JPS63137835A - Manufacture of sintered ceramic laminate - Google Patents

Manufacture of sintered ceramic laminate

Info

Publication number
JPS63137835A
JPS63137835A JP28553386A JP28553386A JPS63137835A JP S63137835 A JPS63137835 A JP S63137835A JP 28553386 A JP28553386 A JP 28553386A JP 28553386 A JP28553386 A JP 28553386A JP S63137835 A JPS63137835 A JP S63137835A
Authority
JP
Japan
Prior art keywords
thermocompression bonding
layer
ceramic
green
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28553386A
Other languages
Japanese (ja)
Inventor
富永 清隆
重村 修二
一也 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Narumi China Corp
Original Assignee
Narumi China Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Narumi China Corp filed Critical Narumi China Corp
Priority to JP28553386A priority Critical patent/JPS63137835A/en
Publication of JPS63137835A publication Critical patent/JPS63137835A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体を搭載するためのセラミック積層品の製
造方法、特に品質・生産性の優れた焼結セラミック積層
品の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a ceramic laminate for mounting a semiconductor, and particularly to a method for manufacturing a sintered ceramic laminate with excellent quality and productivity. .

〔従来の技術〕[Conventional technology]

焼結セラミック積層品は集積回路素子等の半導体素子を
搭載するセラミックパッケージとしての用途が多い。セ
ラミックパッケージとしてはサーディツプ型、積層パッ
ケージ型等がある。そのうち、積層パッケージ型は次の
ようにして製造される。まず、セラミック粉末と有機樹
脂を混合し、薄いセラミックグリーンシートに成形した
ものに、所定の孔明け、切断加工を行う。このセラミッ
クグリーンシートの製造方法は、ドクターブレード法、
カレンダー法、押し出し圧延法等があるが、現状ではド
クターブレード法が主流である。
Sintered ceramic laminates are often used as ceramic packages that mount semiconductor elements such as integrated circuit elements. Ceramic packages include cerdip type, laminated package type, etc. Among them, the stacked package type is manufactured as follows. First, ceramic powder and organic resin are mixed, formed into a thin ceramic green sheet, and then predetermined holes are punched and cut. The manufacturing method of this ceramic green sheet is the doctor blade method,
There are calendering methods, extrusion rolling methods, etc., but the doctor blade method is currently the mainstream.

こうして得たセラミックグリーンシートの上にペースト
化したW、Mo等の導体ペースト等を印刷して配線パタ
ーンとし、そして必要な枚数の熱圧着を繰り返して多層
に積層する。一般にセラミックグリーンシートの積層数
は何層でも可能であり、現実に30層以上のものが実用
化されているとはいえ、5層程度が普通である。
A conductive paste such as W or Mo is printed on the thus obtained ceramic green sheet to form a wiring pattern, and the required number of sheets are repeatedly thermocompressed to form a multilayer stack. Generally, ceramic green sheets can be laminated in any number of layers, and although 30 or more layers have actually been put into practical use, about 5 layers are common.

次に、この積層されたものを水素雰囲気炉で焼成をして
内部配線を形成する。さらに外部配線部として必要に応
じ、リードフレーム、シールリングの銀ロー付けや金メ
ッキを施して完成品とする。
Next, this stacked structure is fired in a hydrogen atmosphere furnace to form internal wiring. Furthermore, if necessary, silver braze or gold plating is applied to the lead frame and seal ring for the external wiring part to complete the product.

しかし、積層パッケージ型の欠点は、積層されたセラミ
ックグリーンシートを焼成するとき、各層のそれぞれの
セラミックグリーンシートの間に焼成収縮率のバラツキ
があり、高い寸法精度を得にくいことである。このため
に、積層されるセラミックグリーンシートは同一原料ロ
ット、同一原料粉末の混合操作ロットとしたり、また焼
成についても、同一焼成スケジュールとすることの配慮
をして製造が行われている。
However, a drawback of the laminated package type is that when the laminated ceramic green sheets are fired, there are variations in firing shrinkage rate among the ceramic green sheets of each layer, making it difficult to obtain high dimensional accuracy. For this reason, the ceramic green sheets to be laminated are manufactured in the same raw material lot, the same mixed operation lot of raw material powder, and the firing schedule is also taken into consideration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は前述の積層されるセラミックグリーンシートを
同一原料ロット、同一原料粉末の混合操作ロットとした
り、また焼成についても、同一焼成スケジュールとする
こと等一般に用いらている方法により高い寸法精度を得
ることに加えて、反りの小さい焼結セラミック積層品を
得るため、本発明者等は品質に影響を及ぼす欠点のひと
っである反りの発生原因を鋭意研究した。
The present invention achieves high dimensional accuracy by using commonly used methods such as making the ceramic green sheets to be laminated as described above in the same raw material lot, the same mixed operation lot of raw material powder, and also using the same firing schedule for firing. In addition, in order to obtain a sintered ceramic laminate with less warpage, the present inventors conducted extensive research into the causes of warpage, which is one of the defects that affect quality.

熱圧着し積層する工程を説明する。まず、第1層目のセ
ラミックグリーンシートの上に、第2層目のセラミック
グリーンシートを重ねて熱圧着しf真層する。さらに第
3層目をfft層するためには、さらに、第1・2層の
うえに第3層を重ねて熱圧着し積層する。こうして多層
に積層するため熱圧着を繰り返す。nNのときはn−1
回の熱圧着回数となる。すなわち、5層の場合は、各層
のセラミックグリーンシートの熱圧着回数は第1層目お
よび第2層目は4回、第3層目は3回、第4層目は2回
、第5層目は1回、と層毎にそれぞれ異なる。
The process of thermocompression bonding and lamination will be explained. First, a second layer of ceramic green sheets is superimposed on top of the first layer of ceramic green sheets and bonded by thermocompression to form a true layer. Furthermore, in order to form the third layer as an fft layer, the third layer is further stacked on top of the first and second layers and bonded by thermocompression. In this way, thermocompression bonding is repeated to form multiple layers. n-1 when nN
This is the number of times of thermocompression bonding. In other words, in the case of 5 layers, the number of thermocompression bonding times for each layer of ceramic green sheets is 4 times for the 1st and 2nd layers, 3 times for the 3rd layer, 2 times for the 4th layer, and 2 times for the 5th layer. Each eye is different for each layer.

本発明者等は積層前において同一の値の生密度のセラミ
ックグリーンシートを用いて、熱圧着し多層に積層され
たFA毎のセラミックグリーンシートの生密度を調査し
たところ第1図「熱圧着回数と生密度の関係」に示すよ
うに、熱圧着回数に比例して生密度の値が増加している
ことを突きとめた。また、第2図「熱圧着回数と焼成収
縮率の関係」に示すように熱圧着回数に比例して焼成収
縮率が減少することが分かった。この第1図および第2
図の関係から、熱圧着後のそれぞれのセラミックグリー
ンシートの生密度が異なれば層毎に焼成収縮率も異なる
ため反りは大きなものになる。
The present inventors used ceramic green sheets with the same raw density before lamination to investigate the green density of ceramic green sheets for each FA that was thermocompressed and laminated in multiple layers. As shown in ``The relationship between green density and green density'', it was found that the green density value increased in proportion to the number of thermocompression bonding cycles. Furthermore, as shown in FIG. 2 "Relationship between the number of times of thermocompression bonding and the firing shrinkage rate", it was found that the firing shrinkage rate decreased in proportion to the number of times of thermocompression bonding. This figure 1 and 2
From the relationship in the figure, if the green density of each ceramic green sheet after thermocompression bonding is different, the firing shrinkage rate will be different for each layer, so the warpage will be large.

また熱圧着後のそれぞれのセラミックグリーンシートの
生密度が同じであれば層毎の焼成収縮率の差はなく、反
りの発生は小さなものとなるという知見を得た。
It was also found that if the green density of each ceramic green sheet after thermocompression bonding is the same, there will be no difference in firing shrinkage rate for each layer, and the occurrence of warping will be small.

本発明はセラミッククリーンシートの生密度を熱圧着後
に等しくなるように熱圧着前に調整することによって反
りの小さい焼結セラミック積層品を得ることを目的とす
る。
The object of the present invention is to obtain a sintered ceramic laminate with less warpage by adjusting the green density of a ceramic clean sheet before thermocompression bonding so that it is equal after thermocompression bonding.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、セラミックグリーンシートを複数枚を熱圧着
し積層した後、焼成する焼結セラミック積層品の製造方
法において、熱圧着前に積層されるそれぞれのセラミッ
クグリーンシートの生密度を熱圧着回数に従って異なら
せて、熱圧着後に各層の生密度を等しくなるように積層
した後、焼成することを特徴とする焼結セラミック積層
品の製造方法である。
The present invention provides a method for manufacturing a sintered ceramic laminate product in which a plurality of ceramic green sheets are thermocompression bonded and laminated, and then fired. Differently, this is a method for producing a sintered ceramic laminate, which is characterized in that after thermocompression bonding, the layers are laminated so that the green density of each layer is equal, and then fired.

積層されるセラミッククリーンシートの生密度を異なら
せる方法として、熱間で加圧する方法、ドクターブレー
ド法等でセラミックグリーンシートを製造するときに生
密度に差をもたせる方法等がある。
Methods for varying the green densities of laminated ceramic clean sheets include a method of applying hot pressure, and a method of varying the green densities when manufacturing ceramic green sheets using a doctor blade method or the like.

〔作用〕[Effect]

次に、作用を説明する。 Next, the effect will be explained.

熱圧着前に、積層されるそれぞれのセラミックグリーン
シートの生密度を熱圧着回数に従って設定する方法につ
いて説明する。−例として示した第1図のデータの値を
用いて説明する。例えば積層数を5層としたとき、熱圧
着回数は4回である。
A method of setting the green density of each ceramic green sheet to be laminated according to the number of times of thermocompression bonding before thermocompression bonding will be described. - Explanation will be given using the data values shown in FIG. 1 as an example. For example, when the number of laminated layers is five, the number of times of thermocompression bonding is four.

最下層となる1層目およびその直上の2層目の最初の生
密度の値をそれぞれ2.285に設定すれは、4回の熱
圧着を受けて2.312となる。3層目の最初の生密度
は2 、292に設定すれば、3回の熱圧着を受けて生
密度は2.312となる。そして/’L層目の最初の生
密度は2.298に設定ずれは、2回の熱圧着を受けて
2.312となる。そして5層目の最初C生密度は2 
、305に設定すれば、1回の熱圧着を受けて2.31
2となる。従って積層された各層のそれぞれのセラミッ
クグリーンシートの生密度は2.312と、同じ値とな
る。
If the initial green density values of the first layer, which is the lowest layer, and the second layer immediately above it are each set to 2.285, the value becomes 2.312 after being subjected to four thermocompression bondings. If the initial green density of the third layer is set to 2.292, the green density will become 2.312 after three times of thermocompression bonding. The initial green density of the /'L layer is 2.298, and the setting deviation becomes 2.312 after being subjected to two thermocompression bondings. And the initial C raw density of the 5th layer is 2
, if set to 305, the result will be 2.31 after one thermocompression bonding.
It becomes 2. Therefore, the green density of each ceramic green sheet in each laminated layer is 2.312, which is the same value.

ここに示した生密度の値は一例であり、セラミックの材
質等で生密度はそれぞれ異なるので、生密度と熱圧着回
数の関係のデータをそれぞれに求めた上で、積層数によ
って受ける熱圧着回数に従って各層の生密度の値を設定
することができる。
The green density value shown here is just an example, and the green density varies depending on the ceramic material, etc., so after obtaining data on the relationship between the green density and the number of thermocompression bonding for each, calculate the number of thermocompression bonding depending on the number of laminated layers. The green density value of each layer can be set according to the following.

さらにその他の条件として、同一原料ロット、同一原料
粉末の混合操作ロット、同一焼成スケジュール等のこと
を行って品質に優れ、また生産性もよい焼結セラミック
積層品を製造することができる。
Furthermore, as other conditions, it is possible to manufacture a sintered ceramic laminate with excellent quality and productivity by using the same raw material lot, the same mixing operation lot of raw material powder, and the same firing schedule.

〔実施例〕〔Example〕

つぎに、本発明を実施例に基づき更に詳しく説明する。 Next, the present invention will be explained in more detail based on examples.

まず、セラミックグリーンシートは、95%のアルミナ
と焼結助剤としてシリカ等を5%の割合でボールミルに
入れて溶剤と可塑剤、ポリビニールブチラールなどの樹
脂を加え安定なスラリーとした。この混合されたスラリ
ーはドクターブレードによって移動しているポリエステ
ル製ベルトの上に200mm巾の均一で薄いセラミック
グリーンシートを成形する。
First, the ceramic green sheet was made into a stable slurry by putting 95% alumina and 5% sintering aid, such as silica, into a ball mill and adding a solvent, plasticizer, and resin such as polyvinyl butyral. This mixed slurry is formed into a uniform thin ceramic green sheet with a width of 200 mm on a polyester belt that is moved by a doctor blade.

次にこうして得たセラミックグリーンシートを5Nに積
層するためそれぞれの層の生密度は前述した第1図に示
したデータに従って設定した。
Next, in order to laminate the ceramic green sheets thus obtained to a thickness of 5N, the green density of each layer was set according to the data shown in FIG. 1 described above.

それぞれの段目に必要として設定された生密度とするた
めに熱間で加圧して準備した。
Each stage was prepared by hot pressurization to achieve the green density required.

それぞれの積層段目の積層前および積層後の生密度を第
3図に示した。
The green density before and after lamination of each layer of lamination is shown in FIG.

その後、それぞれの層に必要な所定の孔開け、印刷、打
ち抜きを行って、第1層目に第2層目を重ねて熱圧着し
、さらに第3層目を重ねて熱圧着し積層して、順次第4
層、第5層を重ねて熱圧着し積層した。そして必要に応
じて所定の寸法に切断加工した。こうして得た積層品の
ひとつの外寸法は縦40 mm、横26.Omffh厚
み2.0 mmである。
After that, each layer is made with the required holes, printed, and punched, and the second layer is stacked on top of the first layer and heat-pressed, and then the third layer is stacked and heat-pressed. , in order 4
The fifth layer was stacked and bonded under heat and laminated. Then, it was cut into predetermined dimensions as necessary. The outer dimensions of one of the laminates thus obtained were 40 mm long and 26 mm wide. Omffh thickness is 2.0 mm.

なお、その断面図を第4図に示した。The cross-sectional view is shown in FIG. 4.

その後、水素雰囲気中で焼成した。こうして得た焼結セ
ラミック積層パッケージの反りをパッケージの底面を表
面粗度計にて測定したところ、基板反りは10μm M
AX  の結果を得た。
Thereafter, it was fired in a hydrogen atmosphere. When the warpage of the thus obtained sintered ceramic laminate package was measured on the bottom surface of the package using a surface roughness meter, the board warpage was 10 μm M
I got the result of AX.

〔比較例〕 実施例に示した方法で得た同一ロットのセラミックグリ
ーンシートを用いて、各層の生密度を同一(2,285
)としたほかは、実施例と同様の方法で得た焼成セラミ
ック積層パッケージの基板反りは270μmMAXであ
った。
[Comparative example] Using the same lot of ceramic green sheets obtained by the method shown in the example, the green density of each layer was the same (2,285
) The substrate warpage of the fired ceramic laminate package obtained in the same manner as in the example was 270 μm MAX.

〔発明の効果〕〔Effect of the invention〕

本発明はセラミック積層品の反り防止をはかりることに
よって、品質に優れた、また反り直しを必要としないた
めに生産性にも優れたセラミック積層品の製造方法を提
供することができた。
By preventing warping of the ceramic laminate, the present invention has been able to provide a method for manufacturing a ceramic laminate with excellent quality and excellent productivity since no re-warping is required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のセラミックグリーンシートの熱圧着回
数と生密度の関係を示した関係図の一例、第2図はセラ
ミックグリーンシートの熱圧着回数と焼成収縮率の関係
を示した関係図の一例、第3図は本発明の実施例で積層
前と積層後の生密度の変化を示した。第4図は本発明の
実施例の断面図特許出願人 r4ら海製陶株式会社 州 卵 鰹 要′@督簑冊 t+−1印 趣 第4図
Fig. 1 is an example of a relational diagram showing the relationship between the number of times of thermocompression bonding and green density of the ceramic green sheet of the present invention, and Fig. 2 is an example of a relational diagram showing the relationship between the number of times of thermocompression bonding and firing shrinkage rate of the ceramic green sheet. As an example, FIG. 3 shows the change in green density before and after lamination in an example of the present invention. Figure 4 is a cross-sectional view of an embodiment of the present invention Patent Applicant: r4Rakai Seito Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)セラミックグリーンシートを複数枚を熱圧着し積
層した後、焼成する焼結セラミック積層品の製造方法に
おいて、熱圧着前に積層されるそれぞれのセラミックグ
リーンシートの生密度を熱圧着回数に従って異ならせて
、熱圧着後に各層の生密度を等しくなるように積層した
後、焼成することを特徴とする焼結セラミック積層品の
製造方法。
(1) In a method for manufacturing a sintered ceramic laminate product in which a plurality of ceramic green sheets are thermocompression bonded and laminated, and then fired, the green density of each ceramic green sheet stacked before thermocompression bonding is varied according to the number of thermocompression bonding cycles. Furthermore, a method for manufacturing a sintered ceramic laminate, which comprises laminating the layers so that the green density of each layer is equal after thermocompression bonding, and then firing.
(2)熱圧着前に積層されるそれぞれのセラミックグリ
ーンシートの生密度を熱圧着回数の多いほど小さい値と
することを特徴とする特許請求の範囲第1項の焼結セラ
ミック積層品の製造方法。
(2) The method for manufacturing a sintered ceramic laminate product according to claim 1, characterized in that the green density of each ceramic green sheet laminated before thermocompression bonding is set to a smaller value as the number of thermocompression bonding increases. .
JP28553386A 1986-11-29 1986-11-29 Manufacture of sintered ceramic laminate Pending JPS63137835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28553386A JPS63137835A (en) 1986-11-29 1986-11-29 Manufacture of sintered ceramic laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28553386A JPS63137835A (en) 1986-11-29 1986-11-29 Manufacture of sintered ceramic laminate

Publications (1)

Publication Number Publication Date
JPS63137835A true JPS63137835A (en) 1988-06-09

Family

ID=17692761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28553386A Pending JPS63137835A (en) 1986-11-29 1986-11-29 Manufacture of sintered ceramic laminate

Country Status (1)

Country Link
JP (1) JPS63137835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2227713A (en) * 1988-12-15 1990-08-08 Murata Manufacturing Co Manufacturing ceramic laminated compact
JP2008156111A (en) * 2006-12-26 2008-07-10 Nitta Ind Corp Molded belt prevented from being warped and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2227713A (en) * 1988-12-15 1990-08-08 Murata Manufacturing Co Manufacturing ceramic laminated compact
GB2227713B (en) * 1988-12-15 1993-01-27 Murata Manufacturing Co Method of manufacturing ceramic laminated compact
JP2008156111A (en) * 2006-12-26 2008-07-10 Nitta Ind Corp Molded belt prevented from being warped and method of manufacturing the same

Similar Documents

Publication Publication Date Title
EP2023701B1 (en) Method for manufacturing ceramic multilayer substrate
US5601672A (en) Method for making ceramic substrates from thin and thick ceramic greensheets
US4884170A (en) Multilayer printed circuit board and method of producing the same
WO2003072325A1 (en) Ceramic multilayer substrate manufacturing method and unfired composite multilayer body
JPH0697656A (en) Production of ceramic multilayered board
JP4099756B2 (en) Laminated board
JP2006108529A (en) Ceramic multilayer substrate and method for manufacturing the same
KR100674843B1 (en) Method for manufacturing LTCC substrate having minimized deimension change, and LTCC substrate thus obtained
JPS63137835A (en) Manufacture of sintered ceramic laminate
JP2007053294A (en) Process for manufacturing multilayer ceramic electronic component
US6245185B1 (en) Method of making a multilayer ceramic product with thin layers
JP2001257473A (en) Multilayer ceramic board and manufacturing method thereof
JP3413880B2 (en) Method for producing multilayer ceramic sintered body
CN116041046B (en) Lamination method of high-thickness LTCC substrate
CN107690247B (en) Ceramic electronic component and preparation method thereof
JP3491698B2 (en) Method for manufacturing multilayer circuit board
JPH06244559A (en) Manufacture of ceramic multilayered board
JPS6190448A (en) Manufacture of multilayer ceramic substrate
JPH0828579B2 (en) Method for manufacturing ceramic multilayer substrate
JP2508414B2 (en) Multilayer wiring board
JPH08316635A (en) Compression bonding of ceramic green sheet
JP3463689B1 (en) Manufacturing method of laminated electronic components
JPH04116892A (en) Multilayer ceramic board and its manufacture
JPH1126279A (en) Manufacture of laminated ceramic electronic parts
JPS6080213A (en) Method of producing laminated ceramic capacitor