JPS63137201A - Manufacture of plastic optical fiber - Google Patents

Manufacture of plastic optical fiber

Info

Publication number
JPS63137201A
JPS63137201A JP61285600A JP28560086A JPS63137201A JP S63137201 A JPS63137201 A JP S63137201A JP 61285600 A JP61285600 A JP 61285600A JP 28560086 A JP28560086 A JP 28560086A JP S63137201 A JPS63137201 A JP S63137201A
Authority
JP
Japan
Prior art keywords
polymer
optical fiber
extruder
plastic optical
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61285600A
Other languages
Japanese (ja)
Inventor
Toshiki Doi
土井 敏樹
Tetsuo Ono
哲郎 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP61285600A priority Critical patent/JPS63137201A/en
Publication of JPS63137201A publication Critical patent/JPS63137201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To prevent a substance which exerts adverse influence upon light guide loss from being mixed by arranging a polymer melting cylinder provided with heating facilities in an extruder field zone, plasticizing an annular polymer in the polymer melting cylinder, and supplying it to an extruder and carrying out extrusion molding. CONSTITUTION:A pellet type core material 3 is supplied from the hopper 2 of the core material extruder 1, plasticized by a screw 4, and passed through a gear pump 5. Then it come together at a die 7 for common extrusion with a sheath material extruded from a sheath material extruder 6 and then a plastic optical fiber consisting of the core part 9 and sheath part 10 is extruded from a nozzle 8. Then >=1 heat melting cylinder 12 is provided in the screw field zone 11 and a polymer 13 for the core material (i.e. lump polymer) obtained by lump polymerization is charged in the melting cylinder 12, heated and plasticized, and pressed and supplied to the screw 4. Thus, the material which exerts adverse influence upon the light guide loss is prevented from being mixed to manufacture the plastic optical fiber with low light guide loss.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は低導光損失のプラスチック光ファイバーの押出
成形による製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a plastic optical fiber with low light guiding loss by extrusion molding.

〈従来の技術〉 光学m維は、従来ガラス系材料を基体として製造され、
光信号伝送媒体として機器間や機器内の計測制御用、デ
ータ伝送用あるいは医療用、装飾用や画像伝送用として
広く利用されている。
<Prior art> Optical m-fibers are conventionally manufactured using glass-based materials as a base.
It is widely used as an optical signal transmission medium for measurement control between and within devices, for data transmission, for medical purposes, for decoration, and for image transmission.

しかし、ガラス系材料を基材とした光学躊・鞄は、内径
の細いpmにしないと可焼性に乏しいという欠点があシ
、又、断線しやすいこと、比重が大きいこと、およびコ
ネクターを含めて高価であることなどの理由から、最近
これをグツフチツクで作る試みが種々提案されている◇
プラスチックを使用した場合の大きな特徴は軽量である
こと、内径の大い1#雌でも強靭で可焼性に富むこと、
従って、高開口度、大口伊が可能であり、受発光票子と
の結合が容易であることなど操作性にすぐれていること
が挙げられる0プラスチツクを用いてとのような光学m
!aを製造する一般的な方法は、屈折率が大きく、かつ
光の透過性が良好なグラスチックを芯成分とし、これよ
シも屈折率が小さく、かつ、透明なプラスチックをさ中
成分とした芯−さや構造を有する繊維を形成するもので
ある。この方法は、芯−さや界面で光を全y射させるこ
とによシ、光を伝送するものであるJ 芯−さや構造よりなる光学m維の製造方法としては2つ
の方法がある01つは、芯−さや両成分を溶融状態のも
とて特殊ノズルによって同時に吐出して芯−さや構造を
付与する方法であシ、いわゆる複合紡糸方式といわれる
ものである。他の1つは、まず芯成分を所定の繊維に賦
形したのち、これに適当な溶剤にとかしたさ中成分を被
覆したのち脱溶剤して光学繊維とするいわゆる塗布方式
である0 光透過性の高いプラスチックとしては、無定形の材料が
好ましく、工業的にはポリメタクリル酸メチルやポリス
チレンが注目される材料である。(例えば、特公昭48
−8978号公報)なかでも透明性の点でメタクリル酸
メチルを主体とする重合体が最好ましい0 〈発明が解決しようとする問題点〉 プラスチック光ファイバーの導光損失の主因は芯材に依
るところが大きいOしかるにプラスチック光ファイバー
の芯材に用いられるメタクリル酸メチルを主体とする重
合体は一般に懸濁重合法で製造され、懸濁重合法に起因
するとみられる導光損失の悪化は重要な要素であると考
えられている。すなわち、懸濁重合時に使用される水の
中の光学的不純物の混入や懸濁重合で得られたビーズを
ベレット化する際の造粒工程、さらにはベレットをホッ
パーに供給する工程での光学的不純物の混入およびかか
る工程における熱!9Mによる芯材の酸化分解生成物等
がそのままプラスチック光ファイバーの芯部に持込まれ
て導光損失を大きくするといった閉頭がある0〈間1点
を解決する手段〉 本発明はかかる問題点を解決し、低導光損失のプラスチ
ック光ファイバーを製造する方法に関する。すなわち、
本発明は、プラスチック光ファイバーを押出成形する方
法において、加熱設備を設けた重合体溶融筒を押出機フ
ィードゾーンに少なくとも1個配設し、塊状重合体を該
重合体溶融筒内で可塑化し、押出機に供給し、押出成形
を行なうことを特徴とする低導光損失のプラスチック光
ファイバーの製造方法に関するものである。
However, optical bags and bags made of glass-based materials have the disadvantage that they have poor flammability unless they are made with a thin inner diameter, and they also tend to break easily, have a high specific gravity, and have problems with connectors, etc. Recently, various attempts have been made to make this using sticky dough, due to the fact that it is expensive.
The major characteristics of using plastic are that it is lightweight, and even with a large inner diameter of 1#, it is strong and flammable.
Therefore, it is possible to use optical moulds, such as those using plastics, which have excellent operability, such as a high aperture, a large aperture, and easy connection with the light-emitting/receiving tag.
! A common method for producing A is to use glass as a core component, which has a large refractive index and good light transmittance, and to use a transparent plastic as a core component, which also has a low refractive index. This forms fibers having a core-sheath structure. This method transmits light by emitting all the light at the core-sheath interface.There are two methods for producing optical fibers with a core-sheath structure. This is a method of imparting a core-sheath structure by simultaneously discharging both the core-sheath components in a molten state through a special nozzle, and is called a composite spinning method. The other method is a so-called coating method in which the core component is first formed into a predetermined fiber, and then the core component is dissolved in an appropriate solvent and coated with the core component, and then the solvent is removed to form an optical fiber. Amorphous materials are preferable as plastics with high properties, and polymethyl methacrylate and polystyrene are attracting attention from an industrial perspective. (For example,
-8978 Publication) Among them, a polymer mainly composed of methyl methacrylate is most preferable in terms of transparency.0 <Problems to be solved by the invention> The main cause of light guide loss in plastic optical fibers largely depends on the core material. However, the polymers mainly composed of methyl methacrylate used for the core material of plastic optical fibers are generally manufactured by suspension polymerization, and the worsening of light guide loss that is thought to be caused by suspension polymerization is an important factor. It is considered. In other words, contamination of optical impurities in the water used during suspension polymerization, granulation process when beads obtained by suspension polymerization are made into pellets, and optical impurities during the process of feeding the pellets to the hopper. Contamination with impurities and heat in such processes! The present invention solves this problem, in which the oxidation and decomposition products of the core material caused by 9M are directly carried into the core of the plastic optical fiber, increasing the light guiding loss. The present invention relates to a method of manufacturing a plastic optical fiber with low light guiding loss. That is,
The present invention provides a method for extrusion molding a plastic optical fiber, in which at least one polymer melting tube equipped with heating equipment is disposed in the extruder feed zone, a bulk polymer is plasticized in the polymer melting tube, and the polymer is extruded. The present invention relates to a method of manufacturing a plastic optical fiber with low light guiding loss, which is characterized by supplying the fiber to a machine and extrusion molding.

本発明の方法の特徴を図面によって説明する0図1はプ
ラスチック光フアイバー押出装置の全体図を示すもので
芯材押出機(1)のホッパー(2)からベレット状芯材
(8)が供給されスクリュー(4)で可塑化されギアポ
ンプ(5)を通り、一方鞘材押出機(6)から押出され
た鞘材とが共押出用ダイス(7)で合流しノズル(8)
から芯部(9)と鞘部(10)とからなるプラスチック
光ファイバーが押出される0本発明は該プラスチック光
ファイバーの押出装置において、芯材押出機(1)のホ
ッパー(2)を使用することなく、スクリューフィード
ゾーン(11)に1個以上の加熱溶融筒(12)を設は
該加熱溶融筒に塊状重合によシ得られた芯材用重合体(
すなわち塊状重合体’) (18)を充填し、加熱、可
塑化し、加圧してスクリューに供給することを特徴とし
たものである0 図2は加熱溶融筒の1例を示したもので、加熱溶融筒(
12)、それを加熱するヒーター(18入加圧装置(1
4)および可塑化された芯材の供給量を制aするギヤー
ボンデあるいはパルプ(15)から構成される。加熱溶
融筒の形状は、〆融樹脂が滞留しないように筒内面に凹
状部分、溝状構造を有しないものが好ましい。
The features of the method of the present invention will be explained with reference to drawings.0 Figure 1 shows an overall view of a plastic optical fiber extrusion device, in which a pellet-shaped core material (8) is supplied from a hopper (2) of a core material extruder (1). The sheath material, which is plasticized by the screw (4) and passed through the gear pump (5), is extruded from the sheath material extruder (6) and joins the co-extrusion die (7) to the nozzle (8).
A plastic optical fiber consisting of a core (9) and a sheath (10) is extruded from the plastic optical fiber.The present invention provides an extrusion apparatus for plastic optical fibers without using the hopper (2) of the core extruder (1). , the screw feed zone (11) is provided with one or more heat-melting tubes (12), and the core material polymer (12) obtained by bulk polymerization is placed in the heat-melting tubes (
In other words, it is characterized in that it is filled with bulk polymer') (18), heated, plasticized, and then supplied to the screw under pressure.0 Figure 2 shows an example of a heat-melting cylinder. Melting tube (
12), a heater to heat it (18 pressurizing device (1
4) and a gear bonder or pulp (15) that controls the supply amount of the plasticized core material. The shape of the heat-melting cylinder is preferably such that the inner surface of the cylinder does not have a concave portion or a groove-like structure so that the molten resin does not stagnate.

本発明で使用される加熱溶融筒は2個以上の並列使用が
可能であシ図8はその1例を示すもので加熱溶融筒(1
2−1、12−2,12−8)を並列に設けその下部の
パルプ(15−1,15−2,15−8)を介して流管
(16)を経てスクリューフィードゾーン(11)に供
給される0バルブの切替で加#L溶融筒内で溶融した芯
材を連続的にスクリューに供給することができる。また
本発明で用いる加熱溶融筒は該溶融筒下部に1個以上の
P!融芯材排出口を設は加熱溶融筒の内壁に接する過度
の熱履歴を受けた溶@沙脂を少量排出させながら芯材を
スクリュー忙供給することが可能である0図4はその1
例を示したもので排出口(17−1゜17−2 )は加
熱溶M筒下部外周部に2個以上設けたもので該排出口は
排出9%コントロールできるものであればよく、その形
状は制【1しない。
Two or more heat-melting cylinders used in the present invention can be used in parallel. Figure 8 shows one example of this.
2-1, 12-2, 12-8) are installed in parallel, and the pulp (15-1, 15-2, 15-8) at the bottom is passed through the flow pipe (16) to the screw feed zone (11). By switching the 0 valve to be supplied, the core material melted in the #L melting cylinder can be continuously supplied to the screw. Further, the heating melting cylinder used in the present invention has one or more P! at the bottom of the melting cylinder. By installing a core material discharge port, it is possible to continuously feed the core material to the screw while discharging a small amount of the melted resin that has been subjected to excessive heat history in contact with the inner wall of the heating melting cylinder.
In the example shown, two or more discharge ports (17-1゜17-2) are provided on the outer periphery of the lower part of the heated melt M cylinder. Has no control [1.

會お、本発明の加熱溶融筒は単に埋状重合体をカ伽する
だけでなく、塊状重合反応自体をその内部で行なわすと
ともできる。
In addition, the heating melting cylinder of the present invention not only allows the buried polymer to be heated, but also allows the bulk polymerization reaction itself to be carried out inside the cylinder.

本発明で用いられる芯材としては、例えばメチルメタク
リレート系重合体およびスチレン系重合体が挙げられる
が、導光損失や耐久性の面でメチルメタクリレート系重
合体が好ましい。
Examples of the core material used in the present invention include methyl methacrylate polymers and styrene polymers, with methyl methacrylate polymers being preferred in terms of light guide loss and durability.

本発明忙おけるメチルメタクリレート系重合体としては
、メチルメタクリレート単量体を主成分とし、メチルア
クリレート、エチルアクリレート、グチルアクリレート
などのアクリル酸エステル単量体を少量共重合したもの
や、耐熱性向上を目的にボルニルメタクリレートやフェ
ンチルメ!クリレートを共重合したものなどが挙げられ
るが、これに限定されるものではない〇本発明を構成す
る他の重要な要素であるさ中成分としては、7ツ紫を少
なくとも20M量第含む重合体である。好ましい重合体
としては、ツー/素樹脂、熱可塑性7ツ素ゴムおよび7
9票ゴムである。ツーy累積脂としては、例えば、α−
フルオロアクリル酸フルオロアルキル、α−フルオロア
クリル酸アルキル、メタクリル酸フルオロアルキル、含
74I素オレフィンなどからなる含フツ素重合体および
共重合体をあげることができる。
Examples of the methyl methacrylate-based polymer used in the present invention include those containing methyl methacrylate monomer as the main component and copolymerized with a small amount of acrylic acid ester monomers such as methyl acrylate, ethyl acrylate, and butyl acrylate, and those that have improved heat resistance. Bornyl methacrylate and fentilme for the purpose! Examples include, but are not limited to, those copolymerized with acrylate. Other important ingredients constituting the present invention include polymers containing at least 20 M of 7-purple. It is. Preferred polymers include 2/polymer resin, thermoplastic 7-polymer rubber, and 7-polymer resin.
9 votes rubber. For example, α-
Fluorine-containing polymers and copolymers made of fluoroalkyl fluoroacrylates, alkyl α-fluoroacrylates, fluoroalkyl methacrylates, 74I-containing olefins, and the like can be mentioned.

α−フルオロアクリル酸フルオロアルキル重合体、α−
フルオロアクリル酸アルキルおよびメタクリル酸フルオ
ロアルキル重合体としては具体的には、α−フルオロア
クリル酸2 、2 。
α-Fluoroalkyl acrylate polymer, α-
Specifically, the alkyl fluoroacrylate and fluoroalkyl methacrylate polymers include α-fluoroacrylic acid 2 , 2 .

2−トリフルオロエチル、α−フルオロアクリ7L’酸
2#2#8,8−テトラフルオロプロピル、およびそれ
忙対応するメタクリル酸フルオロアルキルなどやα−フ
ルオロアクリル酸メチル、α−フルオロアクリル酸エチ
ル、α−フルオロアクリル酸プロピルなどからなる重合
体を挙げることができる。
2-trifluoroethyl, α-fluoroacrylate 7L' acid 2#2#8,8-tetrafluoropropyl, and its corresponding fluoroalkyl methacrylate, methyl α-fluoroacrylate, ethyl α-fluoroacrylate, Examples include polymers composed of propyl α-fluoroacrylate and the like.

また、含フツ素オレフィン系重合体としてはビニリグン
フルオライドーテトフフルオロエチレン共重合体、トリ
フルオロエチレン−ビニリデンフルオフイド共重合体、
ビニリデンフルオライド−テトラフルオロエチレン−ヘ
キサフルオロプロベン共重合体などをあげることができ
るO 〈発明の効果〉 生ずる酸化分解生成物がなく、導光損失KM影響を及ぼ
す物質の混入や生成が極力防止されるため、低導光損失
を示すすぐれた光学#維を提供することができる。
In addition, examples of the fluorine-containing olefin polymer include vinyligne fluoride-tetophfluoroethylene copolymer, trifluoroethylene-vinylidene fluoride copolymer,
Examples include vinylidene fluoride-tetrafluoroethylene-hexafluoroprobene copolymer. <Effects of the invention> There are no oxidative decomposition products generated, and the contamination and generation of substances that affect light guide loss KM are prevented as much as possible. Therefore, it is possible to provide an excellent optical fiber exhibiting low light guiding loss.

〈実施例〉 次に本発明を実施例によシ説明するが、これらは例示的
な庵のであシ、本発明はこれらによって限定されない。
<Examples> Next, the present invention will be explained with reference to Examples, but these are merely illustrative examples, and the present invention is not limited thereto.

実施例1 (1)単量体の精製 芯材重合体の重合で用いる単量体は、十分口過し蒸留し
たものを用いた。重合はすべてクリーン度100の雰囲
気で行なった。ここで付なった口過は0.8μmのフィ
ルターを用い、He−Noレーザーによる輝点観察によ
シ、輝点がなくなるまで行なった0口過後、アルミナ(
活性度iの塩基性アルミナ)を通し減圧蒸留を行なった
◎ (2重合 精製したメタクリル酸メチル(97重景%)とアクリル
酸メチル(8fi景%)を混合し、内径80m、全長5
00mのガラス筒に入れ、開始剤として0.0018m
o7/Jの過酸化ラウリル、連鎖移動剤として0.02
 mol/11のヲウリルメルカブタンを添加した0つ
bで、溶存気体を除去し、減圧下で重合した。重合は4
0℃にテ50fI間、50’Cffて20時間、60c
にて10時間及び80℃にて5時間と段階的に昇温し、
最後は120CKて8時間熱処理した0 (8)  紡糸 上記のように塊状重合したメタクリル酸メチルを主体と
した重合体を押出機スクリューのフィードゾーンに設置
された内径80m、全長600mのステンレヌ製加P、
溶融筒(図lまたは図2の扁12)に入れ、減圧にした
後加熱溶融した。溶融後、押出棒(14)に荷重や圧力
(例えば窒素圧)をかけ、ギヤーポンプによシ押出機シ
リンダー内に定量供給して光ファイバーを紡糸した0使
用したさや材はメタクリル酸2.2.8.8テトフフル
オログロビル重合体であった。紡糸の条件は、芯材潤度
220℃、さや材温度210℃であシ、押出量は芯材2
. OKv’hr 、さや材0.4 Kf/hrであっ
た0得られたプラスチック光ファイバーの導光損失は表
1に記した0 9i!施例2 *雄側1の加熱溶融部内に前記の精製した単量体を充填
し重合を行なった他は全て実施例1と同様の方法でプラ
スチック光ファイバーを製造した。得られた光ファイバ
ーの導光損失は表1に記した。
Example 1 (1) Purification of monomer The monomer used in the polymerization of the core material polymer was one that had been thoroughly passed through and distilled. All polymerizations were performed in an atmosphere with a cleanliness level of 100. The blemishes formed here were observed using a 0.8 μm filter and bright spot observation using a He-No laser.
Vacuum distillation was carried out through basic alumina (with activity level i) (2 polymerized methyl methacrylate (97%) and methyl acrylate (8fi%) were mixed, inner diameter 80 m, total length 5.
0.0018 m as an initiator.
o7/J lauryl peroxide, 0.02 as chain transfer agent
Dissolved gas was removed by adding mol/11 worylmerkabutane, and polymerization was carried out under reduced pressure. Polymerization is 4
0°C for 50fI, 50'Cff for 20 hours, 60c
The temperature was increased stepwise for 10 hours at 80°C and 5 hours at 80°C.
Finally, it was heat-treated at 120CK for 8 hours (8) Spinning The polymer mainly composed of methyl methacrylate, which was bulk polymerized as described above, was processed into a stainless steel P with an inner diameter of 80 m and a total length of 600 m installed in the feed zone of the extruder screw. ,
The mixture was placed in a melting cylinder (flat 12 in Figure 1 or Figure 2) and heated to melt after reducing the pressure. After melting, a load or pressure (for example, nitrogen pressure) is applied to the extrusion rod (14), and a gear pump is used to supply a constant amount into the extruder cylinder to spin an optical fiber.The sheath material used is methacrylic acid 2.2.8 .8 tetoffluoroglovir polymer. The spinning conditions were a core moisture content of 220℃, a sheath material temperature of 210℃, and an extrusion rate of 2 core materials.
.. OKv'hr, the sheath material was 0.4 Kf/hr, and the light guide loss of the obtained plastic optical fiber is shown in Table 1.09i! Example 2 *A plastic optical fiber was manufactured in the same manner as in Example 1, except that the purified monomer was filled into the heat-melting part of the male side 1 and polymerized. The light guide loss of the obtained optical fiber is shown in Table 1.

比較例1 懸濁重合したメタクリル酸メチルを主体とした重合体(
スミペックスMHO■住友化学工業製)を押出機ホッパ
ー(図1の/に2)から供給した。
Comparative Example 1 A polymer mainly composed of suspension polymerized methyl methacrylate (
Sumipex MHO (manufactured by Sumitomo Chemical Industries) was supplied from the extruder hopper (2 in FIG. 1).

その他は全て実施例1と同様の条件で押出成形した。得
られた光ファイバーの導光損失は表IK記し九とおりで
あった〇 表     1
All other extrusion molding was carried out under the same conditions as in Example 1. The light guide losses of the obtained optical fibers were as shown in Table IK. Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明の低導光損失デフスチック光ファイバー押
出装置の概略図である。 図2は加熱溶融筒、図8は並列加熱溶融筒、図4は排出
口を備えた加P溶御筒の概略図である。 1・・・芯材押出機 2・・・ホッパー 8・・・ベレット状芯材 4・・・スクリュー 5・・・ギアポンプ 6・・・鞘材押出機 7・・・共押出用ダイ7 8・・・ノズル 9・・・芯部 10・・・鞘部 11・・・スクリューフィードゾーン 12・・・加熱溶融筒 13・・・芯材重合体(塊状重合体) 14・・・加圧装置(押出棒) 15・・・ギアポンプあるいはパルプ 16・・・流管 17・・・溶〜樹閂旨排出口 18・・・加熱装置 図2 加熱溶融部 ト
FIG. 1 is a schematic diagram of a low light guide loss differential optical fiber extrusion apparatus of the present invention. FIG. 2 is a schematic diagram of a heating melting tube, FIG. 8 is a schematic diagram of a parallel heating melting tube, and FIG. 4 is a schematic diagram of a pressurizing melting tube equipped with a discharge port. 1...Core material extruder 2...Hopper 8...Bellet-like core material 4...Screw 5...Gear pump 6...Sheath material extruder 7...Coextrusion die 7 8. ... Nozzle 9 ... Core section 10 ... Sheath section 11 ... Screw feed zone 12 ... Heat melting tube 13 ... Core material polymer (bulk polymer) 14 ... Pressure device ( Extrusion rod) 15...Gear pump or pulp 16...Flow tube 17...Melting~barrel outlet 18...Heating device Fig. 2 Heating melting section

Claims (1)

【特許請求の範囲】[Claims] プラスチック光ファイバーを押出成形する方法において
、加熱設備を設けた重合体溶融筒を押出機フィードゾー
ンに少なくとも1個配設し、塊状重合体を該重合体溶融
筒内で可塑化し、押出機に供給し、押出成形を行なうこ
とを特徴とする低導光損失のプラスチック光ファイバー
の製造方法。
In a method of extrusion molding a plastic optical fiber, at least one polymer melting tube equipped with heating equipment is disposed in an extruder feed zone, and the bulk polymer is plasticized in the polymer melting tube and fed to the extruder. , a method for producing a plastic optical fiber with low light guiding loss, characterized by carrying out extrusion molding.
JP61285600A 1986-11-28 1986-11-28 Manufacture of plastic optical fiber Pending JPS63137201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61285600A JPS63137201A (en) 1986-11-28 1986-11-28 Manufacture of plastic optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61285600A JPS63137201A (en) 1986-11-28 1986-11-28 Manufacture of plastic optical fiber

Publications (1)

Publication Number Publication Date
JPS63137201A true JPS63137201A (en) 1988-06-09

Family

ID=17693642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61285600A Pending JPS63137201A (en) 1986-11-28 1986-11-28 Manufacture of plastic optical fiber

Country Status (1)

Country Link
JP (1) JPS63137201A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255881A (en) * 2011-06-08 2012-12-27 Sekisui Chem Co Ltd Extrusion raw material feeding device and method of producing optical transmission body using the same
JP2013214020A (en) * 2012-04-04 2013-10-17 Sekisui Chem Co Ltd Extrusion raw material supply device and method for producing optical transmission body using the same
JP2014117939A (en) * 2012-12-19 2014-06-30 Sekisui Chem Co Ltd Extrusion raw material supply device and manufacturing method for optical transmission body using the same
CN113403706A (en) * 2021-06-03 2021-09-17 青岛科技大学 Polymer vibration jet wire drawing method and equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255881A (en) * 2011-06-08 2012-12-27 Sekisui Chem Co Ltd Extrusion raw material feeding device and method of producing optical transmission body using the same
JP2013214020A (en) * 2012-04-04 2013-10-17 Sekisui Chem Co Ltd Extrusion raw material supply device and method for producing optical transmission body using the same
JP2014117939A (en) * 2012-12-19 2014-06-30 Sekisui Chem Co Ltd Extrusion raw material supply device and manufacturing method for optical transmission body using the same
CN113403706A (en) * 2021-06-03 2021-09-17 青岛科技大学 Polymer vibration jet wire drawing method and equipment
CN113403706B (en) * 2021-06-03 2022-08-12 青岛科技大学 Polymer vibration jet wire drawing method and equipment

Similar Documents

Publication Publication Date Title
US4547040A (en) Optical fiber assembly and process for preparing same
EP0112564B1 (en) Plastic optical fiber
JPS5865402A (en) Plastic optical fiber
JP2849646B2 (en) Plastic optical fiber
JPS61262706A (en) Plastic optical fiber and its production
JPS5834404A (en) Plastic optical fiber
EP0131058B1 (en) Optical fiber assembly and process for preparing same
JP5830426B2 (en) Manufacturing method of plastic optical fiber
JPS63137201A (en) Manufacture of plastic optical fiber
SK151597A3 (en) Flexible optical waveguide for lateral lighting application
CN101544046B (en) Method for preparing sidelight plastic fibers by continuous reaction coextrusion method
JPS5893003A (en) Light transmissive fiber and its production
CN100572030C (en) Plastic optical product, plastic optical fiber, be used to make the equipment of plastic optical members and the method for making plastic optical members and plastic optical product
JPS5969703A (en) Multicored plastic optical fiber and its production
JPS5818608A (en) Light transmitting fiber and its manufacture
US20090238525A1 (en) Production method of preform of plastic optical member and plastic optical fiber
JP2006163031A (en) Manufacturing method of plastic optical member and manufacturing equipment thereof
JP3258605B2 (en) Multi-step refractive index distribution plastic optical fiber
JPH10133036A (en) Multistep index type plastic optical fiber and its production
CA1261566A (en) Method for producing plastic optical fiber with heat resistance
JPH08146259A (en) Production of plastic optical fiber cord
JPS59176704A (en) Method and device for manufacturing plastic optical fiber
JPS5968703A (en) Method and device for producing plastic optical fiber
JPS60149005A (en) Plastic optical fiber
JPH05224033A (en) Plastic optical fiber