, and the flow rate of the powder is calculated from the rate of decrease in the weight of the powder. The absolute value of powder flow rate has the highest reliability.

粉体を気流搬送する場合、搬送気体中の粉体濃度が一定
でなく、又搬送気体の速度と粉体速度も異なる。したが
って、間接的に粉体の流量を測定するには、搬送気体量
、搬送気体速度の計測とは別に粉体濃度、粉体速度を個
々に求める必要がある。
When powder is transported by air flow, the powder concentration in the transport gas is not constant, and the speed of the transport gas and the powder speed are also different. Therefore, in order to indirectly measure the powder flow rate, it is necessary to determine the powder concentration and the powder velocity separately from the measurement of the carrier gas amount and the carrier gas velocity.

粉体濃度を求める方法には、差圧法、静電容量法、コリ
オリ法、光透過重性等がある。
Methods for determining powder concentration include differential pressure method, capacitance method, Coriolis method, light transmission gravity, and the like.

差圧法:粉体、搬送ガス両者の運動エネルギの和である
差圧を求めて、これから搬送ガスの運動エネルギを引き
、粉体の速度から粉体の見がけ密度を求め、粉体濃度を
求める。
Differential pressure method: Find the differential pressure, which is the sum of the kinetic energy of both the powder and the carrier gas, subtract the kinetic energy of the carrier gas from this, find the apparent density of the powder from the velocity of the powder, and find the powder concentration. .

静電容量法:ある区域での粉体の静電容量を求めて粉体
濃度に換算する。
Capacitance method: Find the capacitance of powder in a certain area and convert it to powder concentration.

コリオリ法:粉体の慣性力を示すコリオリのカを求めて
、粉体の速度から粉体の見がけ密度を求め、粉体濃度を
求める。特開昭60−198414号明細書には、この
方法で粒子濃度を検出し、粉体速度と搬送ガス速度が等
しいとして粉体流量を求める方法が記載されている。
Coriolis method: Determine the Coriolis force, which indicates the inertial force of the powder, and determine the apparent density of the powder from the velocity of the powder to determine the powder concentration. JP-A-60-198414 describes a method of detecting the particle concentration using this method and determining the powder flow rate assuming that the powder velocity and the carrier gas velocity are equal.

光透過法:光透過率を求めて粉体の濃度に換算する。Light transmission method: Determine the light transmittance and convert it to the concentration of the powder.

粉体の速度を求める方法には、レーザ法、超音波法、相
関法等がある。
Methods for determining the velocity of powder include a laser method, an ultrasonic method, a correlation method, and the like.

レーザ@ =L D V (Laser Dapple
r Veloci+meter)により、特定の点での
粒子速度を求め、断面全体での粒子速度を求める。
Laser @ = L D V (Laser Dapple
r Veloci+meter) to determine the particle velocity at a specific point and the particle velocity over the entire cross section.

超音波法:移動する粉体に超音波を投射した時に生ずる
ドツプラー効果により粒子の速度を測定する。
Ultrasonic method: Measures particle velocity using the Doppler effect that occurs when ultrasonic waves are projected onto moving powder.

相関法:粉体を搬送する管内の流れの上流側の粉体に関
係する物理量の経時変化と、下流側の物理量の経時変化
を計測し、その遅延時間に対する相関から粉体の速度を
測定する。特開昭61−54457号明細書には、この
物理量として粉体の摩擦音を用いて、粉体速度を求める
方法が記載されている。
Correlation method: Measures changes over time in physical quantities related to the powder on the upstream side of the flow in the pipe that conveys the powder, and changes over time in the physical quantities on the downstream side, and measures the velocity of the powder from the correlation with the delay time. . JP-A No. 61-54457 describes a method for determining powder velocity using powder friction sound as this physical quantity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、直接法では応答が遅いという問題が
あり、間接法においても、粉体濃度を算出する適切な方
法がなく、粉体速度の測定で最もすぐれた相関法では適
切な粉体に関する物理量が存在しなかった。
In the above conventional techniques, there is a problem that the response is slow in the direct method, and even in the indirect method, there is no appropriate method to calculate the powder concentration, and the correlation method, which is the best for measuring powder velocity, Physical quantities did not exist.

直接法においては減少割合を算出する際に、供給量の平
滑化に時間がかかり応答が遅くなるという問題点がある
。更に間接的でも次に述べるように適切な方法がない。
The direct method has a problem in that it takes time to smooth the supply amount when calculating the rate of decrease, resulting in a slow response. Even if it is indirect, there is no suitable method as described below.

差圧法:搬送ガスを媒体として粉体の情報を得るので、
搬送ガスの圧力による影響を受けやすい。
Differential pressure method: Information on the powder is obtained using carrier gas as a medium, so
Sensitive to carrier gas pressure.

静電容量法:静電容量は、水分に敏感であるため、粉体
の水分含有量により測定値が変化する。
Capacitance method: Capacitance is sensitive to moisture, so the measured value changes depending on the moisture content of the powder.

コリオリ法:粉体にコリオリの力を生じさせるために、
搬送配管を複雑に折り曲げねばならないので、安定搬送
に障害を与える。
Coriolis method: To generate Coriolis force in powder,
Since the conveyance piping must be bent in a complicated manner, stable conveyance is hindered.

光透過法:粉体濃度が高い場合には、光が透過せず、速
度を測定することができない。
Light transmission method: When the powder concentration is high, no light is transmitted and the speed cannot be measured.

レーザ法:光透過法と同様に、粉体濃度が高い場合には
レーザ光が透過せず、速度を測定することができない。
Laser method: Similar to the light transmission method, when the powder concentration is high, the laser light does not pass through and the speed cannot be measured.

超音波法:粉体濃度が高い場合には、ドツプラー効果に
よる信号を識別することができない。
Ultrasonic method: When the powder concentration is high, the signal due to the Doppler effect cannot be identified.

相関法:特開昭第61−54457号明細書に、相関を
求める物理量として粉体の摩擦音を用いて粉体速度を求
める方法が記載されているのが、粉体の摩擦音はあらゆ
る方向に発し、粉体が通過したことを示す物理量とはな
り得す、相関を求めることは困難である。
Correlation method: JP-A No. 61-54457 describes a method for determining powder velocity using powder friction sound as a physical quantity for which correlation is to be determined. , which can be a physical quantity indicating that the powder has passed, is difficult to find a correlation with.

本発明の課題は、応答性に優れた間接法で、粉体濃度を
正確に示す測定方法を開発し、流量を正確に素早く測定
する方法及び装置を提供するにある。
An object of the present invention is to develop a measuring method that accurately indicates powder concentration using an indirect method with excellent responsiveness, and to provide a method and apparatus for accurately and quickly measuring flow rate.

〔問題点を解決するための手段〕[Means for solving problems]

前記の課題は、搬送管を通過する粉体に、搬送管内であ
る距離をへだてて複数の個所で音波を透過させ、前記粉
体による前記音波の減衰を連続的に測定して、式 %式% P(t)・・・粉体により減垂された音圧PO・・・粉
体がない時の音圧 により粉体濃度を算出し、前記複数個所に於ける測定値
の相関より粉体速度を算出して粉体の濃度と速度の積で
流量を算出する方法と共に、更に音波を発射する複数の
発振器と、発射された音波の減衰を測定する複数の検出
器と、該検出器により測定された音波の減衰から粉体濃
度を算出する濃度算出器と、複数個所の計測データの相
関から粉体速度を算出する速度算出器と、算出された粉
体の濃度と速度の積で粉体流量を算出する粉体流量算出
器とを有する音波減衰による粉体流量の計測装置を設け
ることにより達成される。
The above problem was solved by transmitting sound waves through the powder passing through the transport pipe at multiple locations separated by a certain distance within the transport pipe, and continuously measuring the attenuation of the sound waves by the powder. % P(t)...Sound pressure PO reduced by powder...Powder concentration is calculated from the sound pressure when there is no powder, and the powder concentration is calculated from the correlation of the measured values at the multiple locations. In addition to the method of calculating the velocity and calculating the flow rate by multiplying the concentration and velocity of the powder, the method further includes a plurality of oscillators that emit sound waves, a plurality of detectors that measure attenuation of the emitted sound waves, and a method using the detectors. There is a concentration calculator that calculates the powder concentration from the attenuation of measured sound waves, a speed calculator that calculates the powder velocity from the correlation of measurement data from multiple locations, and a This is achieved by providing a powder flow rate measuring device using acoustic attenuation, which has a powder flow rate calculator for calculating the powder flow rate.

〔作用〕[Effect]

搬送管を通過する粉体に音波を透過させた時の音波の減
衰は、該音波の周波数によって大きく異なり、IKHz
以下の周波数では減衰が少なく。
The attenuation of the sound waves when they are transmitted through the powder passing through the conveyor tube varies greatly depending on the frequency of the sound waves, and is
There is less attenuation at frequencies below.

I M Hz以上の周波数では減衰が激しいことを発見
した。そして音波の周波数がIKHzからI MH2+
までの間であるとき、搬送管内部の粉体濃度と。
It was discovered that the attenuation is severe at frequencies above I MHz. And the frequency of the sound wave is from IKHz to I MH2+
When the powder concentration inside the conveying tube is between.

音圧の減衰とは1次の式で示す関係にあると共に、この
減衰に及ぼす搬送気体の影響は粉体濃度の影p(t)・
・・粉体で減衰された音圧 Pa・・・粉体がない時の、減衰されていない音圧 C(t)・・・粉体濃度 K・・・比例定数 この式を更に粉体計測用に一般的な形に表すとC(t)
=ao+azD+azD”+aaD’P。
The attenuation of sound pressure has a relationship shown by the linear equation, and the influence of the carrier gas on this attenuation is due to the influence of the powder concentration p(t)・
・Sound pressure Pa attenuated by powder ・Undamped sound pressure when there is no powder C(t) ・Powder concentration K ・Proportional constant This equation can be further applied to powder measurement Expressed in general form, C(t)
=ao+azD+azD''+aaD'P.

aol al+ az、aa・・・搬送管形状係数とな
る。
aol al+ az, aa... Convey pipe shape coefficient.

更に流れ方向に距離りだけ離して設置した検出点で得ら
れた減衰信号を、それぞれFl(t)、 F2(t)。
Furthermore, the attenuation signals obtained at the detection points installed a distance apart in the flow direction are Fl(t) and F2(t), respectively.

としたとき、この信号同志の相関は、 で表わされる。このφ(τ)が最大となるτが、粉体が
距離りを通過するのに要した時間を示す・従って粉体の
速度Vは V=− τ で表わされる。
When , the correlation between these signals is expressed as follows. τ at which this φ(τ) is maximum indicates the time required for the powder to pass the distance. Therefore, the velocity V of the powder is expressed as V=-τ.

検出器により測定された音波の減衰量P(し)から、濃
度算出器で粉体濃度C(t)が算出され、距離りだけ離
して設置された検出点で測定された減衰信号F1 (t
)* Fz (t)が速度算出器に加えられて粉体速度
Vが算出される0次いで粉体濃度C(t)と、粉体速度
Vが粉体流量算出器に加太られ、粉体流量が算出される
The powder concentration C(t) is calculated by the concentration calculator from the attenuation amount P(shi) of the sound wave measured by the detector, and the attenuation signal F1 (t
) * Fz (t) is added to the velocity calculator to calculate the powder velocity V. 0 Then the powder concentration C(t) and the powder velocity V are added to the powder flow rate calculator to calculate the powder flow rate. is calculated.

〔実施例〕〔Example〕

以下、本発明の実施例1を第1図により説明する。 Embodiment 1 of the present invention will be described below with reference to FIG.

本実施例は、搬送管80に設けた検出器と、該検出器に
接続された算出器より構成されている。
The present embodiment is composed of a detector provided in the transport pipe 80 and a calculator connected to the detector.

搬送管80に音波素子12と音波素子22が、対向して
設けられ、音波素子12と音波素子22を結ぶ線が、搬
送管内の粉体の流れ方向に直交する位置に配置されてい
る。音波素子12には音波発生器11に接続されている
。音波素子22は音波検知器21に接続され、音波検知
器21は濃度算出器31に接続されている。
The sonic element 12 and the sonic element 22 are provided facing each other in the conveying tube 80, and the line connecting the sonic element 12 and the sonic element 22 is arranged at a position perpendicular to the flow direction of the powder in the conveying tube. The acoustic wave element 12 is connected to the acoustic wave generator 11 . The sonic element 22 is connected to a sonic detector 21, and the sonic detector 21 is connected to a concentration calculator 31.

搬送管80に沿って音波素子12と距離りだけ離れた場
所に音波素子14と音波素子24が対向して設けられ、
音波素子14と音波素子24を結ぶ線が、搬送管内の粉
体の流れ方向に直交する位置に配置されている。音波素
子14は音波発生器13に接続されている。音波素子2
4は音波検知器23に接続され、音波検知器23は濃度
算出器32に接続されている。
A sonic element 14 and a sonic element 24 are provided facing each other along the conveyance pipe 80 at a distance from the sonic element 12,
A line connecting the sonic elements 14 and 24 is arranged at a position perpendicular to the flow direction of the powder in the conveying pipe. The acoustic wave element 14 is connected to the acoustic wave generator 13 . Sonic element 2
4 is connected to a sonic detector 23, and the sonic detector 23 is connected to a concentration calculator 32.

音波発生器11と、音波素子12と、音波素子22と、
音波検知器21とをまとめて検出器1と呼び、音波発生
器13と、音波素子14と、音波素子24と、音波検知
器23をまとめて検出器2と呼ぶ。
A sound wave generator 11, a sound wave element 12, a sound wave element 22,
The sonic wave detector 21 is collectively referred to as a detector 1, and the sonic wave generator 13, the sonic element 14, the sonic element 24, and the sonic wave detector 23 are collectively referred to as a detector 2.

前記濃度算出器31.32に平均濃度算出器40が接続
され、速度算出器50が同様に前記濃度算出器31.3
2に接続されている。更に前記平均濃度算出器40と速
度算出器5oとに粉体平均流量算出器60が接続されて
いる。
An average concentration calculator 40 is connected to the concentration calculator 31.32, and a speed calculator 50 likewise connects to the concentration calculator 31.3.
Connected to 2. Further, a powder average flow rate calculator 60 is connected to the average concentration calculator 40 and the speed calculator 5o.

次に本実施例の動作について説明する。搬送管80の内
部を通過して粉体70が搬送される。粉体70は、気流
で搬送されるため、管内の粉体濃度に経時変化が生じる
。音波発生器11では、IKHzからIMHzまでの間
の音波を発生する。
Next, the operation of this embodiment will be explained. The powder 70 is transported through the transport pipe 80 . Since the powder 70 is transported by air current, the powder concentration within the tube changes over time. The sound wave generator 11 generates sound waves between IKHz and IMHz.

この音波を音波素子12により搬送管80の内部へ発射
する0発射された音波は、搬送管内の気流を伝わるが、
粉体7oの存在により減衰して音波素子22に到達する
。この減衰の度合は粉体濃度によって異なる。音波素子
22に伝えられた音波(減衰信号)は音波検知器21に
よって電気信号に変換される。この電気信号は前記音波
検知器21に接続された濃度算出器31によって次式に
より粉体濃度を表わす信号に変換される。
This sound wave is emitted into the transport pipe 80 by the sound wave element 12. The emitted sound wave is transmitted through the airflow inside the transport pipe, but
It reaches the acoustic wave element 22 after being attenuated by the presence of the powder 7o. The degree of this attenuation varies depending on the powder concentration. The sound wave (attenuated signal) transmitted to the sound wave element 22 is converted into an electrical signal by the sound wave detector 21. This electric signal is converted by the concentration calculator 31 connected to the sonic wave detector 21 into a signal representing the powder concentration according to the following equation.

Ct(t )= a zo+ a tzD + a 1
xD”+ a llID’IO ここで、C1(t)は粉体濃度、Pt(t)は粉体によ
り減衰されたあとの音圧、ptoは粉体がない時の、減
衰されない音圧を表わす、1”loはあらかじめ粉体が
ない状態で測定しておく。またa io、 a 11+
a tz* a 18は搬送配管の大きさ、形状、粉体
の粒径分布等により決定される定数である0以上の操作
により音波素子12と音波素子22の間の粉体濃度を検
出する。同様の操作を音波素子14と音波素子24の間
でも行い、得られた減衰後の音圧をPg(t)、粉体濃
度をC2,(t)とする。
Ct (t) = a zo + a tzD + a 1
xD"+ a llID'IO Here, C1(t) is the powder concentration, Pt(t) is the sound pressure after being attenuated by the powder, and pto is the unattenuated sound pressure when there is no powder. , 1"lo are measured in advance without powder. Also a io, a 11+
a tz* a 18 is a constant determined by the size and shape of the conveying pipe, the particle size distribution of the powder, etc., and detects the powder concentration between the sonic elements 12 and 22 by operation of 0 or more. A similar operation is performed between the sonic element 14 and the sonic element 24, and the resulting attenuated sound pressure is set as Pg(t), and the powder concentration is set as C2,(t).

濃度算出器31.32に接続された速度算出器50は、
この濃度C1c t ) * CxCt )から粉体速
度Vを算出する。C五(t)、Ct(t)の相関は次式
で表現される。
The speed calculator 50 connected to the concentration calculator 31, 32 is
The powder velocity V is calculated from this concentration C1c t ) * CxCt ). The correlation between C5(t) and Ct(t) is expressed by the following equation.

このφ(τ)が最大となるτが時刻tにおいて距離りだ
け離れる2点間を粉体が通過するのにかかった時間で(
1)を表わす、従って粉体の速度は次式で表現される。
τ at which φ(τ) is maximum is the time taken for the powder to pass between two points separated by the distance at time t (
1), therefore, the velocity of the powder is expressed by the following equation.

濃度算出器31.32に接続された平均濃度算出器40
は、Ct(tL CxCt)がら次の式で表わされる平
均粉体濃度Ca(t)を算出する。
Average concentration calculator 40 connected to concentration calculators 31 and 32
calculates the average powder concentration Ca(t) expressed by the following formula from Ct(tL CxCt).

平均濃度算出器40および速度算出器5oに接続された
粉体平均流量算出器6oは、粉体速度V(t)および平
均粉体濃度Ca(t)から下式により、平均粉体流量F
 (t)を算出する。
The powder average flow rate calculator 6o connected to the average concentration calculator 40 and the speed calculator 5o calculates the average powder flow rate F from the powder speed V(t) and the average powder concentration Ca(t) using the following formula.
(t) is calculated.

F(t)=V’(t) ・Ca(t) 本実施例では、2点で計測した濃度の平均化処理を行っ
ているので、流量算出の精度が高い。
F(t)=V'(t) ·Ca(t) In this embodiment, since the concentrations measured at two points are averaged, the accuracy of flow rate calculation is high.

第2図は、本発明の第2の実施例を示す、装置の構成は
実施例1と類似しているが、速度算出器が濃度算出器3
1.32に接続されるがわりに、音波検知器21.23
に接続されいる点が異なる。
FIG. 2 shows a second embodiment of the present invention. The configuration of the device is similar to that of the first embodiment, but the speed calculator is replaced by the concentration calculator 3.
1.32 instead of the sonic detector 21.23
The difference is that it is connected to

速度を算出するのに、音波検知器21.23で音波から
電気信号に変換された減衰信号を直接用いて相関を求め
、これから速度算出するので信号処理が速く、応答性が
向上する。
To calculate the speed, the attenuation signal converted from the sound wave to an electric signal by the sound wave detectors 21, 23 is directly used to obtain a correlation, and the speed is calculated from this, so signal processing is fast and responsiveness is improved.

第三図は、第三の実施例を示す、音波素子15゜16は
、音波の発射と受信の素子を複合した素子であり、音波
発生器11.13で発生した音波は音波素子15.16
によって、搬送管80の中の粉体70へ発射される。粉
体70によって減衰された音波は、対向する管壁面で反
射され、再度粉体70で減衰されたあと、音波素子15
.16で受信される。以後の信号処理は、第二の実施例
の場合と同様である0本実施例によれば、搬送管に装置
する素子の数を半減することができる。
FIG. 3 shows a third embodiment. Sonic elements 15 and 16 are elements that combine sound wave emitting and receiving elements, and the sound waves generated by the sound wave generator 11.13 are transmitted through the sound wave elements 15.16.
The powder is ejected into the powder 70 in the conveying pipe 80 by the following. The sound waves attenuated by the powder 70 are reflected by the opposing tube wall surface, and after being attenuated again by the powder 70, the sound waves are transmitted to the sound wave element 15.
.. It is received at 16. The subsequent signal processing is similar to that of the second embodiment. According to this embodiment, the number of elements installed in the conveying pipe can be halved.

これまでに述べた実施例では、信号伝達媒体として、音
波−電気信号を用いたが、音波−光信号あるいはそれら
を複合した信号媒体としても差支えない。
In the embodiments described so far, acoustic waves and electric signals are used as the signal transmission medium, but acoustic waves and optical signals or a signal medium that is a combination of them may also be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、管内を気体搬送中の粉体の流量を、搬
送中の粉体による音波の減衰を計測することにより、搬
送気体の圧力変動や粉体の濃度変化に影響されずに、正
確に迅速に測定することが可能となり、設備の負荷の変
動に正確に、敏速に対応できる効果がある。
According to the present invention, by measuring the flow rate of powder being transported in a pipe by the attenuation of sound waves due to the powder being transported, It becomes possible to measure accurately and quickly, and has the effect of being able to respond accurately and quickly to fluctuations in the load on equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す系統図、第2図は
第2の実施例を示す系統図であり、第3図は第3の実施
例を示す系統図である。 11.12,21.22・・・検出器、13,14゜2
5.24・・・検出器、31.32・・・濃度算出器、
50・・・速度算出器、60・・・粉体流量算出器、7
0・・・粉体、80・・・搬送管。
FIG. 1 is a system diagram showing a first embodiment of the present invention, FIG. 2 is a system diagram showing a second embodiment, and FIG. 3 is a system diagram showing a third embodiment. 11.12, 21.22...Detector, 13, 14°2
5.24...Detector, 31.32...Concentration calculator,
50... Speed calculator, 60... Powder flow rate calculator, 7
0...Powder, 80...Transport pipe.

Claims (1)

【特許請求の範囲】 1、気流搬送される粉体の流量を計測する方法において
、一方で搬送管内を通過する粉体に音波を発射して前記
粉体による音波の減衰を測定して粉体濃度を算出し、他
方で前記の測定を流れ方向に離れた複数個所で実施して
得られた減衰信号の機関より、測定点間での遅延時間を
測定して粉体速度を算出し、前記粉体濃度と前記粉体速
度の積から粉体流量を算出することを特徴とする音波減
衰による粉体流量の計測方法。 2、搬送管内を通過する粉体に発射される音波の周波数
が、1KHzと1MHzの間の周波数であることを特徴
とする特許請求の範囲第1項に記載の音波減衰による粉
体流量の計測方法。 3、粉体濃度を算出するとき、 C(t)=a_0+a_1D+a_2D^2+a_3D
^3但し、D=l_n[P(t)]/P_0、C(t)
・・・粉体濃度、a_0、a_1、a_2、a_3・・
・搬送管形状係数P_0・・・粉体がない時の音圧 P(t)・・・粉体により減衰された音圧 なる式を用いて算出することを特徴とする特許請求の範
囲第1項に記載の音波減衰による粉体流量の計測方法。 4、遅延時間の測定に用いる減衰信号が粉体濃度である
ことを特徴とする特許請求の範囲第1〜2項のいずれか
の項に記載の音波減衰による粉体流量の計測方法。 5、遅延時間の測定に用いる減衰信号が、減衰された音
圧を電気信号に変換したものであり、演算処理が行われ
ていないものであることを特徴とする特許請求の範囲第
1〜2項のいずれかの項に記載の音波減衰による粉体流
量の計測方法。 6、粉体を気流搬送する搬送管に取付けられて搬送され
る粉体による音波の減衰を測定する検出器と、該検出器
に接続され該検出器により測定された音波の減衰から粉
体濃度を算出する濃度算出器と、流れ方向の複数個所の
減衰信号を入力されその相関より測定点間での遅延時間
を測定し粉体速度を算出する速度算出器と、濃度算出器
および速度算出器に接続され粉体濃度と粉体速度の積で
粉体流量を算出する粉体流量算出器とを有する音波減衰
による粉体流量の計測装置。 7、音波の減衰から、粉体濃度を算出するとき、C(t
)=a_0+a_1D+a_2D^2+a_3D^3但
し D=l_n[P(t)]/P_0 C(t)・・・粉体濃度 a_0、a_1、a_2、a_3・・・搬送管形状係数
P(t)・・・粉体により減衰された音圧 P_0・・・粉体がない時の音圧 なる式を用いて算出することを特徴とする特許請求の範
囲第6項に記載の音波減衰による粉体流量の計測装置。 8、速度算出器が、濃度算出器に接続され、濃度算出器
の出力データが速度算出器の入力データとなつているこ
とを特徴とする特許請求の範囲第6〜7項のいずれかの
項に記載の音波減衰による粉体流量の計測装置。 9、速度算出器が、検出器に接続され、検出器の出力デ
ータが速度算出器の入力データとなつていることを特徴
とする特許請求の範囲第6〜7項のいずれかの項に記載
の音波減衰による粉体流量の計測装置。 10、複数の濃度算出器に接続されて粉体平均濃度を算
出する平均濃度算出器と、該平均濃度算出器と速度算出
器とに接続され、粉体平均濃度と粉体速度の積で粉体流
量を算出する粉体平均流量算出器とを設けたことを特徴
とする特許請求の範囲第6〜9項のいずれかの項に記載
の音波減衰による粉体流量の計測装置。 11、搬送管中の粉体へ音波を発射する素子と、粉体に
より減衰された音波を受信する素子を別体とした検出器
を有することを特徴とする特許請求の範囲第6〜10項
のいずれかの項に記載の音波減衰による粉体流量の計測
装置。 12、搬送管中の粉体へ音波を発射する素子と、粉体に
より減衰された音波を受信する素子を複合して一体とし
た検出器を有することを特徴とする特許請求の範囲第6
〜10項のいずれかの項に記載の音波減衰による粉体流
量の計測装置。 13、搬送管中の粉体に発射する音波の周波数が、1K
Hzから1MHzをの間の周波数である検出器を有する
ことを特徴とする特許請求の範囲第6〜12項のいずれ
かの項に記載の音波減衰による粉体流量の計測装置。
[Claims] 1. In a method of measuring the flow rate of powder conveyed by air current, on the one hand, a sound wave is emitted to the powder passing through a conveyance pipe, and the attenuation of the sound wave by the powder is measured; On the other hand, the powder velocity is calculated by measuring the delay time between measurement points using the attenuated signal obtained by carrying out the above measurements at multiple points separated in the flow direction, and then calculating the powder velocity. A method for measuring a powder flow rate using acoustic attenuation, characterized in that the powder flow rate is calculated from the product of the powder concentration and the powder velocity. 2. Measurement of powder flow rate by sonic attenuation according to claim 1, wherein the frequency of the sound wave emitted to the powder passing through the conveying pipe is between 1 KHz and 1 MHz. Method. 3. When calculating the powder concentration, C(t)=a_0+a_1D+a_2D^2+a_3D
^3 However, D=l_n[P(t)]/P_0, C(t)
...Powder concentration, a_0, a_1, a_2, a_3...
- Convey pipe shape factor P_0...Sound pressure when there is no powder P(t)...Sound pressure attenuated by powder is calculated using the formula. Claim 1 Method for measuring powder flow rate using acoustic attenuation as described in Section 1. 4. The method for measuring a powder flow rate by acoustic attenuation according to any one of claims 1 to 2, wherein the attenuation signal used to measure the delay time is a powder concentration. 5. Claims 1 to 2, characterized in that the attenuated signal used to measure the delay time is a signal obtained by converting attenuated sound pressure into an electrical signal, and is not subjected to arithmetic processing. A method for measuring powder flow rate using acoustic attenuation as described in any of the above. 6. A detector that is attached to a conveying pipe that conveys powder by airflow and measures the attenuation of sound waves caused by the conveyed powder, and a detector that is connected to the detector and determines the powder concentration from the attenuation of the sound waves measured by the detector. A concentration calculator that calculates the powder velocity, a speed calculator that receives attenuation signals from multiple locations in the flow direction and calculates the powder velocity by measuring the delay time between measurement points based on the correlation, and a concentration calculator and a speed calculator. A powder flow rate measuring device using acoustic attenuation, which has a powder flow rate calculator connected to the powder flow rate calculator that calculates the powder flow rate by the product of powder concentration and powder velocity. 7. When calculating the powder concentration from the attenuation of the sound wave, C(t
)=a_0+a_1D+a_2D^2+a_3D^3 However, D=l_n[P(t)]/P_0 C(t)...Powder concentration a_0, a_1, a_2, a_3...Conveying tube shape factor P(t)... Measurement of powder flow rate by sound wave attenuation according to claim 6, characterized in that the measurement is performed using the formula: sound pressure P_0 attenuated by powder: sound pressure when there is no powder. Device. 8. Any one of claims 6 to 7, characterized in that the speed calculator is connected to the concentration calculator, and the output data of the concentration calculator is the input data of the speed calculator. A measuring device for powder flow rate using acoustic wave attenuation described in . 9. According to any one of claims 6 to 7, the speed calculator is connected to a detector, and the output data of the detector is the input data of the speed calculator. A device for measuring powder flow rate using acoustic wave attenuation. 10. An average concentration calculator connected to a plurality of concentration calculators to calculate the powder average concentration; and an average concentration calculator connected to the average concentration calculator and the speed calculator to calculate the powder by the product of the powder average concentration and the powder speed. 10. A powder flow rate measurement device using acoustic attenuation according to any one of claims 6 to 9, further comprising a powder average flow rate calculator for calculating a powder flow rate. 11. Claims 6 to 10 characterized in that the detector has a separate element that emits sound waves to the powder in the conveyance tube and an element that receives the sound waves attenuated by the powder. A powder flow rate measuring device using acoustic attenuation according to any one of the items. 12. Claim 6, characterized in that it has a detector that combines and integrates an element that emits sound waves to the powder in the conveyance pipe and an element that receives the sound waves attenuated by the powder.
A powder flow rate measurement device using acoustic attenuation according to any one of items 1 to 10. 13. The frequency of the sound wave emitted to the powder in the conveying tube is 1K.
13. A powder flow rate measuring device using acoustic attenuation as claimed in any one of claims 6 to 12, characterized by having a detector having a frequency between Hz and 1 MHz.
JP28434786A 1986-12-01 1986-12-01 Method and device for measuring powder flow rate by attenuation of sound wave Pending JPS63138214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28434786A JPS63138214A (en) 1986-12-01 1986-12-01 Method and device for measuring powder flow rate by attenuation of sound wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28434786A JPS63138214A (en) 1986-12-01 1986-12-01 Method and device for measuring powder flow rate by attenuation of sound wave

Publications (1)

Publication Number Publication Date
JPS63138214A true JPS63138214A (en) 1988-06-10

Family

ID=17677402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28434786A Pending JPS63138214A (en) 1986-12-01 1986-12-01 Method and device for measuring powder flow rate by attenuation of sound wave

Country Status (1)

Country Link
JP (1) JPS63138214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117393A (en) * 2011-12-01 2013-06-13 Wire Device:Kk Method and apparatus for measuring concentration or flow rate of powder or fluid flowing in pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013117393A (en) * 2011-12-01 2013-06-13 Wire Device:Kk Method and apparatus for measuring concentration or flow rate of powder or fluid flowing in pipe

Similar Documents

Publication Publication Date Title
US4976154A (en) Arrangement for contactless measurement of the volume flow or mass flow of a moving medium
EP0598720B1 (en) Nonintrusive flow sensing system
US2874568A (en) Ultrasonic flowmeter
JP2001526787A (en) How to measure density and mass flow
US9551604B2 (en) Multiphase flowmeter
Kartashov et al. Principles of construction and assessment of technical characteristics of multi-frequency atmospheric sodar in the humidity measurement mode
CN102435237A (en) Gas-solid two-phase flow parameter detector
US4320665A (en) Method and means for measuring flow of a two phase fluid
Taskin et al. Instant gas concentration measurement using ultrasound from exterior of a pipe
GB2300265A (en) Flowmeter
US3727458A (en) Measurement of rates of flow of gases
JPS6236527B2 (en)
JPS63138214A (en) Method and device for measuring powder flow rate by attenuation of sound wave
US20090055104A1 (en) Velocity and impingement method for determining parameters of a particle/fluid flow
RU2396518C2 (en) Method and device for acoustic measurement of gas flow rate
JPH0660834B2 (en) Method and apparatus for measuring powder flow rate by sound wave transmission time
JPH09189587A (en) Powder flowmeter
Guo et al. Application of a microwave mass flow meter in a dense phase pneumatic conveying system of pulverized coal
Yanta et al. Measurements of Mach 3 turbulence transport properties on a nozzle wall
RU2806839C1 (en) Device for measuring mass flow ratio of cement-air flow in pipeline
JPS601522A (en) Method for measuring flow rate of powder fluid
RU2726289C1 (en) Ultrasonic flowmeter
SU1123397A1 (en) Method of determining immediate value and structural constant of wind velocity
JPS62280634A (en) Method and device for measuring particle size and speed of particle
JPH0493722A (en) Apparatus for detecting and measuring moving substance