JPS6313777B2 - - Google Patents

Info

Publication number
JPS6313777B2
JPS6313777B2 JP13321983A JP13321983A JPS6313777B2 JP S6313777 B2 JPS6313777 B2 JP S6313777B2 JP 13321983 A JP13321983 A JP 13321983A JP 13321983 A JP13321983 A JP 13321983A JP S6313777 B2 JPS6313777 B2 JP S6313777B2
Authority
JP
Japan
Prior art keywords
diameter
outer ring
pipe
ring
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13321983A
Other languages
Japanese (ja)
Other versions
JPS6024234A (en
Inventor
Takashi Asada
Mamoru Takeuchi
Tsutomu Masumoto
Shizuo Suzuki
Kazuo Koga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Hitachi Ltd
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan, Hitachi Ltd filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP13321983A priority Critical patent/JPS6024234A/en
Publication of JPS6024234A publication Critical patent/JPS6024234A/en
Publication of JPS6313777B2 publication Critical patent/JPS6313777B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D39/00Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
    • B21D39/04Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は例えば原子炉用圧力管の接合等に適用
される所謂ロールドジヨイントと呼ばれる管端接
合構造の改良に係り、特にジルコニウム合金製圧
力管の端部接合に好適する管端接合構造に関す
る。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to an improvement of a tube end joint structure called a so-called rolled joint, which is applied, for example, to the joining of pressure pipes for nuclear reactors. The present invention relates to a tube end joining structure suitable for joining the ends of tubes.

〔従来技術〕[Prior art]

例えば重水型原子炉の圧力管には、熱中性子吸
収断面積が小さく、かつ機械的な強度が大きいジ
ルコニウム合金が多用されている。
For example, zirconium alloys, which have a small thermal neutron absorption cross section and high mechanical strength, are often used in the pressure tubes of heavy water nuclear reactors.

そして、このような圧力管の接合には、接合部
たる管の一端部を、被接合部たる外リングと内リ
ングとの環状隙間に挿入し、この内リングを内周
側から拡管具を用いて塑性的に拡径することによ
り管端を各リングにサンドイツチ状に接合する所
謂ロールドジヨイントと呼ばれる接合構造が適用
されているが、前記拡管時の引張り残留応力と水
素吸収との相乗作用による経時的な脆化により、
管の接合部に亀裂が生じる、所謂水素遅れ割れが
生じるおそれがあつた。
To join such pressure pipes, one end of the pipe, which is the joint part, is inserted into the annular gap between the outer ring and the inner ring, which are the parts to be joined, and the inner ring is inserted from the inner circumferential side using a pipe expanding tool. A joint structure called a so-called rolled joint is used, in which the pipe end is joined to each ring in a sandwich-like manner by plastically expanding the diameter, but the synergistic effect of the tensile residual stress during the pipe expansion and hydrogen absorption is used. Due to embrittlement over time due to
There was a risk that so-called hydrogen-delayed cracking would occur, which is the occurrence of cracks in the joints of the pipes.

即ち、一般にジルコニウム合金は水素の吸収性
が良いため、圧力管の製造時に約20ppmの水素を
含有し、しかも、稼動中には一次冷却水から水素
を吸収するため、水素脆化を起こし、管端接合部
に高引張残留応力が発生した場合には水素遅れ割
れの発生が懸念されるものである。
In other words, since zirconium alloys generally have good hydrogen absorption properties, they contain approximately 20 ppm of hydrogen when manufacturing pressure pipes, and during operation they absorb hydrogen from the primary cooling water, causing hydrogen embrittlement and causing pipe damage. If high tensile residual stress occurs at the end joints, there is a concern that hydrogen delayed cracking may occur.

従来例について上記現象を第1図〜第3図によ
つて説明する。接合用各部は例えば第1図に示す
ように、ステンレス鋼製の外リング1の最小内径
d1を管2の外径d2よりも大きく設定し、またステ
ンレス鋼製の内リング3の最大外径d4を管2の内
径d3よりも小さく設定している。そして、一定温
度(略室温)の条件下において、内リング3の接
合用一端部を外リング1に締結した後、この内外
リング3,1の環状隙間に管2の端部を挿入す
る。しかる後、第2図に示すように、ロール4と
テーパ付マンドレル5とを有するロールドジヨイ
ント装置、即ち拡管具によつて内リング3を塑性
的に拡径させることにより、管2と内外リング
3,1間を密着させると共に、外リング1及び内
リング3の拡径部に相対向して形成した凹凸部
6,7の拡径時の嵌合によつて軸方向の結合力及
びシール機能、いわば接続機能を確実なものとし
ている。
Regarding the conventional example, the above phenomenon will be explained with reference to FIGS. 1 to 3. For example, as shown in Fig. 1, each joining part has the minimum inner diameter of the stainless steel outer ring 1
d 1 is set larger than the outer diameter d 2 of the tube 2, and the maximum outer diameter d 4 of the inner ring 3 made of stainless steel is set smaller than the inner diameter d 3 of the tube 2. After one end of the inner ring 3 is fastened to the outer ring 1 under a constant temperature condition (approximately room temperature), the end of the tube 2 is inserted into the annular gap between the inner and outer rings 3,1. Thereafter, as shown in FIG. 2, the diameter of the inner ring 3 is plastically expanded using a rolled joint device having a roll 4 and a tapered mandrel 5, that is, a tube expanding tool, thereby forming a connection between the inner ring 3 and the inner ring 3. In addition to bringing the rings 3 and 1 into close contact with each other, axial coupling force and sealing are achieved by fitting the uneven parts 6 and 7 formed oppositely to the enlarged diameter parts of the outer ring 1 and inner ring 3 when the diameters are enlarged. The function, so to speak, the connection function is ensured.

このような接合部(第2図―断面部)にお
ける周方向残留応力分布を調べると、例えば第3
図に示すように、外リング1と管2との間の初期
間隙が一定値以上となつた場合には、管2の内周
面の引張残留応力が破壊に対する許容値を超える
ことが判明した。
When examining the circumferential residual stress distribution in such a joint (Fig. 2 - cross section), for example, the third
As shown in the figure, it was found that when the initial gap between outer ring 1 and tube 2 exceeds a certain value, the tensile residual stress on the inner peripheral surface of tube 2 exceeds the allowable value for fracture. .

特に、管2の材料であるジルコニウム合金は水
素との親和性が強いため、ZrH2なる水素化物が
合金中に形成され、前述した所謂水素遅れ割れが
高引張残留応力の存在によつて発生することが懸
念される。
In particular, since the zirconium alloy that is the material of tube 2 has a strong affinity for hydrogen, a hydride called ZrH2 is formed in the alloy, and the so-called hydrogen delayed cracking described above occurs due to the presence of high tensile residual stress. This is a concern.

そこで、このような水素遅れ割れを防止する手
段が望まれ、従来例えば第4図及び第5図に示す
焼ばめ併用手段が案出された。即ち、外リング1
の内径d1を管2の外径d2よりも小さく設定し、か
つ、内リングの外径d4を管2の内径d3よりも小さ
く設定しておき、接合前段で、外リング1をその
外周側に設けた熱源8で加熱することにより、該
リング1の内径d1を管2の外径d2よりも拡大させ
る。そして、第5図に示すように、内外リング
3,1間に管2を挿入し、前記同様の拡管により
接合作業を行うものである。
Therefore, a means for preventing such hydrogen delayed cracking has been desired, and conventionally, for example, a means for combining shrink fitting as shown in FIGS. 4 and 5 has been devised. That is, outer ring 1
The inner diameter d 1 of the pipe 2 is set smaller than the outer diameter d 2 of the pipe 2, and the outer diameter d 4 of the inner ring is set smaller than the inner diameter d 3 of the pipe 2. By heating the ring 1 with a heat source 8 provided on its outer circumferential side, the inner diameter d 1 of the ring 1 is made larger than the outer diameter d 2 of the tube 2 . Then, as shown in FIG. 5, a tube 2 is inserted between the inner and outer rings 3 and 1, and the joining operation is performed by expanding the tube in the same manner as described above.

このような方法によると、例えば第6図に示す
ように、管2に発生する周方向残留応力σθは焼
ばめの採用によつて圧縮残留応力となる。しか
し、軸方向残留応力σaは外リング1の先端部Aか
らの圧縮力を受けるために図中の実線で示される
ような引張りとなる。そして、この引張残留応力
は焼ばめ代が大きい場合には、許容応力以上とな
ることもある。
According to such a method, as shown in FIG. 6, for example, the circumferential residual stress σθ generated in the tube 2 becomes compressive residual stress by employing shrink fit. However, since the axial residual stress σ a receives the compressive force from the tip A of the outer ring 1, it becomes tensile as shown by the solid line in the figure. If the shrinkage fit is large, this tensile residual stress may exceed the allowable stress.

一方、第7図は内リング3の端面外周部にR部
を設けた従来例の場合である。焼ばめを併用しな
い場合は上記R部の存在により、管3の周方向残
留応力の低下に対しては効果があるが、焼ばめ方
式を採用した場合には、第7図に示す外リング1
の端部Aが管2を半径方向に押えつけるので、結
果として第6図の場合と同様に軸方向残留応力σa
は第7図中に示すように許容値を超えることがあ
る。
On the other hand, FIG. 7 shows a conventional example in which an R portion is provided on the outer periphery of the end face of the inner ring 3. If shrink fit is not used in combination, the presence of the R section is effective in reducing the residual stress in the circumferential direction of the tube 3, but if shrink fit is used, the external stress shown in Figure 7 will be reduced. ring 1
Since the end A of the tube 2 is pressed down in the radial direction, as in the case of FIG. 6, the axial residual stress σ a
may exceed the allowable value as shown in FIG.

更に重水炉の場合には第8図A,Bに示すよう
に、鉄水遮へい体20のカランドリアタンク21
内に挿通する圧力管集合体22に当該接合構造を
適用した場合、管2及び外リング1の内側に、冷
却水が流れるため、第7図に示すように、内リン
グ3の外面にR部を設けた場合、管2と内リング
3との間16で隙間腐食を起すこともある。
Furthermore, in the case of a heavy water reactor, as shown in FIGS. 8A and 8B, the calandria tank 21 of the iron water shield 20
When this joining structure is applied to the pressure tube assembly 22 that is inserted into the pressure tube assembly 22, cooling water flows inside the tubes 2 and the outer ring 1, so as shown in FIG. If this is provided, crevice corrosion may occur between the pipe 2 and the inner ring 3 16.

〔発明の目的〕[Purpose of the invention]

本発明は以上の各事情に着眼してなされたもの
で、焼ばめ方式を採用した場合でも管内部の残留
応力を許容値以下に抑制することができ、特に原
子炉用圧力管に対する水素遅れ割れ防止用として
好適する管端接続構造を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and even when the shrink fit method is adopted, the residual stress inside the pipe can be suppressed to below the allowable value, and in particular, the hydrogen lag for pressure pipes for nuclear reactors can be suppressed. It is an object of the present invention to provide a tube end connection structure suitable for preventing cracking.

〔発明の概要〕[Summary of the invention]

本発明に係る管端接合構造では、外リングをそ
の接合端部側の内径が一部拡大する形状とするこ
とにより、焼ばめによる外リングからの管締付力
を抑制し、軸方向及び周方向共に残留応力を管の
許容値以内とするものである。
In the tube end joint structure according to the present invention, by forming the outer ring in a shape in which the inner diameter of the outer ring is partially enlarged on the joint end side, the tube clamping force from the outer ring due to shrink fit is suppressed, and the axial and The residual stress in both the circumferential direction is kept within the allowable value for the pipe.

好ましくは、外リングの拡大した接合端部内周
を端部側が次第に大径となるテーパ付、又は段部
を介して拡大する同一径とする。また、テーパ部
の開始点或は段付部を内リングの接合端部よりも
外端側に配置する。
Preferably, the inner periphery of the enlarged joint end of the outer ring is tapered so that the diameter gradually increases on the end side, or the diameter is the same and increases through a step. Further, the starting point of the tapered portion or the stepped portion is arranged closer to the outer end than the joining end of the inner ring.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第9図〜第11図を
参照して説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 9 to 11.

本実施例に係る管端接合構造では、外リング1
1の拡大した接合端部内周10を端部側に次第に
大径となるテーパ付としている。即ち、外リング
11の内径d11よりも管12の外径d12を大きく
し、内リング13の外径d14を管12の内径d13
りも小さくしている。そして、接合端部内周、即
ちテーパ部10は、その開始点Bが内リング13
の接合端部よりも外端側に配置されている。詳細
には、このテーパ部10の開始点は第9図に示す
ように、内リング13の先端部位置に相当するB
部、或は第10図に示すように、内リング1の先
端部から内リングの厚さtの倍以内、即ちl≦2t
の距離だけ離れたC部近傍とすることが望まし
い。l>2tでは従来と殆んど同様に軸方向の残留
応力が発生することが認められるからである。但
し、焼ばめ代の大きさによつてはテーパ部10の
開始点を変更することも可能である。
In the tube end joining structure according to this embodiment, the outer ring 1
The enlarged joint end inner circumference 10 of No. 1 is tapered so that the diameter gradually increases toward the end. That is, the outer diameter d 12 of the tube 12 is larger than the inner diameter d 11 of the outer ring 11, and the outer diameter d 14 of the inner ring 13 is smaller than the inner diameter d 13 of the tube 12. The inner periphery of the joining end, that is, the tapered portion 10 has a starting point B at the inner ring 13.
It is arranged on the outer end side of the joint end of the Specifically, as shown in FIG. 9, the starting point of this tapered portion 10 is B
or as shown in FIG. 10, from the tip of the inner ring 1 to within twice the thickness t of the inner ring, that is, l≦2t
It is preferable to set the distance near the C portion at a distance of . This is because when l>2t, it is recognized that residual stress in the axial direction is generated in almost the same way as in the conventional case. However, depending on the size of the shrinkage fit, it is also possible to change the starting point of the tapered portion 10.

このような構成によると、管12の内周面軸方
向の引張応力を許容値以内にすることが可能であ
る。この場合、管12が外リング11のB,C点
からの圧縮力を受けないので、残留応力σa,σθは
第11図に示すように、許容値以下となる。な
お、外リング11の内面の隙間で、かつ管12の
外側部分(第8図Bの15に相当する部分)に炭
酸ガスを注入しておけば隙間部分(第8図Bの1
6に相当する部分)の腐食の虞れはない。
According to such a configuration, it is possible to keep the tensile stress in the axial direction of the inner circumferential surface of the tube 12 within an allowable value. In this case, since the tube 12 is not subjected to compressive force from points B and C of the outer ring 11, the residual stresses σ a and σθ become below the allowable values, as shown in FIG. Note that if carbon dioxide gas is injected into the gap on the inner surface of the outer ring 11 and into the outer portion of the tube 12 (the portion corresponding to 15 in FIG. 8B), the gap (corresponding to 15 in FIG. 8B) can be filled.
There is no risk of corrosion of the part corresponding to 6).

従つて、本実施例によれば水素遅れ割れなどが
確実に防止され、原子炉用圧力管の管端接合等に
特に好適したものとなる。
Therefore, according to this embodiment, hydrogen delayed cracking and the like are reliably prevented, making it particularly suitable for joining the pipe ends of pressure pipes for nuclear reactors.

なお、第12図は拡径した接合端部内周10
を、段部14を介して拡大する同一径の孔形状と
したものである。
In addition, FIG. 12 shows the inner periphery 10 of the joint end with an enlarged diameter.
The holes have the same diameter and expand through the stepped portion 14.

このような構成でも、管12に対する焼ばめ残
留応力の発生を防止することができ、前記実施例
と同様の効果を奏するものである。
Even with such a configuration, it is possible to prevent the generation of shrink fit residual stress on the tube 12, and the same effect as in the embodiment described above can be achieved.

なお、段部14の位置は、前記実施例のテーパ
開始点と同様に考えることができる。
Note that the position of the stepped portion 14 can be considered in the same way as the taper starting point in the above embodiment.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明に係る管端接合構造によ
れば、例えばジルコニウム合金からなる管端接合
部近傍の管の内周面に発生する引張残留応力を減
少させることにより、水素遅れ割れの発生を防止
することができる等、管の健全性のひいては接続
機能を確保できるという優れた効果を奏する。
As described above, according to the tube end joint structure according to the present invention, by reducing the tensile residual stress generated on the inner peripheral surface of the tube near the tube end joint made of, for example, a zirconium alloy, hydrogen delayed cracking can be prevented. This has excellent effects such as being able to prevent pipe damage and ensuring the integrity of the pipe and, ultimately, the connection function.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来例を段階的に示す要部
断面図、第3図は第2図の―線断面部分の残
留応力を示す模式図、第4図及び第5図は他の従
来例を段階的に示す要部断面図、第6図は同特性
図、第7図は更に異なる従来例を特性と共に示す
模式図、第8図Aは重水炉を示す概略構成図、第
8図Bは第8図Aの要部X部拡大図、第9図は本
発明の一実施例を示す要部(円枠部)の断面図、
第10図は第9図の変形例を示す要部断面図、第
11図は本実施例の特性を示す模式図、第12図
は本発明の他の実施例を示す要部断面図である。 10……拡大した接合端部内周(テーパ部)、
12……管、13……内リング、4……ローラ、
5……マンドレル。
Figures 1 and 2 are cross-sectional views of main parts showing the conventional example step by step, Figure 3 is a schematic diagram showing the residual stress in the cross-sectional area taken along the line - in Figure 2, and Figures 4 and 5 are cross-sectional views of the conventional example. 6 is a characteristic diagram showing the conventional example step by step; FIG. 7 is a schematic diagram showing a different conventional example together with its characteristics; FIG. 8A is a schematic configuration diagram showing a heavy water reactor; Figure B is an enlarged view of the main part
FIG. 10 is a sectional view of a main part showing a modification of FIG. 9, FIG. 11 is a schematic diagram showing the characteristics of this embodiment, and FIG. 12 is a sectional view of a main part showing another embodiment of the present invention. . 10... Enlarged inner periphery of the joint end (tapered part),
12...Pipe, 13...Inner ring, 4...Roller,
5...Mandrel.

Claims (1)

【特許請求の範囲】 1 接合部たる管の一端部を被接合部たる外リン
グと内リングとの環状隙間に挿入し、この内リン
グを内周側から拡管具を用いて塑性的に拡径する
ことにより、上記管と内外リングとを接合する構
造であつて、上記外リングの内径を上記管の外径
よりも小さく設定しておき、接合前に上記外リン
グを加熱によつてその内径が上記管の外径よりも
大きくなるまで膨張させるようにしている管端接
合構造において、上記外リングをその接合端部側
の内径が一部拡大する形状にしたことを特徴とす
る管端接合構造。 2 外リングの拡大した接合端部内周は端部側が
次第に大径となるテーパ面、又は段部を介して拡
大する等径面とされていることを特徴とする特許
請求の範囲第1項記載の管端接合構造。 3 外リングの拡大した接続端内周はテーパ開始
部或いは段付部を内リングの接合端部よりも外端
側に配置したことを特徴とする特許請求の範囲第
2項記載の管端接合構造。
[Claims] 1. Insert one end of the pipe, which is the joint part, into the annular gap between the outer ring and the inner ring, which are the parts to be joined, and plastically expand the diameter of this inner ring from the inner circumferential side using a pipe expanding tool. In this structure, the inner diameter of the outer ring is set smaller than the outer diameter of the tube, and the inner diameter of the outer ring is reduced by heating before joining. A pipe end joint structure in which the outer ring is expanded until it becomes larger than the outer diameter of the pipe, wherein the outer ring is shaped such that the inner diameter of the outer ring is partially enlarged on the joint end side. structure. 2. Claim 1, characterized in that the inner periphery of the enlarged joint end of the outer ring is a tapered surface whose diameter gradually becomes larger on the end side, or an equal diameter surface which expands through a stepped portion. pipe end joint structure. 3. The tube end joint according to claim 2, wherein the expanded inner periphery of the connecting end of the outer ring has a tapered start portion or a stepped portion located closer to the outer end than the joining end of the inner ring. structure.
JP13321983A 1983-07-21 1983-07-21 Joint structure of pipe ends Granted JPS6024234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13321983A JPS6024234A (en) 1983-07-21 1983-07-21 Joint structure of pipe ends

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13321983A JPS6024234A (en) 1983-07-21 1983-07-21 Joint structure of pipe ends

Publications (2)

Publication Number Publication Date
JPS6024234A JPS6024234A (en) 1985-02-06
JPS6313777B2 true JPS6313777B2 (en) 1988-03-28

Family

ID=15099511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13321983A Granted JPS6024234A (en) 1983-07-21 1983-07-21 Joint structure of pipe ends

Country Status (1)

Country Link
JP (1) JPS6024234A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147190A (en) * 1985-12-20 1987-07-01 株式会社日立製作所 Tube body connecting structure
JPS6362992A (en) * 1986-09-03 1988-03-19 株式会社日立製作所 Low residual stress type pipe body connecting structure

Also Published As

Publication number Publication date
JPS6024234A (en) 1985-02-06

Similar Documents

Publication Publication Date Title
EP0071261B1 (en) Corrosion-resistant, multiple-wall pipe structure and method
GB1595670A (en) Method of forming a connection between and an assembly of two metallic parts
CN109693020B (en) Method and tool for controlling welding deformation of connecting pipe and cylinder with internal diameter Di smaller than 600mm
US3248134A (en) Reinforced welded joint
US4683014A (en) Mechanical stress improvement process
JPS6313777B2 (en)
US4612071A (en) Mechanical stress improvement process
JPS58218391A (en) Circumferential welding method of joint of steel pipes
CN113028154A (en) Mechanical bimetal composite pipe with thickened pipe end lining layer and preparation method thereof
US4772336A (en) Method of improving residual stress in circumferential weld zone
JPH09170610A (en) Method of joining zirconium alloy tube with stainless steel tube
JPS5820389A (en) Structure of friction welded joint of pipe
JP3410814B2 (en) Different diameter pipe joint device
JPH1190676A (en) Welded joint for piping
RU2085349C1 (en) Method of manufacture of tubular adapter of zirconium alloy steel
JPS5841611A (en) Manufacture of double-pipe
JPH0246654B2 (en) CHUKUTAINOZANRYUORYOKUKAIZENHOHO
JPH04197535A (en) Method for joining zirconium alloy pipe and steel pipe
JPH05169255A (en) Method for welding tube with tube
JPS58151926A (en) Joining method of pipe
CA1042944A (en) Rolled joint system
CA1166938A (en) Method of producing pressure tubes
JPH07119885A (en) Repairing method of container penetrating piping
JPH09229248A (en) Socket welding piping fitting
JPS583479B2 (en) How to connect piping