JPS6313733B2 - - Google Patents
Info
- Publication number
- JPS6313733B2 JPS6313733B2 JP56128830A JP12883081A JPS6313733B2 JP S6313733 B2 JPS6313733 B2 JP S6313733B2 JP 56128830 A JP56128830 A JP 56128830A JP 12883081 A JP12883081 A JP 12883081A JP S6313733 B2 JPS6313733 B2 JP S6313733B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- dust
- nozzle
- denitrification
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003054 catalyst Substances 0.000 claims description 75
- 239000000428 dust Substances 0.000 claims description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 238000005406 washing Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 11
- 230000003213 activating effect Effects 0.000 claims description 4
- 231100000572 poisoning Toxicity 0.000 claims description 2
- 230000000607 poisoning effect Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 37
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 9
- 238000007664 blowing Methods 0.000 description 8
- 239000011734 sodium Substances 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 7
- 229910052700 potassium Inorganic materials 0.000 description 7
- 229910052708 sodium Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 231100000614 poison Toxicity 0.000 description 6
- 230000007096 poisonous effect Effects 0.000 description 6
- 239000004071 soot Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 241000264877 Hippospongia communis Species 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- -1 potassium (K) Chemical class 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Description
本発明はガス処理装置内に充填された触媒が使
用途中に被毒物の蓄積により性能が低下した時
に、該装置に触媒を充填した使用できる状態のま
までこれを水洗賦活させる方法に関するものであ
り、石炭や石油を燃焼させた排ガスを触媒に通過
させて、排ガス中の窒素酸化物を還元して無害
化、除去する脱硝反応、一酸化炭素あるいは炭化
水素などを酸化燃焼させる反応等に適用される各
種触媒に、燃焼排ガス中のダストに含まれるアル
カリ金属(カリウム、ナトリウム、マグネシウム
など)が蓄積して性能が低下した場合に特に有効
な手段である。
カリウム、ナトリウムなどのアルカリ金属は脱
硝触媒、燃焼触媒など燃焼排ガスを対象にした触
媒反応において、触媒活性点を阻害する被毒物質
であるので、その含有量をできるだけ低減させる
ことが望ましいが、合成反応に使用される触媒と
異なり、排ガス処理用の触媒は環境改善が主目的
であり、触媒活性、寿命を保護するように該排ガ
スを前処理するような配慮は皆無であり、最近で
は燃料事情の悪化からますますダスト量、ダスト
組成の点で触媒に悪影響を与えるような排ガス源
になつてきており、そこで使用される触媒に耐ダ
スト被毒性を要求される状況にある。
本発明者らも上記の排ガス中に含有される窒素
酸化物をアンモニアで還元除去するに最適な脱硝
触媒を開発し、各排ガス源に対応して触媒組成、
形状、製法を変えて高活性、長期耐久性のある脱
硝装置を提供し、火力発電所、各種化学工場のボ
イラで数多くの実用機が既に数多く順調に稼動し
ている。
この場合、LNG焚きボイラの如くダスト、
SOxを含まないクリーンガスでは耐SOx性、耐ダ
スト閉塞性の心配がないため、Al2O3のような耐
SOx性の不十分な担体でも実用上は何ら問題な
く、安価なことから、Al2O3にV2O5、WO3、
Fe2O3、MoO3などの活性成分を担持させた触媒
が使用され、ダスト閉塞性の心配もないことから
粒状、円柱状、だ円体状などに成形された触媒を
固定床で使用している。そして排ガス中のダスト
も皆無に近く、ダストによる性能低下は全くない
といつても過言ではない。
一方、重油焚きボイラや石炭焚きボイラのよう
にダストとSOxを含有するダーテイガスでは耐
SOx性、耐ダスト被毒性、耐ダスト閉塞性、耐ダ
スト摩耗性などを考慮して最適な触媒仕様を選定
する必要があり、TiO2を担体にすることで耐
SOx性が十分あることからTiO2にV2O5、WO3、
Fe2O3、MoO3などの活性成分を担持させた触媒
が使用されている。又ダスト閉塞しない触媒形状
としては前述の粒状、円柱状、だ円体状などに成
形された触媒を移動床で使用する方法、板状、パ
イプ状、ハニカム状などの触媒構造体を固定床に
して排ガスを並行流で通過させる方法が比較検討
され、現在では経済性があり保守の簡単なハニカ
ム触媒が主流となつている。そして石炭焚きボイ
ラの高ダスト側での脱硝反応にも硬度の高いハニ
カム触媒が開発され、実用上ほとんど問題のない
状態である。
しかし、ダスト成分が触媒内部に入りこみ触媒
性能を低下させるのを防ぐ方法としてはダストが
触媒内部に入りにくくするような触媒組成にして
できるだけその影響をやわらげる以外に方法はな
く、ダスト成分でも性能低下に特に悪影響を及ぼ
すカリウム(K)、ナトリウム(Na)、マグネシ
ウム(Mg)などのアルカリまたはアルカリ土類
金属に耐える活性成分の選択が重要であり、本発
明者らも種々のガス源に対応した最適の触媒組成
を見出してきた。重油、石炭は採取される場所に
よつてK、Na、Mg含有量が大きく異なり、これ
らの金属含有量が多い程、耐アルカリダスト性が
触媒に要求される。しかしながらこれらの金属は
排ガス中では大部分硫酸塩として存在しているの
で、水に可溶であり、触媒表面にダストが付着し
た状態で水で濡れたり、ボイラ蒸発管やエコノマ
イザー給水管の破損事故で火炉中のダストを含ん
だ蒸気又は水が触媒を濡らす場合には、触媒内部
に急激にK、Na、Mgなどの被毒物が増加して、
予期していない性能低下をきたし、ボイラの運転
ができない場合も考えられる。
このような緊急事故により脱硝装置が所期の性
能を発揮しなくなつた時は、最悪の場合、ボイラ
を停止せざるを得ない状況になることも想定され
るので、短期間で性能回復させる方法を提供する
必要がある。
前述のようにK、Na、Mgなどのアルカリ金
属、アルカリ土類金属を主体としたダストが触媒
又は活性炭内部に蓄積した場合は、その水溶性を
利用して十分に水洗すれば良いことが知られてお
り、水洗再生法に関する種々の発明が提案されて
いる。
又、ハニカム型触媒を使用した触媒層の内部に
蓄積したダストをボイラの運転中に除去する手段
として触媒層のガス入口面に設けたスーツブロー
装置からノズルを通して高圧のガス体を噴射せし
めることも知られている。
これら従来法について、第1図の現在、普通に
使用されている脱硝装置の配置図で説明する。
ボイラ1の燃焼排ガス2はエコノマイザ3を経
て集塵装置4にて燃焼排ガス中の煤塵を除去した
後、もしくは除煤前の排ガスに、脱硝反応装置5
前において還元剤としてのアンモニア6を供給し
た後、該脱硝反応装置5に導き、前記排ガス2を
脱硝触媒7と接触せしめ、排ガス中の窒素酸化物
(以下NOxという)を無害なN2と水とに分解さ
せる。
このとき燃焼排ガスとして、前記の如く、例え
ば石炭焚きといつた高濃度の煤塵を含有する排ガ
ス、更には付着性の強い煤塵等を対象とした排ガ
スにおいては、運転時間の経過と共に触媒層7の
ガス通過孔部または内部のガスと接触し得る触媒
表面上にダストの付着、堆積を生じ、圧損が上昇
するに伴ない、次第に脱硝性能の低下をきたす。
この問題点を解消するために、脱硝触媒層7入
口部に、付着、堆積物を除去するためのスーツブ
ロー装置8が設けられている。この装置は長期
間、安定運転性を確保するために設置されたもの
であり、定期的または触媒層の圧損上昇が見られ
た場合にのみ使用する。この装置を使用すること
により付着、堆積物は除去でき、一時的に脱硝性
能は回復するが、脱硝触媒の活性点を阻害するカ
リウム、ナトリウムなどのアルカリ金属は除去し
にくく、特に触媒内部に浸漬した被毒物質の除去
しにくさはいうまでもない。したがつてスーツブ
ローを実施しても運転経過に伴ない次第に脱硝性
能に低下を生じてくるのは避けられないのが現状
である。
そこで従来法では脱硝性能に低下が認められ、
スーツブローのみでは性能が回復しない場合、ボ
イラの点検期間中を利用し、特に性能低下が著し
い箇所の触媒層を脱硝反応装置系外に抜出し、新
規触媒を充填するか、または熱処理、水洗処理等
の再生方法に基き、再生後の触媒を再充填してい
るのが現状であるが、いずれの方法においても非
常に時間と手間を必要とし実用性に欠けるし、取
出しや充填時の触媒の破砕のおそれもある。
本発明は上記従来法の欠点を解消するためにな
されたもので、触媒の性能低下時に、装置内に触
媒を充填したままの状態で、効率よく触媒の賦活
化をはかり、触媒性能を十分に回復する方法に関
し、所定の断面形状を備えたガス通路を有する平
行板式触媒(通称ハニカム触媒)を内蔵したガス
処理装置の稼動時、すなわち稼動の途中、あるい
は少なくとも停止前に予め、前記装置の外部より
前記ガス通路の端面に対向して設置されたスーツ
ブローノズルを通して、高圧ガス体を該ガス通路
に噴射せしめ、触媒層部へ付着、堆積したダスト
を除去した後、前記装置の運転を停止せしめ、次
いで前記のガス体を導入したノズル管を系外に抜
き出し前記スーツブローノズルを水洗用ノズルに
交換し、該水性ノズルを通して所定圧力で一定量
の洗浄水を前記ガス通路に噴射し、触媒内部に浸
入、蓄積した被毒成分を溶出除去せしめ、触媒性
能を回復させることを特徴とする、触媒の賦活方
法に関するものである。
本発明の一実施態様を第2図で説明する。
常設のスーツブロー配管8の一部に洗浄水を導
入するライン8−1を設ける。脱硝装置5の触媒
層ガス入口部に設けられ、スーツブロー用ノズル
が取付けられている管A部は脱硝装置5系外へ抜
出し可能な構造とする。すなわちA部の拡大図で
ある第3図に示す如く、ノズル9は取替え可能な
構造、すなわち10のネジ込みタイプのジヨイン
トにネジ込み固定される。
まずノズルとしてスーツブロー用ノズルを取付
け、ボイラ稼動中に、スーツブロー配管8よりガ
ス体(蒸気または空気)を導入し、スーツブロー
用ノズルから一定圧力で一定量噴射し、触媒層部
へ付着、堆積しているダストを除去する。ダスト
除去後、装置の稼動を停止し、脱硝装置内設置の
ノズルが取付けられている配管を系外に抜き出
し、スーツブロー用ノズルを水洗用ノズルに取替
え、触媒層ガス入口部にノズル配管を挿入、固定
したのち、バルブ11にてガス導入口をカツト
し、バルブ12を開にして水洗用配管8−1に切
替え、水洗ノズルより一定圧力の下に一定量、洗
浄水を噴射し、触媒内部へ浸入蓄積した被毒物質
を溶出除去し、触媒性能を回復させるものであ
る。
洗浄後の排液は脱硝装置5の下面に排液取出口
13を設け、常設の排水ピツト槽14へ導く。
スーツブロー、水洗ノズルの噴射圧力等、送入
条件は、ノズルの形状、種類、孔径に応じて適切
な条件を選定すればよいが、通常、圧力は1〜10
Kg/cm2.G、中でも2〜5Kg/cm2.Gが、また噴
射速度は10〜60m/秒が、噴射距離は0.3〜1m
の範囲が使用される。
水洗用ノズルは使用用途に応じて数種の形状が
あるが、一般には第4図に示す充円錐形ノズルA
や均等扇形ノズルBが用いられ(nがノズルであ
る)、前者は大噴量の充円錐パターンaを発生し、
比較的荒い大小の液滴からなり、やや強い打力を
もつ全面均等噴霧という特性を有し、後者は一定
巾をもつた直線状パターンbを示し、全域にわた
り均一噴霧、やや粗露で大容量、簡易な一体化タ
イプという特性を有す。
第1表に両ノズルの噴射角、噴射圧力と噴量の
関係を示す。噴射角度が大きいほど広範囲に均等
にスプレーされノズル個数も少なくてすむ。
The present invention relates to a method for activating a catalyst filled in a gas treatment device by washing with water when the performance of the catalyst deteriorates due to accumulation of poisonous substances during use, while the device is still filled with the catalyst and ready for use. It is applied to denitrification reactions in which exhaust gas from burning coal or oil is passed through a catalyst to reduce, render harmless, and remove nitrogen oxides in the exhaust gases, and reactions to oxidize and burn carbon monoxide or hydrocarbons. This is a particularly effective means when alkali metals (potassium, sodium, magnesium, etc.) contained in dust in combustion exhaust gas accumulate on various catalysts and their performance deteriorates. Alkali metals such as potassium and sodium are poisonous substances that inhibit the catalyst active sites in catalytic reactions targeting combustion exhaust gas such as denitrification catalysts and combustion catalysts, so it is desirable to reduce their content as much as possible. Unlike catalysts used in reactions, the main purpose of catalysts for exhaust gas treatment is to improve the environment, and there is no consideration given to pre-treating the exhaust gas to protect catalyst activity and lifespan. Due to the deterioration of dust, dust has increasingly become a source of exhaust gas that has an adverse effect on catalysts in terms of dust amount and dust composition, and the catalysts used there are required to be resistant to dust poisoning. The present inventors have also developed a denitrification catalyst that is optimal for reducing and removing nitrogen oxides contained in the above exhaust gas with ammonia, and have adjusted the catalyst composition according to each exhaust gas source.
We offer highly active and long-lasting denitrification equipment with different shapes and manufacturing methods, and many practical equipment are already in smooth operation in boilers at thermal power plants and various chemical plants. In this case, dust like LNG-fired boiler,
With clean gas that does not contain SOx, there is no need to worry about SOx resistance or dust blockage resistance, so resistant gases such as Al 2 O 3
Even if the carrier has insufficient SOx properties, there is no practical problem and it is inexpensive, so Al 2 O 3 is used with V 2 O 5 , WO 3 ,
Catalysts supporting active components such as Fe 2 O 3 and MoO 3 are used, and there is no concern about dust clogging, so catalysts shaped into granules, cylinders, ellipses, etc. are used in fixed beds. ing. There is also almost no dust in the exhaust gas, and it is no exaggeration to say that there is no deterioration in performance due to dust. On the other hand, it is resistant to dirty gas containing dust and SOx, such as heavy oil-fired boilers and coal-fired boilers.
It is necessary to select the optimal catalyst specifications by considering SOx resistance, dust toxicity resistance, dust occlusion resistance, dust abrasion resistance, etc., and by using TiO 2 as a carrier, it is possible to
Because it has sufficient SOx properties, TiO 2 contains V 2 O 5 , WO 3 ,
Catalysts on which active components such as Fe 2 O 3 and MoO 3 are supported are used. In addition, as catalyst shapes that do not become clogged with dust, there are two methods: using catalysts shaped like particles, cylinders, and ellipsoids as described above in a moving bed, and using catalyst structures such as plates, pipes, and honeycombs as fixed beds. Methods of passing exhaust gas in parallel flow have been compared and studied, and honeycomb catalysts, which are economical and easy to maintain, are currently the mainstream. A highly hard honeycomb catalyst has also been developed for denitrification reactions on the high-dust side of coal-fired boilers, and has virtually no problems in practical use. However, the only way to prevent dust components from entering the catalyst and reducing catalyst performance is to soften the effect as much as possible by creating a catalyst composition that makes it difficult for dust to enter the catalyst. It is important to select active ingredients that are resistant to alkali or alkaline earth metals such as potassium (K), sodium (Na), and magnesium (Mg), which have a particularly negative effect on We have discovered the optimal catalyst composition. The K, Na, and Mg contents of heavy oil and coal vary greatly depending on where they are extracted, and the higher the content of these metals, the more alkali dust resistance is required of the catalyst. However, since most of these metals exist in the form of sulfates in exhaust gas, they are soluble in water, and the catalyst surface may become wet with water with dust attached to it, or damage to boiler evaporator pipes or economizer water supply pipes may occur. If dust-laden steam or water in the furnace wets the catalyst due to an accident, poisonous substances such as K, Na, and Mg will rapidly increase inside the catalyst.
There is a possibility that unexpected performance deterioration may occur and the boiler may not be able to operate. If the denitrification equipment no longer performs as expected due to an emergency accident like this, in the worst case scenario, the boiler may have to be shut down, so it is necessary to recover the performance in a short period of time. need to provide a method. As mentioned above, if dust mainly composed of alkali metals and alkaline earth metals such as K, Na, and Mg accumulates inside the catalyst or activated carbon, it is well known that it is best to take advantage of its water solubility and wash it thoroughly with water. Various inventions related to water washing regeneration methods have been proposed. Additionally, as a means of removing dust accumulated inside a catalyst layer using a honeycomb type catalyst during boiler operation, a high-pressure gas body may be injected through a nozzle from a suit blowing device installed on the gas inlet surface of the catalyst layer. Are known. These conventional methods will be explained with reference to FIG. 1, which is a layout diagram of a denitrification device commonly used at present. The combustion exhaust gas 2 of the boiler 1 passes through the economizer 3 and after removing soot from the combustion exhaust gas in the dust collector 4, or before soot removal, the flue gas is sent to the denitrification reactor 5.
After ammonia 6 is supplied as a reducing agent at the front, the exhaust gas 2 is introduced into the denitrification reactor 5 and brought into contact with the denitrification catalyst 7, converting nitrogen oxides (hereinafter referred to as NOx) in the exhaust gas into harmless N 2 and water. Let it break down into . At this time, as mentioned above, as the combustion exhaust gas, for example, exhaust gas containing a high concentration of soot and dust from coal-fired combustion, or exhaust gas that targets highly adhesive soot, etc. Dust adheres and accumulates on the gas passage hole or on the catalyst surface that can come into contact with the internal gas, and as the pressure drop increases, the denitrification performance gradually decreases. In order to solve this problem, a soot blowing device 8 is provided at the inlet of the denitrification catalyst layer 7 to remove adhesion and deposits. This device was installed to ensure stable operation over a long period of time, and is used only periodically or when an increase in pressure drop in the catalyst layer is observed. By using this device, adhesion and deposits can be removed and the denitrification performance can be restored temporarily, but it is difficult to remove alkali metals such as potassium and sodium that inhibit the active sites of the denitrification catalyst, especially if they are immersed inside the catalyst. Needless to say, it is difficult to remove poisonous substances. Therefore, even if suit blowing is carried out, it is currently inevitable that the denitrification performance will gradually deteriorate as the operation progresses. Therefore, with the conventional method, a decrease in denitrification performance was observed,
If suit blowing alone does not restore performance, take advantage of the boiler inspection period to extract the catalyst layer outside the denitrification reactor system where the performance has particularly deteriorated and fill it with a new catalyst, or perform heat treatment, water washing, etc. Currently, the regenerated catalyst is refilled based on the regeneration method of There is also a risk of The present invention was made in order to eliminate the drawbacks of the conventional method described above, and when the catalyst performance deteriorates, the catalyst is efficiently activated while the catalyst is still packed in the device, and the catalyst performance is sufficiently improved. Regarding the recovery method, during the operation of a gas treatment device that incorporates a parallel plate catalyst (commonly known as a honeycomb catalyst) having a gas passage with a predetermined cross-sectional shape, that is, during operation or at least before stopping, the external A high-pressure gas is injected into the gas passage through a suit blow nozzle installed opposite to the end face of the gas passage to remove dust that has adhered to and accumulated on the catalyst layer, and then the operation of the apparatus is stopped. Next, the nozzle pipe into which the gas body was introduced is extracted from the system, the suit blow nozzle is replaced with a water washing nozzle, and a certain amount of washing water is injected at a predetermined pressure into the gas passage through the water nozzle to clean the inside of the catalyst. The present invention relates to a method for activating a catalyst, which is characterized by eluting and removing poisonous components that have penetrated and accumulated in a catalyst, thereby restoring catalyst performance. One embodiment of the present invention will be explained with reference to FIG. A line 8-1 for introducing cleaning water is provided in a part of the permanently installed suit blow piping 8. The pipe A section provided at the catalyst layer gas inlet of the denitrification device 5 and to which the soot blow nozzle is attached has a structure that allows it to be extracted to the outside of the denitrification device 5 system. That is, as shown in FIG. 3, which is an enlarged view of part A, the nozzle 9 has a replaceable structure, that is, it is screwed and fixed to ten screw-in type joints. First, a suit blowing nozzle is installed as a nozzle, and while the boiler is operating, gas (steam or air) is introduced from the suit blowing pipe 8, and a certain amount is injected at a constant pressure from the suit blowing nozzle, and it adheres to the catalyst layer. Remove accumulated dust. After dust removal, stop the operation of the equipment, pull out the pipe to which the nozzle installed inside the denitrification equipment is attached, replace the suit blow nozzle with a water washing nozzle, and insert the nozzle pipe into the catalyst bed gas inlet. , after fixing, cut off the gas inlet with valve 11, open valve 12 to switch to the water washing pipe 8-1, and inject a certain amount of washing water under a certain pressure from the washing nozzle to clean the inside of the catalyst. This removes poisonous substances that have penetrated and accumulated in the catalyst, restoring catalyst performance. A drain outlet 13 is provided on the lower surface of the denitrification device 5, and the drained liquid after cleaning is led to a permanently installed drain pit tank 14. Appropriate feeding conditions such as suit blow and water washing nozzle injection pressure can be selected depending on the shape, type, and hole diameter of the nozzle, but usually the pressure is 1 to 10
Kg/ cm2 . G, especially 2-5Kg/cm 2 . G, injection speed is 10 to 60 m/sec, and injection distance is 0.3 to 1 m.
range is used. Water washing nozzles come in several shapes depending on the intended use, but generally they are full conical nozzles A shown in Figure 4.
A uniform fan-shaped nozzle B is used (n is the nozzle), and the former generates a full cone pattern a with a large jet amount,
It is composed of relatively rough large and small droplets and has the characteristic of uniform spraying over the entire surface with a rather strong hitting force. It has the characteristic of being a simple integrated type. Table 1 shows the relationship between the injection angle, injection pressure, and injection amount for both nozzles. The larger the spray angle, the more uniformly the spray will be spread over a wider area and the number of nozzles will be smaller.
【表】
これらノズル形状、配置、噴霧圧力等、適当な
組合せとして洗浄効果を向上させる。
以上の如く、本発明は触媒の性能低下時に、装
置内に触媒を充填したままの状態で、スーツブロ
ー、水洗を行い、短時間で触媒性能を回復させる
ものであり、従来のようにボイラ定期点検期間を
利用して触媒を抜出し、触媒の再生を行ない、再
生後の触媒を再充填するといつた煩雑な方法を必
要とせず、簡単な方法で効率よく触媒再生が可能
となり、その実用上の効果は非常に大といえる。
以上、脱硝反応における触媒賦活法を例にとつ
て説明したが、ガス処理装置内の触媒の賦活全般
に本発明方法を適用することができる。[Table] The cleaning effect can be improved by appropriately combining these nozzle shapes, arrangement, spray pressure, etc. As described above, the present invention restores the catalyst performance in a short time by carrying out suit blowing and water washing while the catalyst is still filled in the device when the catalyst performance deteriorates. There is no need for complicated methods such as taking out the catalyst during the inspection period, regenerating the catalyst, and refilling the regenerated catalyst. The effect can be said to be very large. Although the method for activating a catalyst in a denitrification reaction has been described above as an example, the method of the present invention can be applied to activation of a catalyst in a gas treatment device in general.
第1図は脱硝装置の一般的な形態を示すフロー
シートであり、第2図は本発明を第1図の脱硝法
に採用した場合の一例を示す図であり、第3図は
第2図のノズル配管部Aの拡大図であり、第4図
は2種のノズルの構造およびスプレーパターンを
示す図である。
FIG. 1 is a flow sheet showing a general form of a denitrification device, FIG. 2 is a diagram showing an example of the case where the present invention is applied to the denitrification method shown in FIG. 1, and FIG. FIG. 4 is an enlarged view of the nozzle piping section A of FIG. 4, and FIG. 4 is a diagram showing the structures and spray patterns of two types of nozzles.
Claims (1)
置の稼動時に、スーツブローノズルより高圧ガス
体を噴射して触媒層部へ付着、堆積したダストを
除去した後、前記装置の運転を停止し、次いで前
記スーツブローノズルを水洗用ノズルに交換し、
該水洗ノズルより洗浄水を噴射して触媒内部に浸
入、蓄積した被毒成分を溶出除去せしめることか
らなる、触媒の賦活方法。1. When a gas treatment device containing a built-in catalyst having a gas passage is in operation, a high-pressure gas is injected from a suit blow nozzle to remove dust that has adhered to and accumulated on the catalyst layer, and then the operation of the device is stopped, and then Replace the suit blow nozzle with a water washing nozzle,
A method for activating a catalyst, which comprises injecting washing water from the washing nozzle to elute and remove poisoning components that have entered and accumulated inside the catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56128830A JPS5830345A (en) | 1981-08-19 | 1981-08-19 | Catalyst activation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56128830A JPS5830345A (en) | 1981-08-19 | 1981-08-19 | Catalyst activation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5830345A JPS5830345A (en) | 1983-02-22 |
JPS6313733B2 true JPS6313733B2 (en) | 1988-03-28 |
Family
ID=14994455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56128830A Granted JPS5830345A (en) | 1981-08-19 | 1981-08-19 | Catalyst activation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5830345A (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60235826A (en) * | 1984-05-09 | 1985-11-22 | Idemitsu Petrochem Co Ltd | Liquid diene polymer composition |
DE19723796C2 (en) | 1997-06-06 | 2003-07-17 | Saar En Gmbh | Process for reactivating honeycomb-shaped catalyst elements for the denitrification of flue gases |
DE102005000873A1 (en) | 2005-01-05 | 2006-07-13 | Blohm, Maik | Method and apparatus for purifying SCR catalysts to regain activity |
EP2248587A1 (en) | 2005-12-16 | 2010-11-10 | Evonik Energy Services GmbH | Process for the treatment of catalyst for the purification of flue gas |
DE102007020855A1 (en) | 2007-05-02 | 2008-11-06 | Evonik Energy Services Gmbh | Process for purifying flue gases from incineration plants |
EP2033702B1 (en) | 2007-09-04 | 2011-01-19 | Evonik Energy Services GmbH | Method for removing mercury from exhaust combustion gases |
US7723251B2 (en) | 2008-03-11 | 2010-05-25 | Evonik Energy Services Llc | Method of regeneration of SCR catalyst |
US7741239B2 (en) | 2008-03-11 | 2010-06-22 | Evonik Energy Services Llc | Methods of regeneration of SCR catalyst poisoned by phosphorous components in flue gas |
WO2014178337A1 (en) * | 2013-05-01 | 2014-11-06 | 東京博善株式会社 | Cremation system and cremation method |
JP7103729B2 (en) * | 2017-09-21 | 2022-07-20 | 一般財団法人電力中央研究所 | Impurity remover regeneration system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51111496A (en) * | 1975-03-26 | 1976-10-01 | Kobe Steel Ltd | Method of removing the deposited dust |
JPS5230789A (en) * | 1975-09-05 | 1977-03-08 | Nippon Kagaku Sangyo Kk | Method for washing catalyst and its equipment |
-
1981
- 1981-08-19 JP JP56128830A patent/JPS5830345A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51111496A (en) * | 1975-03-26 | 1976-10-01 | Kobe Steel Ltd | Method of removing the deposited dust |
JPS5230789A (en) * | 1975-09-05 | 1977-03-08 | Nippon Kagaku Sangyo Kk | Method for washing catalyst and its equipment |
Also Published As
Publication number | Publication date |
---|---|
JPS5830345A (en) | 1983-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6482634B2 (en) | Method and system for removing particulate matter soot, ash and heavy metals from engine exhaust gas | |
US4572903A (en) | Method for reactivating catalysts used for removing nitrogen oxides with steam | |
JPS6313733B2 (en) | ||
US20170211441A1 (en) | Method and system for the removal of particulate matter and heavy metals from engine exhaust gas | |
WO2002020128A1 (en) | Method and device for cooling and collecting dust from exhaust gas containing soot and dust | |
US10814278B2 (en) | Selective catalytic reduction process and off-line regeneration of deactivated catalyst of the process | |
CN208886814U (en) | A kind of natural gas Sintering shaft kiln equipment for denitrifying flue gas | |
CN110339657A (en) | A kind of regeneration fume from catalytic cracking dry purification process and device | |
CN110115925A (en) | A kind of process and device reducing activated coke adsorption column inlet flue-gas temperature | |
CN111821804A (en) | Ship flue gas purification device | |
JP2018513298A (en) | Method and system for removing particulate matter from engine exhaust or process equipment | |
CN105771643A (en) | Online cleaning method and device for recovering activity of low-temperature denitration catalyst | |
JP3941550B2 (en) | Cleaning method for particulate filter | |
JPS6238741Y2 (en) | ||
JPS6313734B2 (en) | ||
CN208066113U (en) | A kind of desulphurization denitration synergistic effect system | |
JPS6313735B2 (en) | ||
JP3489938B2 (en) | Flue gas treatment equipment | |
JP3525369B2 (en) | Spray absorption tower and flue gas desulfurization unit | |
CN205672787U (en) | For recovering the online clearing apparatus of low-temperature denitration catalyst activity | |
JPS58189041A (en) | Regeneration of catalyst | |
CN108246085A (en) | A kind of desulphurization denitration synergistic effect system | |
CN205361032U (en) | Defogging sprays liquid feed system | |
JPS63141630A (en) | Catalytic reactor for stack gas treatment | |
JPS58189044A (en) | Regeneration of catalyst |