JPS63137754A - Preparation of magnesia-based catalyst for low temperature modification of hydrocarbon - Google Patents

Preparation of magnesia-based catalyst for low temperature modification of hydrocarbon

Info

Publication number
JPS63137754A
JPS63137754A JP61284217A JP28421786A JPS63137754A JP S63137754 A JPS63137754 A JP S63137754A JP 61284217 A JP61284217 A JP 61284217A JP 28421786 A JP28421786 A JP 28421786A JP S63137754 A JPS63137754 A JP S63137754A
Authority
JP
Japan
Prior art keywords
catalyst
magnesia
hydrocarbon
component
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61284217A
Other languages
Japanese (ja)
Other versions
JP2586893B2 (en
Inventor
Akio Hayashi
昭男 林
Shunpei Kono
河野 駿平
Katsuomi Fukawa
府川 勝臣
Masaaki Nagao
長尾 正淳
Takeji Nagano
長野 竹司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishii Iron Works Co Ltd
Osaka Yogyo KK
Original Assignee
Ishii Iron Works Co Ltd
Osaka Yogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishii Iron Works Co Ltd, Osaka Yogyo KK filed Critical Ishii Iron Works Co Ltd
Priority to JP61284217A priority Critical patent/JP2586893B2/en
Publication of JPS63137754A publication Critical patent/JPS63137754A/en
Application granted granted Critical
Publication of JP2586893B2 publication Critical patent/JP2586893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain a catalyst having strength and excellent in the modifying activity of hydrocarbon at low temp., by adding a special binder to a carrier based on high purity magnesia clinker and adding an impregnation and calcination process. CONSTITUTION:The fineness of a magnesia raw material containing 96% or more of MgO and 1% or less of iron oxide is adjusted so as to perfectly pass through a 65-mesh Tyler standard screen, and 1-10wt.% of nickel oxide and 1-7wt.% of a special binder are added to said raw material to prepare a cata lyst base. Herein, as the special binder, three components, that is, starch having a characteristic of gasifying by 99% at 1,000 deg.C, carbonate of MgO or (NH4)2CO3 and Mg chloride or phosphate are used. By adding an impregnation and calcina tion process to the catalyst base after granulation and drying, a catalyst for he low temp. modification of hydrocarbon supporting 2-6wt.% of NiO and 0.2-1.2wt.% of oxide of a rare earth metal and having long life is prepared.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高純度のマグネシアクリシカ−の微粉を担体
とし、これに酸化ニッケルの微粉を1〜1ON添加混合
し、これに特殊結合剤を加えて、混練、成形、乾燥して
後、1250〜1350度Cの低温焼成によシ、充分焼
結して触媒ベースとし、これを硝酸ニッケル溶液に含浸
して後仮焼して酸化ニッケルとして2〜6X担持させ、
更に希土類元素の少なくとも1mを含む溶液に含浸して
後仮焼して希土類の酸化物として、0.2〜1.2%担
持させ喪、強度があ夛、且つ炭化水素の低温下での改質
活性に秀れた触媒の製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses a fine powder of high-purity magnesia krysica as a carrier, adds and mixes 1 to 1 ON of fine powder of nickel oxide, and adds a special binder to this. After kneading, shaping, and drying, the catalyst base is sufficiently sintered by low-temperature firing at 1250 to 1350 degrees Celsius, which is impregnated with a nickel nitrate solution and then calcined to form nickel oxide. ~ 6X carried,
Furthermore, it is impregnated in a solution containing at least 1 m of rare earth elements, and then calcined to support 0.2 to 1.2% of rare earth oxides, increasing strength and improving hydrocarbons at low temperatures. The present invention relates to a method for producing a catalyst with excellent quality and activity.

従来の技術 一般に耐熱性ニッケル触媒体は高純度のマグネシア(M
gO)やアルミナ(A40g )  の如き耐火原料を
使用している。耐火原料の必要な性質としては、耐熱性
と他は耐火原料自体の活性が高いことである。この二つ
の性質に最も適合するものは高純度のアルミナ或は高純
度のマグネシアであることは良く知られている。
Conventional technology Generally, heat-resistant nickel catalysts are made of high-purity magnesia (M
Refractory raw materials such as gO) and alumina (A40g) are used. The necessary properties of the refractory raw material include heat resistance and high activity of the refractory raw material itself. It is well known that high purity alumina or high purity magnesia is the most suitable material for these two properties.

発明が解決しようとする問題点 これらの高純度原料は、高溶融点のため1350度C以
下の低温焼成では、到底焼結することが出来ず、その強
度の甚しい不足のため、触媒としての使用に全く耐えな
い、またこれらの高純度原料が良く焼結する1600度
0以上で焼成すれば、原料として混合している酸化ニッ
ケルの活性は全く失われてしまう。また従来一般に使用
されている無機質焼結剤例えば硼酸、アルカリ、各種ガ
ラス粉等を数%添加すれば焼結温度は若干低下するが、
同時に原料の耐熱性を下げ、またこれらの結合によって
酸化ニッケルの表面に被覆物を生じて触媒の活性低下を
起こす欠点があった。従って高純度マグネシア或は、ア
ルミナを担体とする混合焼成法による触媒体の製造は従
来不可能とされていた。
Problems to be Solved by the Invention Due to their high melting points, these high-purity raw materials cannot be sintered at low temperatures below 1350 degrees Celsius, and their severe lack of strength makes them difficult to use as catalysts. If the nickel oxide is fired at a temperature of 1,600 degrees or higher, which is completely unusable and where these high-purity raw materials sinter well, the activity of the nickel oxide mixed as a raw material will be completely lost. Additionally, if a few percent of commonly used inorganic sintering agents such as boric acid, alkali, and various glass powders are added, the sintering temperature will be lowered slightly;
At the same time, the heat resistance of the raw material is lowered, and these bonds form a coating on the surface of the nickel oxide, which reduces the activity of the catalyst. Therefore, it has conventionally been considered impossible to produce a catalyst body by a mixed firing method using high-purity magnesia or alumina as a carrier.

問題点を解決するための手段 しかるく、本発明者の研究開発による特殊結合剤を1〜
7X添加することにより、成形品の乾燥強度をいちじる
しく増大さし、又1250〜1350℃の低温焼成にて
、十分なる焼結を起むして、高耐熱性、高活性の堅牢な
る触媒ベースとし、更にこれに含浸仮焼工程を加えるこ
とによシ、酸化ニッケルとして2〜6重量%、希土類の
酸化物として0.2〜1.2重量%担持させ、長期ライ
フのある炭化水素の低温改質用触媒としてカーボ/沈積
の少ない、堅牢な触媒の製造が可能となった。
As a means to solve the problem, a special binder developed by research and development by the present inventor was used.
By adding 7X, the dry strength of the molded product is significantly increased, and sufficient sintering occurs at low temperature firing of 1250 to 1350°C, resulting in a highly heat resistant, highly active and robust catalyst base. Furthermore, by adding an impregnation calcination step to this, 2 to 6% by weight of nickel oxide and 0.2 to 1.2% by weight of rare earth oxides are supported, allowing for low-temperature reforming of hydrocarbons with a long life. It has now become possible to produce a robust catalyst with low carbon/deposition as a catalyst for use in industrial applications.

本発BAKで言う特殊結合剤とは、原則的に三成分即ち
ム成分、B成分及び0成分から構成されるものである。
The special binder referred to in the BAK of the present invention is basically composed of three components, namely, a mu component, a B component, and a zero component.

ここでA成分というのは、1000℃で99%気化する
特性を持った澱粉で、本発明の主原料であるMgOに可
塑性を与え、60〜120℃の温度において、乾燥され
な担体の亀裂を防止する役目を果たす物質である。B成
分というのはMg00sの如きMgの炭酸塩や(NH4
)t 00s等から成るもので、MgOに可塑性を与え
、800〜1200℃の温度において担体の亀裂発生を
防止する役目を巣穴す物質である。
Here, component A is starch that has the property of vaporizing 99% at 1000°C, which gives plasticity to MgO, the main raw material of the present invention, and prevents cracks in the undried carrier at temperatures of 60 to 120°C. It is a substance that plays the role of preventing. Component B is Mg carbonate such as Mg00s or (NH4
)t 00s, etc., and is a substance that gives plasticity to MgO and plays the role of preventing cracks in the carrier at temperatures of 800 to 1200°C.

更にここで言う0成分とは、MRの塩化物又は、成後の
強度を向上させるものである。
Furthermore, the zero component referred to here is a MR chloride or a component that improves the strength after forming.

本発明によればA成分、B成分及び0成分にて構成され
た特殊結合剤の添加量は、1〜7Xであ〕、担体の製造
条件の如何によって、B成分及び0成分は一種又はそれ
以上を選択使用出来る。
According to the present invention, the amount of the special binder made up of component A, component B, and component 0 is 1 to 7X], and depending on the manufacturing conditions of the carrier, component B and component 0 may be one or more of them. You can select and use the above.

ここぐ述べる高純度マグネシアとは、MgO含有量96
%以上、酸化鉄の含有量IX以下のものを言う。MgO
含有量96%以下では、その他の不純成分によ)触媒の
活性と耐熱性とを低下さすからであシ、酸化鉄の含有量
を1%以下とし九のは、IX以上では触媒の改質反応の
使用中に炭素の析出を多くする恐れがある丸めである。
The high-purity magnesia mentioned here has an MgO content of 96%.
% or more and the content of iron oxide is IX or less. MgO
If the iron oxide content is less than 96%, the activity and heat resistance of the catalyst will be reduced (due to other impurities). Rounding may increase the precipitation of carbon during reaction use.

!グネシア原料の粉末度をタイラー標準節65メツシエ
全通としたのは、65メツシュより大きい粒度では12
50〜1350℃の焼成条件では、十分なる焼結をし得
ないからである。
! The particle size of the Gnesia raw material was set to 65 mesh according to the Tyler standard clause, and if the particle size was larger than 65 mesh, it was 12.
This is because sufficient sintering cannot be achieved under the firing conditions of 50 to 1350°C.

酸化ニッケルの含有量を1〜10%と限定したのは、1
%以下では触媒ペースとして十分なる活性が得られない
からであハ又lO%以上は活性向上中とブストアップと
が引き合わない丸めである。
The reason for limiting the content of nickel oxide to 1 to 10% is 1
If it is less than 10%, sufficient activity cannot be obtained as a catalyst pace, and if it is more than 10%, activity improvement and boost-up are not mutually exclusive.

以下では触媒活性が不足し、これ以上では活性過剰のデ
メリットが生じ又コスト的に引き合わないためである。
This is because if the amount is less than this, the catalyst activity will be insufficient, and if it is more than this, there will be a disadvantage of excessive activity and it will not be cost effective.

実施例 本発明の主要部分をなす特殊結合剤を使用した場合の効
果を、従来の一般有機結合剤を使用した場合と比較した
のが、実施例1と表1である。
Example Example 1 and Table 1 compare the effects of using a special binder, which is the main part of the present invention, with those of using a conventional general organic binder.

実施例1 混合・混練   リボンミキサー 成形      湿式造粒 形状・大きさ  ペレット φ14mm焼成温度   
 1300℃ 4hr 即ち、表1から明らかな様に、特殊結合剤を使用した試
作1〜2と比較例とを比較すると、素地強度、焼成品強
度において、飛躍的に優れ走数値を示していることによ
〕、特殊結合剤の効果が良くわかる。しかし、特殊結合
剤を請求範囲の1〜7%より外れ九試作3〜4での特殊
結合剤0.5%のものは、強度が目標よシ低く、8Xで
は気孔率が目標よ)高くなりすぎていて本発明の触媒ベ
ースとしては適さない。焼成温度として、1250℃〜
1350℃に限定したのは、1250℃以下では特殊結
合剤使用でも強度が目標値に到達せず、又1350℃以
上で混合したニッケルが活性低下するためである。
Example 1 Mixing/kneading Ribbon mixer molding Wet granulation shape/size Pellet φ14mm Firing temperature
1300℃ 4 hours That is, as is clear from Table 1, when comparing prototypes 1 and 2 using the special binder with the comparative example, the strength of the base material and the strength of the fired product are dramatically superior and the running value is shown. ], the effect of the special binder can be clearly seen. However, when the special binder was outside the claimed range of 1-7% and the special binder was 0.5% in 9 prototypes 3-4, the strength was lower than the target, and in 8X, the porosity was higher than the target. It is too large to be suitable as a catalyst base for the present invention. Firing temperature: 1250℃~
The temperature was limited to 1350°C because below 1250°C, the strength would not reach the target value even if a special binder was used, and above 1350°C the activity of the mixed nickel would decrease.

次に表2において本発明における特殊結合剤のA、B及
びC成分の全ての組み合わせが効果的であることを示す
Next, Table 2 shows that all combinations of components A, B, and C of the special binder in the present invention are effective.

従来触媒ベースは気孔率31〜33%、圧縮強度750
 Kt/CIA以上であれば良好な性能を発揮するもの
であシ、表2はすべてこの条件を満足している。
The conventional catalyst base has a porosity of 31-33% and a compressive strength of 750.
If Kt/CIA or more, good performance is exhibited, and all of Table 2 satisfy this condition.

上記方法にて作成した触媒ベースに、硝酸ニッケルを含
有させ、NIOとして2〜6%重量%担1持させた後乾
燥し、600〜650℃で仮焼した後、更に希土類の硝
酸塩に含浸させ、希土類の酸化物として0.2〜1.2
重量%担持させた後乾燥し再度600〜650℃で仮焼
して耐熱物質以外の不要物質を除去する。
The catalyst base prepared by the above method is made to contain nickel nitrate, supported at 2 to 6% by weight as NIO, dried, calcined at 600 to 650°C, and further impregnated with rare earth nitrate. , 0.2 to 1.2 as a rare earth oxide
After being supported by weight%, it is dried and calcined again at 600 to 650°C to remove unnecessary substances other than the heat-resistant substance.

NiOの担持量が2X以下では触媒活性が不十分であシ
、一方6Xを上回ると活性過剰による触媒上へのカーボ
ン析出等によるトラブルが発生するし、又コスト的に引
き合わなくなる。
If the supported amount of NiO is less than 2X, the catalyst activity will be insufficient, while if it exceeds 6X, problems such as carbon deposition on the catalyst will occur due to excessive activity, and it will not be cost effective.

希土類の酸化物の担持量が0.2%以下では、折角高価
な成分を添加した効果が表われず、一方、12X以上で
はコスト的に高くなシすぎ、経済的に引き合わない。
If the amount of rare earth oxide supported is less than 0.2%, the effect of adding expensive components will not be exhibited, while if it is more than 12X, the cost will be too high and it will not be economically advantageous.

この場合使用する希土類は、ランタン、セリウム、イツ
トリウム等であル、使用する塩は硝酸塩又は酢酸塩であ
る。
The rare earths used in this case are lanthanum, cerium, yttrium, etc., and the salts used are nitrates or acetates.

次に本発明による触媒ベースに含浸仮焼工程をほどこし
た各種触媒の品質及び活性値を列記する。
Next, the quality and activity values of various catalysts obtained by subjecting the catalyst base of the present invention to an impregnation and calcining process will be listed.

実施例2 混合・混練   リボンミキサー 成形      湿式造粒 形状・大きさ  ペレット φ14mm焼成温度   
 1,300℃−4hr含浸      硝酸ニッケル
・硝酸ランタン仮焼      600℃ 表3及び表4に示す様に本発明触媒は、在来触媒と比較
して強度も高(,650℃及び700Cの低温下の活性
テストで生成ガスカロリーが数段低く、優れた触媒であ
ることを実証した。本発明触媒テスト後反応管よ)取)
出した結果、すべて強度低下から生じる粉化は全く認め
られなかつ九のに対して、在来触媒は5(X)以上の粉
化が発生してい喪。
Example 2 Mixing/kneading Ribbon mixer molding Wet granulation shape/size Pellet φ14mm Firing temperature
Impregnation at 1,300℃ for 4 hours Calcination of nickel nitrate and lanthanum nitrate at 600℃ As shown in Tables 3 and 4, the catalyst of the present invention has higher strength than conventional catalysts (at low temperatures of 650℃ and 700℃). The activity test demonstrated that the produced gas calorie was much lower and that it was an excellent catalyst.After testing the catalyst of the present invention, the reaction tube was removed)
As a result, no powdering due to strength reduction was observed at all, and 9 was observed, whereas powdering of 5(X) or more occurred with the conventional catalyst.

効   果 本発明によれば、製造されたiグネシア系炭化水素の低
温改質用触媒は強度が高い、ので、触媒の反応装置への
挿入に際しての取シ扱いが楽でToり、又使用中の粉化
が減少して、運転中の炉圧損失の増加が減少できる。ま
た低温で活性があるので、温度保持用の熱エネルギーが
節約できるのである。
Effects According to the present invention, the produced catalyst for low-temperature reforming of i-gnesian hydrocarbons has high strength, so it is easy to handle when inserting the catalyst into a reaction device, and it is easy to handle during use. As a result, the increase in furnace pressure loss during operation can be reduced. Furthermore, since it is active at low temperatures, thermal energy for maintaining temperature can be saved.

さらに希土類の適正添付によ)、反応中のカーボン析出
が押さえられるので、活性の持続、安定化が得られるの
である。
Furthermore, by properly adding rare earth elements, carbon precipitation during the reaction can be suppressed, resulting in sustained and stable activity.

Claims (1)

【特許請求の範囲】[Claims] MgO含有量96%以上にして、酸化鉄の含有量1%以
下のマグネシアクリシカーを担体主原料とし、これをタ
イラー標準篩65メッシュ全通の粒度とし、これに酸化
ニッケルを1〜10重量%添加混合し、これにA成分、
B成分、及びC成分にて構成される特殊結合剤を1〜7
重量%添加し、混練、抜出造粒、乾燥し、1250〜1
350度Cで焼成して触媒ベースとし、このベースを硝
酸ニッケル及び希土類元素の少なくとも1種を含む溶液
に含浸して、NiOとして2〜6重量%及び希土類元素
の酸化物として、0.2〜1.2重量%を担持させた後
、仮焼することを特徴とするマグネシア系の炭化水素の
低温改質用触媒の製造方法。
The main material for the carrier is magnesia clisicar with an MgO content of 96% or more and an iron oxide content of 1% or less, which has a particle size that passes through a 65-mesh Tyler standard sieve, and 1 to 10% by weight of nickel oxide. Add and mix, add component A to this,
1 to 7 special binders composed of component B and component C
Add weight%, knead, extract granulate, dry, 1250-1
Calcinate at 350 degrees C to obtain a catalyst base, and impregnate this base with a solution containing nickel nitrate and at least one of rare earth elements to obtain 2 to 6% by weight of NiO and 0.2 to 6% of rare earth element oxide. A method for producing a catalyst for low-temperature reforming of magnesia-based hydrocarbons, which comprises supporting 1.2% by weight and then calcining the catalyst.
JP61284217A 1986-12-01 1986-12-01 Method for producing catalyst for low temperature reforming of magnesia hydrocarbon Expired - Fee Related JP2586893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61284217A JP2586893B2 (en) 1986-12-01 1986-12-01 Method for producing catalyst for low temperature reforming of magnesia hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61284217A JP2586893B2 (en) 1986-12-01 1986-12-01 Method for producing catalyst for low temperature reforming of magnesia hydrocarbon

Publications (2)

Publication Number Publication Date
JPS63137754A true JPS63137754A (en) 1988-06-09
JP2586893B2 JP2586893B2 (en) 1997-03-05

Family

ID=17675682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61284217A Expired - Fee Related JP2586893B2 (en) 1986-12-01 1986-12-01 Method for producing catalyst for low temperature reforming of magnesia hydrocarbon

Country Status (1)

Country Link
JP (1) JP2586893B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053379A (en) * 1989-03-20 1991-10-01 Ube Industries, Ltd. High-activity nickel catalyst and process for preparation thereof
JP2002145604A (en) * 2000-11-08 2002-05-22 Japan Petroleum Exploration Co Ltd Method for producing hydrogen
JP2002173303A (en) * 2000-12-06 2002-06-21 Japan National Oil Corp Method of producing synthetic gas
JP2002173304A (en) * 2000-12-06 2002-06-21 Japan Petroleum Exploration Co Ltd Method of producing synthetic gas by autothermal reforming

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869783A (en) * 1971-12-24 1973-09-21
JPS5018378A (en) * 1973-06-22 1975-02-26

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869783A (en) * 1971-12-24 1973-09-21
JPS5018378A (en) * 1973-06-22 1975-02-26

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053379A (en) * 1989-03-20 1991-10-01 Ube Industries, Ltd. High-activity nickel catalyst and process for preparation thereof
JP2002145604A (en) * 2000-11-08 2002-05-22 Japan Petroleum Exploration Co Ltd Method for producing hydrogen
JP2002173303A (en) * 2000-12-06 2002-06-21 Japan National Oil Corp Method of producing synthetic gas
JP2002173304A (en) * 2000-12-06 2002-06-21 Japan Petroleum Exploration Co Ltd Method of producing synthetic gas by autothermal reforming

Also Published As

Publication number Publication date
JP2586893B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
US4039480A (en) Hollow ceramic balls as automotive catalysts supports
EP2520349B1 (en) Filter used for filtering molten metal and preparation method thereof
CN104174420B (en) Silicon carbide based monolithic catalyst for synthetic gas methanation and preparation method
JPS61212329A (en) Preparation of high surface area flocculated substance for catalyst carrier and preparation of monolithic carrier structure containing the same
JPS5815013B2 (en) Steam reforming catalyst and its manufacturing method
JP2002068854A (en) Alumina porous material and production method thereof
US5106812A (en) Catalyst carrier for use in high-temperature combustion
CN103459352A (en) Method for producing complex metal oxide, metal oxide sintered body, and rotary kiln
JP4904458B2 (en) Composite oxide and filter for PM combustion catalyst
JPH04333619A (en) Production of formed article of high-purity alumina fiber
JPS63137754A (en) Preparation of magnesia-based catalyst for low temperature modification of hydrocarbon
JPS62168544A (en) Zirconia carrier and its preparation
JPH04187578A (en) Production of sintered compact of porous silicon carbide
JPH11342335A (en) Preparation of reforming catalyst for hydrocarbons
JP2000016872A (en) Porous silicon carbide sintered body and its production
JPH0246545B2 (en)
JPH0585814A (en) Production of cordierite honeycomb structure
JP2009061383A (en) Heat-resistant alumina carrier and its manufacturing method
KR20180013283A (en) Oxide oxygen carrier, method for manufacturing thereof, and chemical looping combustion using the oxide oxygen carrier
KR101806284B1 (en) A Method for Manufacturing Catalyst for Desulfurization in High Temperature Using Waste Magnesia
US8377836B2 (en) Methods of making ceramic bodies using catalyzed pore formers and compositions for making the same
JP2851100B2 (en) Method for producing low-density silicon carbide porous body
JP2000159570A (en) Production of compact cordierite sintered product
JPH1085611A (en) Production of honeycomb carrier made of boria-silica-alumina composition
JPH0212618B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees