JPS6313768B2 - - Google Patents

Info

Publication number
JPS6313768B2
JPS6313768B2 JP54127060A JP12706079A JPS6313768B2 JP S6313768 B2 JPS6313768 B2 JP S6313768B2 JP 54127060 A JP54127060 A JP 54127060A JP 12706079 A JP12706079 A JP 12706079A JP S6313768 B2 JPS6313768 B2 JP S6313768B2
Authority
JP
Japan
Prior art keywords
emulsion
oil
weight
rolling
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54127060A
Other languages
Japanese (ja)
Other versions
JPS5650714A (en
Inventor
Hachiro Kageyama
Tsutomu Moriuchi
Masaji Matsumoto
Harumasa Muramoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12706079A priority Critical patent/JPS5650714A/en
Publication of JPS5650714A publication Critical patent/JPS5650714A/en
Publication of JPS6313768B2 publication Critical patent/JPS6313768B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0269Cleaning
    • B21B45/029Liquid recovering devices
    • B21B45/0296Recovering lubricants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0242Lubricants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Lubricants (AREA)

Description

【発明の詳細な説明】 本発明は金属圧延作業におけるエマルジヨン圧
延油剤の新規な供給方法に関するものである。 従来、金属圧延作業において作業ロールと圧延
材との接触部分には鉱油、油脂またはこれらの混
合油等の潤滑油を水に分散して水中油型エマルジ
ヨン、すなわちO/Wエマルジヨンとした油剤を
スプレイ状に吹きつけて給油していた。このとき
エマルジヨンの油粒子がロールおよび圧延材の金
属面に付着し潤滑作用を行ない、エマルジヨンの
水相は摩擦熱を除去する冷却作用を行ない、総合
して圧延油剤としての効果を発揮する。ここで良
好な圧延油剤としてはエマルジヨンの油粒子が分
離し易く容易に金属面に付着し有効な潤滑膜をつ
くることが必要である。 一方、金属圧延作業現場においては数十Kの
大容量の圧延油剤貯蔵槽を設置し、圧延油エマル
ジヨンを貯蔵し適正なエマルジヨン濃度に精密に
管理しつつ配管を通して圧延機の潤滑部分に循環
給油する。ここでは良好な圧延油剤として安定性
が良くエマルジヨンの油粒子が分離せず濃度管理
し易いことが必要である。 つまりエマルジヨン圧延油剤としては、貯蔵槽
においては安定であり、スプレイノズルにおいて
は不安定な状態となるエマルジヨンが良いという
ことになる。 ところが通常のO/Wエマルジヨンではかよう
な性状のものは得られない。近来エマルジヨンの
成分組成、相構造を検討し、かような性状が得ら
れるように各種の研究が進められてきた。 たとえば界面活性剤の種類、添加量を加減し、
多少不安定な状態のO/Wエマルジヨンとした例
がある。しかしこれは貯蔵槽における安定性を満
足し得なかつた。また油中に水を分散させた油中
水型エマルジヨン、すなわちW/Oエマルジヨン
をあらかじめ作成しておきこれを水に機械的に不
安定に分散させた分散液を供給することも提案さ
れた。この場合もW/Oエマルジヨンは水に分散
し難く、よく金属面に付着したが貯蔵槽中では不
安定で静置すればただちにW/Oエマルジヨンと
水の二相に分離し、目的を達しなかつた。 さらに次にはW/O/Wエマルジヨンと表示さ
れる複合エマルジヨンを供給する方法も提案され
た。これはW/Oエマルジヨンをさらに界面活性
剤により水中に安定に分散させたもので、水中に
油粒子が浮遊し、その油粒子の中にさらに水粒子
が存在する複合構造のもので水中油中水型エマル
ジヨンとも表示される。 このW/O/Wエマルジヨンは基油に特定の界
面活性剤を加えたときに生成することが認めら
れ、該原液組成物を水に稀釈することにより容易
に安定なエマルジヨンが得られ、金属面に対する
油の付着性も優れていると説明された。しかしこ
れは性状がO/Wエマルジヨンと類似のものであ
り、W/Oエマルジヨンの水中分散剤として使用
する界面活性剤の種類、添加量の如何によりW/
Oエマルジヨンの水中分散安定度の良いものも悪
いものもできる。 現在迄に提案された組成のW/O/Wエマルジ
ヨンはいずれもこの安定度が良すぎて貯蔵槽内で
は適当であるが、スプレイノズルより潤滑個所金
属面に噴射供給するときに油粒子(この場合は水
粒子を含有する油粒子)の付着性が悪く、やはり
目的を達し得ない。 本発明者等はこれらの先行技術について詳細に
検討し根本的に改良を加えることを試みた。 W/O/Wエマルジヨンの相構造について考え
ると、前述の通り水中に油粒子が浮遊しこの油粒
子中にさらに水粒子が存在する構造である。かか
る構造における水相と油相の界面としては内相の
W/O界面と外相のO/W界面と二種類の界面が
存在する。 W/O界面を安定化させるためには親油性界面
活性剤を加え、W/O界面の油側の界面エネルギ
ーを低下させる。またO/W界面を安定化させる
ためには親水性界面活性剤を添加しO/W界面の
水側の界面エネルギーを低下させる。 W/O/Wエマルジヨンをつくるにはこの二種
類の界面活性剤の適当な性状のものを適当な比率
に使用すればよいが従来のものは親油性界面活性
剤の使用比率が比較的少なく、親水性界面活性剤
の使用比率が比較的多く、また親油性界面活性剤
の油溶性がやや親水性に傾いていることが認めら
れ、そのためO/W界面が安定になりすぎ内相油
粒子が分離し難く金属面に対する付着性が悪かつ
たものと推定される。 本発明者等はW/O/Wエマルジヨンの安定性
を損わずに付着性を強化しようとして、W/O界
面を安定化し、O/W界面の安定化を低下させる
目的をもつて親油性界面活性剤に油溶性の強いも
のを選択し、またこの使用比率を従来より著るし
く多くしてその性状を比較検討し研究を進めてき
た。 ところがこの研究の過程において計らずも、特
定の親油性界面活性剤と特定の親水性界面活性剤
を使用し、またこの二種の界面活性剤の比率を前
者の割合を多くして特定の比率に達せしめ親油性
界面活性剤を、W/O界面の安定化に十分な量と
し、親水性界面活性剤はO/W界面の安定化には
やや不足気味な量とするとこのエマルジヨンに外
部より急激な撹拌等の衝撃を与えることにより
W/O/Wエマルジヨンの油粒子が一度分散して
から凝集しO/W界面が破断して内相のW/O相
が連続しW/Oエマルジヨンとなり金属面に対す
る付着性が格段に向上するという新規な知見を得
た。 またW/Oエマルジヨンに転相した後静置する
と水相が分離しその上にW/Oエマルジヨンが重
なり二層になるが、さらにゆるやかに撹拌するこ
とによつて再びW/O/Wエマルジヨンの形に分
散し、循環供給できるという知見も得た。これら
の理由については概ね次のように考えている。 本発明では親水性界面活性剤はやや不足気味に
加えてあるのでゆるやかな撹拌によりできるやや
大きなエマルジヨン粒子は安定に分散し得るが、
はげしい撹拌による細かい粒子は安定に分散させ
るためにはその量が不足である。よつてはげしく
撹拌すれば一度細かく分散してから凝集し安定な
W/O相に転相し、それをゆるやかに撹拌すれば
W/Oにもどるのである。 これらの現象は本発明者等が見出した前記特定
の界面活性剤を特定の比率に混合して作成した組
成物のみに起る現象であつて、従来提案されてい
た組成内容のW/O/Wエマルジヨンでは起らな
いことも本発明者等は知り得た。 本発明はこれらの知見に基くものであつて、か
ような性状をもつ特定のW/O/Wエマルジヨン
を金属圧延作業において圧延油剤として供給する
金属圧延油剤供給方法である。 金属圧延作業現場においてかような性状をもつ
た圧延油剤原液を所定量の水を充填した貯蔵槽中
に所定量加えゆるやかに撹拌して分散するか、多
少激しく撹拌しても分散後漸時静置してからゆる
やかに撹拌すればW/O/W複合エマルジヨンを
生成して安定に貯蔵でき供給配管を通じてスプレ
イノズルより激しい撹拌等の衝撃を与える状態で
噴出させればW/Oエマルジヨン相と水相の共存
する状態となりこれをロールおよび加工材に吹付
けるとW/Oエマルジヨンが容易に金属面に付着
して有効な潤滑膜をつくり、貯蔵槽にかえつた液
をゆるやかに撹拌すれば安定なW/O/Wにもど
り循環供給できる。 かように本発明の方法は圧延油供給方法として
きわめて適切な方法といえる。本発明の金属圧延
油剤供給方法において使用する特定の界面活性剤
を特定の比率に混合して作成した組成物とは一例
を示せば次の組成物がある。 基油50〜98重量%、水酸基含量(1分子中の平
均水酸基の数×17/平均分子量)1.5〜6.0重量%
を有する油溶性化合物1〜49重量%、HLB10以
上の親水性界面活性剤0.1〜16重量%を必須成分
として含有し、かつ水酸基含量1.5〜6.0重量%を
有する油溶性化合物と、HLB10以上の親水性界
面活性剤との比率が3:1ないし20:1である組
成物が本発明の目的にかなつている。なお、
HLBとは界面活性剤の親水性と親油性のバラン
スを表示する数値であつて、次式により計算す
る。この数値は最小0より最大20まであり、大き
い程親水性が大であることを意味する。 HLB=20(MH/M) MH:親水基部分の分子量 M :活性剤の分子量 ここで使用する基油は牛脂、豚脂等の動物油
脂、パーム油、菜種油等の植物油脂、マシン油等
の鉱油、エステル油、合成炭化水素等の合成油の
一種または二種以上の混合物でありこれにまたワ
ツクス類、タールピツチ等を混合しても使用可能
である。 水酸基含量1.5〜6.0重量%を有する油溶性化合
物としてはソルビタントリラウレート、ソルビタ
ンジオレエート、ソルビタントリオレエート等の
ソルビタンの部分エステル、グリセリンジラウレ
ート、グリセリンジオレエート等のグリセリンの
部分エステル、3―メチルペンタン、1,3,5
―トリオールジタロエート等の多価アルコールと
カルボン酸の部分エステル、ポリプロピレングリ
コールモノステアリルエーテル、ポリプロピレン
グリコールモノノニルフエニルエーテル等のポリ
アルキレングリコールのモノエーテル、コレステ
ロール、レシチン、ヒマシ油、ヒマシ油のポリオ
キシプロピレン付加物等のヒマシ油誘導体、ラノ
リン、ポリオキシプロピレンオレイルアミン等の
アミンのポリアルキレングリコール誘導体、ポリ
オキシプロピレンステアリルアミド等のアミドの
ポリアルキレングリコール誘導体、分子内に水酸
基を導入したポリブタジエン等のポリマーやオリ
ゴマー、多価アルコールと二塩基酸と脂肪酸との
部分コンプレツクスエステル、等の分子内に水酸
基を有し、水酸基含量が1.5〜6.0重量%であり、
かつ基油に溶解し得る化合物である。 なおヒマシ油は鉱油には溶解しないが動植物
油、エステル油等のこれを溶解し得る基油には使
用可能である。これらは親油性界面活性剤の範囲
に属する化合物であるが従来W/O/W用の親油
性界面活性剤として考えられていたものよりはる
かに親油性が強くかつ水酸基を有する活性剤であ
ることが重要な点である。この範囲の化合物のみ
が本発明の目的にかなうものである。 なお水酸基含量はアセチル化法(ウレタン化
法)、脱水法等の水酸基の定量方法により水酸基
含有量を測定し、1分子内の平均水酸基の数×
17/平均分子量で表示される。 従来W/O/W用親油性界面活性剤として提案
されていたソルビタンモノオレエート、ヤシ油脂
肪酸ジエタノールアミドは水酸基価が大きすぎて
使用できない。またオレイン酸のシクロヘキシル
アミド、ヤシ油脂肪酸のジシクロヘキシルアミド
は親油性は強いが水酸基をもたず使用できない。 HLB10以上の親水性界面活性剤としては、
HLB10以上の非イオン界面活性剤が使用可能で
あり、中でもHLB11〜15の非イオン界面活性剤
が好ましく使用できる。 たとえば、ポリオキシエチレンソルビタンモノ
オレエート(HLB15.0)、ポリオキシエチレンソ
ルビタントリオレエート(HLB11)、ポリオキシ
エチレンステアリルエーテル(HLB13.9)等が
好ましい。 この親水性界面活性剤は親水性でありかつO/
W乳化性のあることが必要でHLB10未満の親油
性の強いものは使用できない。 これらの三成分の配合比率は基油50〜98重量
%、水酸基含量1.5〜6.0重量%を有する油溶性化
合物1〜49重量%、HLB10以上の親水性界面活
性剤0.1〜16重量%を必須成分として含有し、か
つ水酸基含量1.5〜6.0重量%を有する油溶性化合
物と、HLB10以上の親水性界面活性剤との比率
が3:1ないし20:1であることが必要である。 水酸基含量1.5重量%未満では内相のW/Oエ
マルジヨンの生成に不十分であり、6.0重量%以
上では親水性が大きすぎてW/O界面の安定化が
不十分となり、W/O/Wエマルジヨンに加えら
れる外部よりの急激な撹拌等の衝撃に弱く破断し
易く目的を達しない。 またこの水酸基含量1.5〜6.0重量%を有する油
溶性化合物が1重量%より少ない時は内相のW/
Oエマルジヨンの生成に不十分であり、49重量%
より多い時はW/Oエマルジヨンの安定性が良す
ぎてW/O/Wエマルジヨンの生成が不十分とな
る。 親水性界面活性剤のHLBが10以下ではO/W
乳化性が不十分であり、この添加量が0.1重量%
以下でも同様O/W乳化性が不十分であり16重量
%以上ではO/W界面の安定性が良すぎて、W/
O/Wエマルジヨンに外部より急激な撹拌等の衝
撃を与えた場合にもO/W界面膜が破断せずW/
Oエマルジヨンへの転相が起らない。 水酸基含量1.5〜6.0重量%を有する油溶性化合
物とHLB10以上の親水性界面活性剤との比率が
3:1以下ではW/O界面の安定性が弱く急激な
撹拌等の衝撃に対してW/O界面膜が破断し易く
W/O/Wエマルジヨンが転相してO/Wエマル
ジヨンになり易い。20:1以上ではO/W界面の
安定性が弱くゆるやかな撹拌によつてもW/O/
WエマルジヨンがW/Oエマルジヨンに転相し易
くなる。 すなわち本発明の範囲内の三成分の配合比率の
組成物によつてのみ本発明の目的である本発明組
成物原液を貯蔵槽中で水中に加えゆるやかに撹拌
することによつて分散してW/O/Wエマルジヨ
ンを成生し、安定に貯蔵でき、配管を通してスプ
レイノズルで噴射するときに急激な撹拌等の衝撃
が与えられれば転相してW/Oエマルジヨンを生
成し従来のO/Wエマルジヨンおよび一般のW/
O/Wエマルジヨンに比して格段にすぐれた付着
性が得られ、ロールおよび加工材金属面に吹付け
て良好な潤滑膜が得られ、W/Oエマルジヨン転
相のときに分離した水の冷却性と相まつて所期の
目的を達しさらに貯蔵槽中でW/O/Wにもどり
循環供給し得る金属圧延油剤供給方法が得られる
のである。 なお本発明の組成物に三成分の外必要に応じ防
錆剤、油性向上剤、極圧添加剤等の添加剤を加え
ることもできる。 本発明は循環式給油方法の金属圧延作業のすべ
てに適用し得るものであつて、金属材料の材質、
ロール材質、金属材料の温度の如何を問わない。 すなわち鉄金属、非鉄金属の冷間、熱間圧延の
すべてに適用し得る。 以下実施例により具体的に説明する。 第1表および第1図に実施例1〜5、比較例1
〜7の各例についてその成分、供給時のエマルジ
ヨン状態の変化および圧延性能について示した。
すなわち成分は各例原液の組成の重量%で第1表
に表示し、エマルジヨン状態は各例の5%エマル
ジヨンについて貯蔵槽における状態と供給配管を
通つてスプレイノズルより噴射した後の状態のエ
マルジヨンを顕微鏡で観察しエマルジヨン型記号
で第1表に表示しかつその安定性を〇安定、×分
離の記号で表示した。 参考として実施例1についてその貯蔵槽内とス
プレイノズル通過後のエマルジヨンの顕微鏡写真
を第2図1,2に示した。 また圧延性能は各例の5%エマルジヨンについ
て金属(軟鋼板)面に対する付着油分量を第1表
に表示し付着性を示し、小型圧延機における圧延
時の荷重と圧下率との関係を第1図に表示して圧
延性を示した。 この付着性と圧延性を総合して圧延性能として
示した。付着性と圧延性の試験方法は次の通りで
ある。 (1) 付着性試験方法 軟鋼板(SPCC―SD50×100×0.8mm)を石油
ベンジン、温メタノールで洗浄後下記の条件に
てエマルジヨン(濃度5重量%温度50℃)を付
着させ、水分除去後の付着油分量を求めた。 試験条件 噴射ノズル;オリフイス径1.0mmフルコーンノ
ズル 〃 圧力 ;5.0Kg/cm2 〃 時間 ;3sec ノズルと軟鋼板との距離;10cm (2) 圧延性試験方法 下記仕様の小型圧延機により圧延を行ない荷
重と圧下率の関係により評価した。 圧延機仕様及び試験条件 圧延機仕様;ワークロール150φ×150mm2段ロ
ール 圧延速度 max29.3mpm 馬力 15HP 試験条件 圧延速度;29.3mpm ロール荷重;(A)8ton (B)15ton テストピース;磨き帯鋼板(SPCC
―SB)0.5×50×150mm)石油ベ
ンジン洗浄後使用 ワークロール温度;42±1℃ エマルジヨン濃度;5重量% エマルジヨン温度;50℃ エマルジヨン給油方法;鋼板かみ込
み部、上、下にノズル(オリフイ
ス径1.0mm、圧力5Kg/cm2)にて
給油 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for supplying emulsion rolling fluid in metal rolling operations. Conventionally, in metal rolling operations, the contact area between the work roll and the rolled material is sprayed with an oil agent made by dispersing lubricating oil such as mineral oil, fat, or a mixture of these oils in water to form an oil-in-water emulsion, that is, an O/W emulsion. It was being sprayed with oil to refuel. At this time, the oil particles of the emulsion adhere to the rolls and the metal surfaces of the rolled material and perform a lubricating action, while the aqueous phase of the emulsion performs a cooling action to remove frictional heat, and collectively exhibits the effect of a rolling oil. Here, a good rolling oil needs to be one in which the oil particles of the emulsion are easily separated and easily adhere to metal surfaces to form an effective lubricating film. On the other hand, at metal rolling work sites, a large-capacity rolling oil storage tank with a capacity of several tens of kilograms is installed to store rolling oil emulsion, and while precisely controlling the emulsion concentration to the appropriate level, the oil is circulated through piping to the lubricated parts of the rolling mill. . Here, as a good rolling oil agent, it is necessary that it has good stability, does not separate oil particles in the emulsion, and is easy to control the concentration. In other words, a good emulsion rolling oil is an emulsion that is stable in the storage tank but unstable in the spray nozzle. However, such properties cannot be obtained with ordinary O/W emulsions. In recent years, various studies have been conducted to examine the composition and phase structure of emulsions and to obtain such properties. For example, by adjusting the type and amount of surfactant,
There is an example of an O/W emulsion in a somewhat unstable state. However, this did not satisfy the stability in the storage tank. It has also been proposed to prepare a water-in-oil emulsion in which water is dispersed in oil, that is, a W/O emulsion, and then supply a dispersion in which the emulsion is mechanically unstablely dispersed in water. In this case as well, the W/O emulsion is difficult to disperse in water and often adheres to metal surfaces, but it is unstable in the storage tank and immediately separates into two phases, the W/O emulsion and water, if it is allowed to stand still. Ta. Furthermore, a method of supplying a composite emulsion designated as W/O/W emulsion was also proposed. This is a W/O emulsion that is further stably dispersed in water using a surfactant, and has a composite structure in which oil particles are suspended in water and water particles are further present within the oil particles. Also referred to as water emulsion. It has been recognized that this W/O/W emulsion is produced when a specific surfactant is added to the base oil, and a stable emulsion can be easily obtained by diluting the stock solution composition in water. It was also explained that the oil adhesion to the surface was excellent. However, this property is similar to O/W emulsion, and W/O emulsion depends on the type and amount of surfactant used as an aqueous dispersant for W/O emulsion.
O emulsions with good or poor dispersion stability in water can be produced. All of the W/O/W emulsions with the compositions proposed to date have such good stability that they are suitable for use in storage tanks. In this case, the adhesion of oil particles (containing water particles) is poor and the objective cannot be achieved. The present inventors studied these prior art in detail and attempted to make fundamental improvements. Considering the phase structure of a W/O/W emulsion, as described above, it has a structure in which oil particles are suspended in water and water particles are further present in the oil particles. In such a structure, there are two types of interfaces between the water phase and the oil phase: a W/O interface in the inner phase and an O/W interface in the outer phase. In order to stabilize the W/O interface, a lipophilic surfactant is added to lower the interfacial energy on the oil side of the W/O interface. Furthermore, in order to stabilize the O/W interface, a hydrophilic surfactant is added to lower the interfacial energy on the water side of the O/W interface. To make a W/O/W emulsion, these two types of surfactants with appropriate properties can be used in an appropriate ratio, but in conventional emulsions, the ratio of lipophilic surfactants used is relatively small; It was observed that the proportion of hydrophilic surfactants used was relatively high, and that the oil solubility of lipophilic surfactants was slightly tilted towards hydrophilicity, resulting in the O/W interface becoming too stable and the internal phase oil particles It is presumed that it was difficult to separate and had poor adhesion to metal surfaces. In an attempt to enhance the adhesion of W/O/W emulsions without impairing their stability, the present inventors developed lipophilic properties with the aim of stabilizing the W/O interface and reducing the stability of the O/W interface. We have selected a surfactant with strong oil solubility, increased its usage ratio significantly more than before, and conducted research by comparing and examining its properties. However, in the process of this research, we inadvertently used a specific lipophilic surfactant and a specific hydrophilic surfactant, and also changed the ratio of these two types of surfactants to a specific ratio by increasing the ratio of the former. If the amount of lipophilic surfactant is sufficient to stabilize the W/O interface, and the amount of hydrophilic surfactant is slightly insufficient to stabilize the O/W interface, then external By applying impact such as rapid stirring, the oil particles in the W/O/W emulsion are once dispersed and then aggregated, the O/W interface is broken, and the internal W/O phase is continuous, forming a W/O emulsion. We have obtained new knowledge that adhesion to metal surfaces is significantly improved. Furthermore, if the phase is inverted to form a W/O emulsion and left to stand still, the aqueous phase will separate and the W/O emulsion will overlap on top of it to form two layers. We also obtained the knowledge that it can be dispersed in various shapes and distributed in circulation. I think about these reasons as follows. In the present invention, since a slightly insufficient amount of hydrophilic surfactant is added, slightly larger emulsion particles formed by gentle stirring can be stably dispersed.
The amount of fine particles caused by vigorous stirring is insufficient for stable dispersion. If the mixture is vigorously stirred, it will first be finely dispersed and then aggregated to form a stable W/O phase, and if it is gently stirred, it will return to W/O. These phenomena occur only in compositions created by mixing the above-mentioned specific surfactants found by the present inventors in specific ratios; The inventors were also able to find out that this does not occur with W emulsion. The present invention is based on these findings, and is a metal rolling fluid supply method for supplying a specific W/O/W emulsion having such properties as a rolling fluid in a metal rolling operation. At a metal rolling work site, a specified amount of a rolling oil stock solution with such properties is added to a storage tank filled with a specified amount of water and dispersed by gentle stirring, or even if it is stirred somewhat vigorously, it gradually settles down after being dispersed. If you let the water sit for a while and then gently stir it, a W/O/W composite emulsion will be generated and can be stored stably. If you spray it through the supply piping with vigorous stirring or other impact from the spray nozzle, the W/O emulsion phase and water will be separated. When the phases coexist, when this is sprayed onto rolls and workpieces, the W/O emulsion easily adheres to the metal surface and forms an effective lubricating film, and when the liquid is returned to the storage tank and is gently stirred, it becomes stable. It can be returned to W/O/W and recirculated. Thus, the method of the present invention can be said to be an extremely suitable method for supplying rolling oil. An example of a composition prepared by mixing a specific surfactant in a specific ratio to be used in the metal rolling oil supply method of the present invention is the following composition. Base oil 50-98% by weight, hydroxyl group content (average number of hydroxyl groups in 1 molecule x 17/average molecular weight) 1.5-6.0% by weight
An oil-soluble compound containing 1 to 49% by weight of an oil-soluble compound having an HLB of 10 or more, 0.1 to 16% by weight of a hydrophilic surfactant with an HLB of 10 or more as an essential component, and having a hydroxyl group content of 1.5 to 6.0% by weight, and a hydrophilic compound having an HLB of 10 or more. Compositions having a ratio of 3:1 to 20:1 with surfactant are suitable for the purpose of the present invention. In addition,
HLB is a numerical value that indicates the balance between hydrophilicity and lipophilicity of a surfactant, and is calculated using the following formula. This value ranges from a minimum of 0 to a maximum of 20, and the higher the value, the greater the hydrophilicity. HLB=20 (MH/M) MH: Molecular weight of the hydrophilic group M: Molecular weight of the activator The base oils used here include animal fats such as beef tallow and lard, vegetable oils such as palm oil and rapeseed oil, and machine oil It is one or a mixture of two or more synthetic oils such as mineral oil, ester oil, and synthetic hydrocarbons, and may also be used in combination with waxes, tar pitch, etc. Examples of oil-soluble compounds having a hydroxyl group content of 1.5 to 6.0% by weight include partial esters of sorbitan such as sorbitan trilaurate, sorbitan dioleate, and sorbitan trioleate; partial esters of glycerin such as glycerin dilaurate and glycerin dioleate; Methylpentane, 1,3,5
-Partial esters of polyhydric alcohols and carboxylic acids such as triolditaloate, monoethers of polyalkylene glycols such as polypropylene glycol monostearyl ether, polypropylene glycol monononyl phenyl ether, cholesterol, lecithin, castor oil, polyesters of castor oil Castor oil derivatives such as oxypropylene adducts, polyalkylene glycol derivatives of amines such as lanolin and polyoxypropylene oleylamine, polyalkylene glycol derivatives of amides such as polyoxypropylene stearylamide, and polymers such as polybutadiene with hydroxyl groups introduced into the molecule. and oligomers, partially complex esters of polyhydric alcohols, dibasic acids, and fatty acids, etc., which have hydroxyl groups in the molecule, and the hydroxyl group content is 1.5 to 6.0% by weight,
and is a compound that can be dissolved in base oil. Although castor oil is not soluble in mineral oil, it can be used in base oils that can dissolve it, such as animal and vegetable oils and ester oils. These are compounds that belong to the range of lipophilic surfactants, but they are far more lipophilic than what was conventionally thought of as lipophilic surfactants for W/O/W use, and are active agents that have hydroxyl groups. is an important point. Only compounds within this range are suitable for the purposes of this invention. The hydroxyl group content is determined by measuring the hydroxyl group content using a method for quantifying hydroxyl groups such as acetylation method (urethanization method) or dehydration method, and calculates the average number of hydroxyl groups in one molecule x
17/expressed as average molecular weight. Sorbitan monooleate and coconut oil fatty acid diethanolamide, which have been conventionally proposed as lipophilic surfactants for W/O/W, cannot be used because their hydroxyl values are too large. Furthermore, cyclohexylamide of oleic acid and dicyclohexylamide of coconut oil fatty acid have strong lipophilic properties but do not have hydroxyl groups and cannot be used. As a hydrophilic surfactant with HLB10 or higher,
Nonionic surfactants with an HLB of 10 or more can be used, and among them, nonionic surfactants with an HLB of 11 to 15 can be used preferably. For example, polyoxyethylene sorbitan monooleate (HLB15.0), polyoxyethylene sorbitan trioleate (HLB11), polyoxyethylene stearyl ether (HLB13.9), etc. are preferred. This hydrophilic surfactant is hydrophilic and O/
It is necessary to have W emulsifying properties, and those with strong lipophilicity with an HLB of less than 10 cannot be used. The blending ratio of these three components is 50-98% by weight of the base oil, 1-49% by weight of an oil-soluble compound having a hydroxyl group content of 1.5-6.0% by weight, and 0.1-16% by weight of a hydrophilic surfactant with HLB of 10 or higher. It is necessary that the ratio of the oil-soluble compound containing 1.5 to 6.0% by weight of hydroxyl groups and the hydrophilic surfactant having an HLB of 10 or more is 3:1 to 20:1. If the hydroxyl group content is less than 1.5% by weight, it is insufficient to form a W/O emulsion in the internal phase, and if it is more than 6.0% by weight, the hydrophilicity is too large and the stabilization of the W/O interface becomes insufficient, and the W/O/W It is weak against shocks such as rapid external stirring applied to the emulsion and easily breaks, thus failing to achieve its purpose. In addition, when the oil-soluble compound having a hydroxyl group content of 1.5 to 6.0% by weight is less than 1% by weight, the internal phase W/
Insufficient to form O emulsion, 49% by weight
When the amount is larger than that, the stability of the W/O emulsion is too good and the formation of the W/O/W emulsion becomes insufficient. O/W if HLB of hydrophilic surfactant is 10 or less
The emulsifying property is insufficient and the amount added is 0.1% by weight.
Similarly, the O/W emulsifying property is insufficient in the case of less than 16% by weight, and the stability of the O/W interface is too good at 16% by weight or more.
Even if the O/W emulsion is subjected to shocks such as rapid stirring from the outside, the O/W interface film will not break and the W/W emulsion will not break.
No phase inversion to O emulsion occurs. If the ratio of an oil-soluble compound having a hydroxyl group content of 1.5 to 6.0% by weight and a hydrophilic surfactant of HLB10 or higher is less than 3:1, the stability of the W/O interface will be weak and it will resist shocks such as rapid stirring. The O interface film is easily broken and the W/O/W emulsion undergoes phase inversion to become an O/W emulsion. At 20:1 or more, the stability of the O/W interface is weak and W/O/
The phase inversion of W emulsion to W/O emulsion becomes easier. That is, by adding the stock solution of the composition of the present invention, which is the object of the present invention, into water in a storage tank and gently stirring to disperse it, W /O/W emulsion is generated and can be stored stably, and if a shock such as sudden stirring is applied when injecting it through piping with a spray nozzle, the phase will change and a W/O emulsion will be generated, unlike conventional O/W. Emulsion and general W/
It has much better adhesion than O/W emulsion, provides a good lubricating film when sprayed onto rolls and metal surfaces of workpieces, and cools the water separated during W/O emulsion phase inversion. This provides a method for supplying metal rolling fluid that achieves the intended purpose in combination with the properties of oil and fluid, and that also enables circulating supply of W/O/W in a storage tank. In addition to the three components, additives such as a rust preventive agent, an oiliness improver, and an extreme pressure additive may be added to the composition of the present invention as required. The present invention can be applied to all metal rolling operations using the circulating oil supply method, and is applicable to all types of metal rolling operations.
It doesn't matter what the roll material is or the temperature of the metal material. In other words, it can be applied to both cold and hot rolling of ferrous metals and non-ferrous metals. This will be explained in detail below using Examples. Table 1 and Figure 1 show Examples 1 to 5 and Comparative Example 1.
The components, changes in the emulsion state during feeding, and rolling performance for each of Examples 1 to 7 are shown below.
That is, the components are shown in Table 1 as weight percent of the composition of the stock solution in each example, and the emulsion state is the state of the 5% emulsion in each example in the storage tank and the state after it is sprayed from the spray nozzle through the supply piping. The results were observed under a microscope and indicated in Table 1 using the emulsion type symbol, and the stability was indicated using the symbols 〇 stable, x separation. For reference, micrographs of the emulsion in the storage tank and after passing through the spray nozzle of Example 1 are shown in FIGS. 1 and 2. In addition, for rolling performance, the amount of oil adhering to the metal (mild steel plate) surface is shown in Table 1 for each 5% emulsion, and the relationship between the load and rolling reduction rate during rolling in a small rolling mill is shown in Table 1. The rolling properties are shown in the figure. The adhesion and rolling properties were combined and shown as rolling performance. The test methods for adhesion and rollability are as follows. (1) Adhesion test method After washing a mild steel plate (SPCC-SD50 x 100 x 0.8 mm) with petroleum benzene and warm methanol, an emulsion (concentration 5% by weight, temperature 50°C) was applied under the following conditions, and after removing moisture. The amount of adhering oil was determined. Test conditions Injection nozzle: Orifice diameter 1.0mm Full cone nozzle Pressure: 5.0Kg/cm 2 Time: 3sec Distance between nozzle and mild steel plate: 10cm (2) Rollability test method Rolling was performed using a small rolling mill with the following specifications. Evaluation was made based on the relationship between load and rolling reduction. Rolling mill specifications and test conditions Rolling mill specifications: Work roll 150φ
-SB) 0.5 x 50 x 150 mm) Work roll temperature used after petroleum benzine cleaning: 42 ± 1°C Emulsion concentration: 5% by weight Emulsion temperature: 50°C Emulsion lubrication method: Nozzles (orifice diameter Lubricating at 1.0mm, pressure 5Kg/ cm2 ) [Table]

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例ならびに比較例の小型圧延機に
おける圧延時の荷重と圧下率の関係を示すグラフ
である。第2図は実施例1のエマルジヨンの顕微
鏡写真であつて1は貯蔵槽内、2はスプレイノズ
ル通過後の状態を示すものである。
FIG. 1 is a graph showing the relationship between rolling load and rolling reduction ratio in small rolling mills of Examples and Comparative Examples. FIG. 2 is a micrograph of the emulsion of Example 1, with 1 showing the state inside the storage tank and 2 showing the state after passing through the spray nozzle.

Claims (1)

【特許請求の範囲】 1 金属圧延作業において、 基 油 50〜98重量% 水酸基含量(1分子中の平均水酸基の数×17/
平均分子量)1.5〜6.0重量%を有する油溶性化
合物 1〜49重量% HLB10以上の親水性界面活性剤 0.1〜16重量% を必須成分として含有し、かつ水酸基含量1.5〜
6.0重量%を有する油溶性化合物と、HLB10以上
の親水性界面活性剤との比率が3:1ないし20:
1である圧延油剤を、 貯蔵槽中では、W/O/W複合エマルジヨンの
状態で貯蔵し、供給配管のスプレイノズルで転相
してW/Oエマルジヨンの状態としてロール及び
加工材に吹付け、かつ貯蔵槽中にもどつたときに
再びW/O/W複合エマルジヨン状態にもどし、
循環供給することを特徴とする金属圧延油剤供給
方法。
[Claims] 1. In metal rolling operations, base oil 50 to 98% by weight hydroxyl group content (average number of hydroxyl groups in one molecule x 17/
Contains as an essential component an oil-soluble compound having an average molecular weight of 1.5-6.0% by weight, 1-49% by weight, a hydrophilic surfactant with HLB10 or higher, 0.1-16% by weight, and a hydroxyl group content of 1.5-49% by weight.
The ratio of oil-soluble compound having 6.0% by weight and hydrophilic surfactant of HLB10 or more is 3:1 to 20:
1 is stored as a W/O/W composite emulsion in a storage tank, phase inverted with a spray nozzle in the supply pipe, and sprayed onto rolls and workpieces as a W/O emulsion. And when it returns to the storage tank, it returns to the W/O/W composite emulsion state again,
A metal rolling oil supply method characterized by circulating supply.
JP12706079A 1979-10-02 1979-10-02 Feeding method for metal rolling mill oil Granted JPS5650714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12706079A JPS5650714A (en) 1979-10-02 1979-10-02 Feeding method for metal rolling mill oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12706079A JPS5650714A (en) 1979-10-02 1979-10-02 Feeding method for metal rolling mill oil

Publications (2)

Publication Number Publication Date
JPS5650714A JPS5650714A (en) 1981-05-08
JPS6313768B2 true JPS6313768B2 (en) 1988-03-28

Family

ID=14950592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12706079A Granted JPS5650714A (en) 1979-10-02 1979-10-02 Feeding method for metal rolling mill oil

Country Status (1)

Country Link
JP (1) JPS5650714A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120799A (en) * 1983-12-02 1985-06-28 Nippon Kokan Kk <Nkk> Pre-mixing of rolling oil
CN110684585B (en) * 2018-07-05 2021-10-29 厦门油典集团有限公司 Micro-emulsion type cutting fluid and preparation method thereof

Also Published As

Publication number Publication date
JPS5650714A (en) 1981-05-08

Similar Documents

Publication Publication Date Title
US3923671A (en) Metal working lubricant
JP5582730B2 (en) Metal rolling oil composition
US5122288A (en) Cold rolling oil for steel sheet
CN1332001C (en) Cold-rolled lubricating oil for steel plate
US4585564A (en) Cold rolling oil for steel sheet
JPS6313768B2 (en)
JPH06179888A (en) Cold-rolling oil for aluminum and aluminum alloy and method of cold rolling using the same
JP6273521B2 (en) Cold rolling oil composition and cold rolling method
JPH06108083A (en) Oil for cold rolling of aluminum and its alloy, and cold rolling by using the oil
JPS58187494A (en) Lubricant for metal working
JP3912624B2 (en) Hot rolling oil for aluminum and method of hot rolling aluminum using the rolling oil
JPH07258672A (en) Metal processing oil composition and oil-in-water type emulsion
JP2009275137A (en) Hot-rolling oil composition and method for hot-rolling ferritic stainless steel
JP3979781B2 (en) Cold rolling oil composition for thin steel plate
JPH02110195A (en) Cold rolling oil
JP3743139B2 (en) Cold rolling method
JP7316883B2 (en) Cold rolling oil composition and method for producing rolled steel sheet using the same
CA2309170A1 (en) Methods of working metal and compositions useful as working fluids therefor
JP3071264B2 (en) Water dispersible cold rolling oil for aluminum and method of supplying the same
JP2957026B2 (en) Lubricating oil for cold rolling of steel sheets
JPS635440B2 (en)
JPS6223038B2 (en)
JPH0222392A (en) Additive for cold rolling oil of metal
JPH1180768A (en) Rolling oil for direct lubrication and rolling
TWI452130B (en) Metal rolling oil composition