JPS63136985A - Ultrasonic motor - Google Patents
Ultrasonic motorInfo
- Publication number
- JPS63136985A JPS63136985A JP61281653A JP28165386A JPS63136985A JP S63136985 A JPS63136985 A JP S63136985A JP 61281653 A JP61281653 A JP 61281653A JP 28165386 A JP28165386 A JP 28165386A JP S63136985 A JPS63136985 A JP S63136985A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic motor
- elements
- piezoelectric
- motor according
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000010287 polarization Effects 0.000 claims description 7
- 238000001125 extrusion Methods 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/16—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
- H02N2/163—Motors with ring stator
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、超音波モータに関し、もう少し詳しくいう
と、複数個の駆動子が一体に形成された円環状の基体に
圧電素子を接合し、圧電素子に超音波信号を印加して共
振近傍の周波数で基体を励振させ、駆動子に係合してい
るスライダに回転動作を生じさせる超音波モータに関す
るものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ultrasonic motor, and more specifically, a piezoelectric element is bonded to an annular base body in which a plurality of drive elements are integrally formed. The present invention relates to an ultrasonic motor that applies an ultrasonic signal to a piezoelectric element to excite a base body at a frequency near resonance, thereby causing a slider engaged with a driver to rotate.
第5図、第6図に示すものは、本発明者が先に提案した
(特願昭61−181866号)従来の超音波モータで
あり、円環状の基体31に4個の駆動子32 a −’
s 2 dを等分割点に一体に突設形成し、4分割した
圧電素子36を基体31て接合し、直交する2つの一点
鎖線34a。What is shown in FIGS. 5 and 6 is a conventional ultrasonic motor previously proposed by the present inventor (Japanese Patent Application No. 181866/1982), which has an annular base 31 and four drive elements 32a. −'
s 2 d is integrally formed in a protruding manner at equal dividing points, and the piezoelectric element 36 divided into four parts is joined to the base body 31, and two dashed dotted lines 34a intersect at right angles.
34k)の部位に振動の節が位置する超音波ユニットと
したもので、駆動子32a、32b と32C,32
d とが互いに逆位相で振動する。This is an ultrasonic unit in which the vibration node is located at the part 34k), and the drive elements 32a, 32b and 32C, 32
d vibrate in opposite phases to each other.
以上の構成により、駆動子32a〜32dの端部に係合
させた円環状のスライダ(図示せず)を、矢印(a)で
示すような、一方向に回転駆動するものである。With the above configuration, the annular slider (not shown) engaged with the end portions of the drive elements 32a to 32d is rotated in one direction as shown by the arrow (a).
以上のような従来の超音波モータでは、回転方向が一方
向に限られ、左右方向に任意に切換え制御ができないと
いう問題点があった。The conventional ultrasonic motor as described above has a problem in that the direction of rotation is limited to one direction and cannot be controlled to be switched arbitrarily in the left and right directions.
この発明はかような問題点を解決しようとするもので、
回転方向を任意て切換えることができる超音波モータを
得ることを目的とするものである。This invention attempts to solve such problems.
The object of the present invention is to obtain an ultrasonic motor whose rotation direction can be arbitrarily switched.
この発明に係る超音波モータは、駆動子の両側の基体部
位に同じ分極甑性の圧電素子をそれぞれ接合し、これら
の圧電素子を円周方向に1つおきに2つのグループに分
け、各グループの圧電素子を並列接続し、グループ間を
切換え給電するスイッチを設けたものである。In the ultrasonic motor according to the present invention, piezoelectric elements of the same polarization property are bonded to the base portions on both sides of the drive element, and these piezoelectric elements are divided into two groups with every other piezoelectric element in the circumferential direction. Piezoelectric elements are connected in parallel, and a switch is provided to switch between groups and supply power.
この発明においては、圧電素子の第1のグループに交番
信号を印加し、基体を共振近傍で励振させる。これに伴
って駆動子の先端部は所定方向に振動し、スライダを一
方向に回転動作させる。この状態から、スイッチの切換
えにより、第2のグループに給電すると、スライダは逆
の方向に回転動作する。In this invention, an alternating signal is applied to the first group of piezoelectric elements to excite the base body near resonance. Accordingly, the tip of the driver vibrates in a predetermined direction, causing the slider to rotate in one direction. From this state, when power is supplied to the second group by switching the switch, the slider rotates in the opposite direction.
また、ロータリエンコーダの併用により、任意の回転角
度あるいは回転数の制御ができる。Additionally, by using a rotary encoder, the rotation angle or rotation speed can be controlled at any desired angle.
第1図〜第6図はこの発明の一実施例を示し、第1図、
第2図において、鉄、アルミニウムのような弾性体でな
る円環状の基体1の下面に、圧電効果d31の圧電素子
2a、2b、3a。1 to 6 show an embodiment of the present invention, and FIG.
In FIG. 2, piezoelectric elements 2a, 2b, and 3a having a piezoelectric effect d31 are disposed on the lower surface of an annular base 1 made of an elastic material such as iron or aluminum.
3b、4a、4bおよび5a、5bが等角度分割線上に
接合されている。基体1から一体に突出形成された駆動
子6,7.8および9は、基体1の振動時の節と腹の中
間に位置している。駆動子6〜9の先端にわたって、ス
ライダ10が係合している。3b, 4a, 4b and 5a, 5b are joined on equal angle dividing lines. The driving elements 6, 7, 8, and 9 integrally formed to protrude from the base body 1 are located between the nodes and antinodes of the base body 1 when it vibrates. A slider 10 is engaged across the tips of the drive elements 6 to 9.
圧電素子2a、2bと3a、3bとは分極が互いに逆に
なっており、圧電素子4a、4bと5a、5bとは分極
が互いに逆になっている。The polarizations of the piezoelectric elements 2a, 2b and 3a, 3b are opposite to each other, and the polarizations of the piezoelectric elements 4a, 4b and 5a, 5b are opposite to each other.
圧電素子2a〜5bは第3図に示すように接続されてい
る。すなわち、圧電素子2a、2b。The piezoelectric elements 2a to 5b are connected as shown in FIG. That is, piezoelectric elements 2a and 2b.
′5aおよび3bを第1のグループ11として互いに並
列接続し、圧電素子4a、4b、5aおよび5bを第2
のグループ12として互いに並列に接続する。第1.第
2のグループI+、+2は切換スイッチ13を介して超
音波発振器14に接続されている。15は圧電素子の一
部分のフィードバック信号取出し部で、圧電素子の駆動
周波数は、フィードバック信号により自励回路を形成し
て外部温度の変化や負荷の変動に対しても安定に動作す
るようにする。'5a and 3b are connected in parallel to each other as a first group 11, and piezoelectric elements 4a, 4b, 5a and 5b are connected in parallel to each other as a first group 11.
are connected in parallel to each other as a group 12. 1st. The second group I+, +2 is connected to an ultrasonic oscillator 14 via a changeover switch 13. Reference numeral 15 denotes a feedback signal extraction section of a part of the piezoelectric element, and the drive frequency of the piezoelectric element is determined by the feedback signal to form a self-exciting circuit so that the piezoelectric element operates stably even with changes in external temperature and load fluctuations.
以上の構成により、いま、圧電素子の第1のグループ1
1に入力が印加されると、第1図における各圧電素子2
a、2b、3aおよび3bの中央部である(イ)、(羽
、 ()) 、 Cノ>の部分が振動の上側。With the above configuration, the first group 1 of piezoelectric elements is now
1, each piezoelectric element 2 in FIG.
The central parts of a, 2b, 3a, and 3b (a), (wing, ()), and C> are on the upper side of the vibration.
下側の腹となり、圧電素子の第2のグループ12の各圧
電素子の各中央部である(口)、(へ)、(ホ)、(勾
の位置が節をなす共振振動姿態を呈する。そのため、た
とえば、駆動子6の位置は、腹である(イ)と節に当る
(口)との中間であるため、基体1が傾斜して、駆動子
6の先端も上、下に移動しながら首を振ることになり、
スライダ10を移動させることになる。It exhibits a resonant vibration mode in which the positions of (mouth), (he), (ho), and (gradation), which are the lower antinodes and the central portions of each piezoelectric element of the second group 12 of piezoelectric elements, form nodes. Therefore, for example, since the position of the driver element 6 is between the antinode (a) and the node (mouth), the base body 1 is tilted and the tip of the driver element 6 also moves up and down. I ended up shaking my head,
The slider 10 will be moved.
圧電素子2a、2bと3a、3bとは分極が互いに逆の
ため、駆動子6と7ならびに8と9は二相交流の一サイ
クルのe期間とe期間を交互にスライダ10に係合する
ことになる。Since the piezoelectric elements 2a, 2b and 3a, 3b have opposite polarization, the drivers 6 and 7 and 8 and 9 engage the slider 10 alternately during periods e and e of one cycle of the two-phase alternating current. become.
次に、切換スイッチ13を切換えて、圧電素子の第2の
グループ12に通電すると、今度は駆動子部分の傾斜が
先程と逆になり、スライダ100回転方向も逆になる。Next, when the changeover switch 13 is switched and the second group 12 of piezoelectric elements is energized, the inclination of the driver portion is reversed and the direction of rotation of the slider 100 is also reversed.
スライダ100回転速度は、負荷が一定の場合、入力電
圧に比例して増減する。The rotation speed of the slider 100 increases or decreases in proportion to the input voltage when the load is constant.
駆動j子6〜9の先端当接部は損耗し易いので、基体1
全体をFRM (せん維強化金属)のような軽(て高強
度の材料で形成するか、また、スライダ側の材料として
プラスチックやゴム系を使用すればよい。これは異音の
発生を抑える点でも有効である。The tip abutting portions of the drive elements 6 to 9 are easily worn out, so
The entire structure can be made of a lightweight, high-strength material such as FRM (fiber-reinforced metal), or plastic or rubber can be used as the material on the slider side. But it is effective.
スライダ10は、円環状でも、中心に軸を設けた円板状
のものでもよい。また、センターずれを防止するため、
駆動子が係合する部分に円環状の段差を設けるのは有効
である。The slider 10 may be annular or disc-shaped with an axis at the center. In addition, to prevent center deviation,
It is effective to provide an annular step in the portion where the driver engages.
超音波発振器14の出力波形は、正弦波でも矩形波でも
よい。The output waveform of the ultrasonic oscillator 14 may be a sine wave or a rectangular wave.
なお、上記実施例では駆動子の突出方向が回転の軸方向
に平行である場合を示したが、別の構造として、駆動子
を円環状基体の中心方向あるいはその逆方向に突き出し
て形成してもよい。In the above embodiment, the protruding direction of the driver element is parallel to the axis of rotation, but as another structure, the driver element may be formed to protrude toward the center of the annular base or in the opposite direction. Good too.
この場合は、圧電素子は基体のそれぞれ外周面および内
周面の所定位置に接合配置する。同時にスライダの形状
も駆動子に外接もしくは内接する円形状のものとなる。In this case, the piezoelectric elements are bonded and arranged at predetermined positions on the outer circumferential surface and the inner circumferential surface of the base, respectively. At the same time, the slider also has a circular shape that is circumscribed or inscribed in the drive element.
第4図は別の実施例を示し、円環状の基体1K、12o
”4に開いた3箇所の駆動子20゜21.22と25.
24,25のペア、すなわち6個の駆動子の例であり、
各駆動子20〜25それぞれの両側に圧電素子16a・
18a。FIG. 4 shows another embodiment, in which the annular bases 1K and 12o
``3 open drive elements 20° 21. 22 and 25.
An example of 24,25 pairs, or 6 drivers,
Piezoelectric elements 16a are placed on both sides of each drive element 20 to 25.
18a.
16 bhl 8 b + I 6 C@l 8 Ce
l 7 a*+ 9 a + I 7 b4Tl 9
bおよび+7c・+9c が設けられ、圧電素子16
a。16 bhl 8 b + I 6 C@l 8 Ce
l 7 a*+ 9 a + I 7 b4Tl 9
b and +7c and +9c are provided, and the piezoelectric element 16
a.
16b、16c、17a、17b、17cを第1のグル
ープ、圧電素子j8a、+8b、18c、19a、+9
b、+9c を第2のグループとしてそれぞれ並列接
続し、切換スイッチで通電を切換えて回転方向を制御す
る。16b, 16c, 17a, 17b, 17c as the first group, piezoelectric elements j8a, +8b, 18c, 19a, +9
b and +9c are connected in parallel as a second group, and the direction of rotation is controlled by switching the energization with a changeover switch.
この場合は駆動子の数が多いので、高負荷用に適し、ま
た、基体1の厚さを薄(設計することができる利点があ
る。In this case, since the number of drive elements is large, it is suitable for high-load applications, and there is an advantage that the thickness of the base 1 can be designed to be thin.
なお、以上の実施例では、駆動子が4個、6個の場合を
示したが、駆動子の数は、4個以上の任意の偶数個を選
択することができる。また、駆動子は基体の上、下両面
に突設することも考えられる。In the above embodiments, the cases where the number of drive elements is four or six have been shown, but the number of drive elements can be selected to be any even number of four or more. Further, it is also conceivable that the driver is provided protrudingly from both the upper and lower surfaces of the base.
また、圧電素子は、円環状にして電極のみ個別に印刷し
、所定の分極を施してなるものでもよい。さらに、R(
l素子は適宜間引いて設置することも考えられる。Further, the piezoelectric element may be formed into a ring shape, with only the electrodes individually printed and polarized in a predetermined manner. Furthermore, R(
It is also conceivable to thin out and install the l elements as appropriate.
あるいは、円環状基体の振動の腹の位置を安定化するた
めに、基体の腹部に横断溝を設けてもよい。Alternatively, in order to stabilize the position of the antinode of vibration of the annular base, a transverse groove may be provided in the antinode of the base.
この発明は、以上の説明から明らかなように、円環状の
基体に突設した少な(とも4個の駆動子それぞれの両側
部位に、同じ分極極性の1対の圧電素子を基体に接合し
、これら圧電素子をm円雪白に1つお缶に2つのグルー
プに分けてそれぞれ並゛列接続し、2つのグループへの
給電を切換スイッチで切換えるよ5Kしたので、簡単な
構造、操作により回転方向を任意に切換えることができ
る効果がある。As is clear from the above description, the present invention includes a pair of piezoelectric elements having the same polarization polarity bonded to the base on both sides of each of the four drive elements protruding from the annular base. These piezoelectric elements were divided into two groups, one per m-yen snow white, each connected in parallel, and the power supply to the two groups was switched using a changeover switch.As a result, the rotation direction can be easily controlled with a simple structure and operation. It has the effect of being able to switch arbitrarily.
第1図〜第3図はこの発明の一実施例を示し、第1図は
要部平面図、第2図は側面図、第3図は結線図である。
第4図は他の実施例の要部平面図である。第5図は従来
の超音波モータの要部平面図、第6図は第5図のものの
側面図である。
1−・基体、2a、2b、3a、3b、4a、4b。
5a、5b@@圧電素子、6,7,8.9 −−駆動子
、10@・スライダ、1+、+2・・圧電素子の第1.
第2のグループ、16・・切換スイッチ。
第1図
6−9 、!i区勤子
第2図
第3図
13:す万爵スイッチ
第4図1 to 3 show an embodiment of the present invention, in which FIG. 1 is a plan view of a main part, FIG. 2 is a side view, and FIG. 3 is a wiring diagram. FIG. 4 is a plan view of main parts of another embodiment. FIG. 5 is a plan view of essential parts of a conventional ultrasonic motor, and FIG. 6 is a side view of the motor shown in FIG. 1--Substrate, 2a, 2b, 3a, 3b, 4a, 4b. 5a, 5b @ piezoelectric element, 6, 7, 8.9 --driver, 10 @ slider, 1+, +2... 1st piezoelectric element.
2nd group, 16... selector switch. Figure 1 6-9,! I-ku Jinzi Figure 2 Figure 3 Figure 13: Sumansha Switch Figure 4
Claims (7)
成された円環状の基体と、 前記基体の前記駆動子それぞれの両側部位 に接合された同一分極極性の圧電素子と、 前記圧電素子を前記基体の円周方向に1つ おきに分けて各並列接続した第1,第2のグループに切
換給電するための切換スイツチと、を備え、前記駆動子
が係脱するスライダの 回転方向を切換えるようにしてなる超音波モータ。(1) an annular base from which at least four even-numbered drive elements are integrally formed in a protruding manner; piezoelectric elements having the same polarization bonded to both sides of each of the drive elements of the base; and the piezoelectric a changeover switch for dividing the elements into every other element in the circumferential direction of the base body and selectively supplying power to the first and second groups connected in parallel; An ultrasonic motor that switches between
れている特許請求の範囲第1項記載の超音波モータ。(2) The ultrasonic motor according to claim 1, wherein the piezoelectric elements are arranged on equiangular lines on the entire circumference of the base body.
されている特許請求の範囲第1項記載の超音波モータ。(3) The ultrasonic motor according to claim 1, wherein drive elements are formed between the antinodes and nodes of the vibration of the base body.
ずれかに設けられている特許請求の範囲第1項記載の超
音波モータ。(4) The ultrasonic motor according to claim 1, wherein the driver is provided on either one side or both sides of the base body in the vibration direction.
印刷して所定の分極を施したものである特許請求の範囲
第1項記載の超音波モータ。(5) The ultrasonic motor according to claim 1, wherein the piezoelectric element is formed by individually printing electrodes on an integral annular element and subjecting it to predetermined polarization.
れかでなるフイードバツク端子を備えた特許請求の範囲
第1項記載の超音波モータ。(6) The ultrasonic motor according to claim 1, comprising a feedback terminal formed of either a partially divided piezoelectric element or a separate piezoelectric element.
なる段差を形成したスライダを備えた特許請求の範囲第
1項記載の超音波モータ。(7) The ultrasonic motor according to claim 1, further comprising a slider having a step formed at the engaging/disengaging portion of the driver element to serve as a guide for preventing extrusion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61281653A JPS63136985A (en) | 1986-11-28 | 1986-11-28 | Ultrasonic motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61281653A JPS63136985A (en) | 1986-11-28 | 1986-11-28 | Ultrasonic motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63136985A true JPS63136985A (en) | 1988-06-09 |
Family
ID=17642099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61281653A Pending JPS63136985A (en) | 1986-11-28 | 1986-11-28 | Ultrasonic motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63136985A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5041750A (en) * | 1989-12-15 | 1991-08-20 | Canon Kabushiki Kaisha | Vibration wave driven apparatus |
US5402030A (en) * | 1989-12-13 | 1995-03-28 | Canon Kabushiki Kaisha | Vibration wave driven apparatus |
US9742313B2 (en) | 2013-10-30 | 2017-08-22 | Seiko Epson Corporation | Piezoelectric motor, robot hand, robot, finger assist apparatus, electronic component conveying apparatus, electronic component inspecting apparatus, liquid feeding pump, printing apparatus, electronic timepiece, and projection apparatus |
-
1986
- 1986-11-28 JP JP61281653A patent/JPS63136985A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5402030A (en) * | 1989-12-13 | 1995-03-28 | Canon Kabushiki Kaisha | Vibration wave driven apparatus |
US5041750A (en) * | 1989-12-15 | 1991-08-20 | Canon Kabushiki Kaisha | Vibration wave driven apparatus |
US9742313B2 (en) | 2013-10-30 | 2017-08-22 | Seiko Epson Corporation | Piezoelectric motor, robot hand, robot, finger assist apparatus, electronic component conveying apparatus, electronic component inspecting apparatus, liquid feeding pump, printing apparatus, electronic timepiece, and projection apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050212386A1 (en) | Rotation/displacement converting actuator | |
JPH06106028B2 (en) | Piezoelectric resonance motor | |
US9318980B2 (en) | Piezoelectric actuator, robot hand, and robot | |
JPH0241673A (en) | Ultrasonic driving gear | |
JPS63136985A (en) | Ultrasonic motor | |
US7994687B2 (en) | Piezoelectric actuator and method for driving the same | |
JPS6311070A (en) | Piezoelectric actuator | |
JP2000295876A5 (en) | ||
JP2632173B2 (en) | Ultrasonic drive | |
JP2531582B2 (en) | Piezoelectric actuator | |
JPH0773428B2 (en) | Piezoelectric drive | |
JPH05122949A (en) | Linear actuator | |
JP2002101676A (en) | Actuator | |
JPS63110973A (en) | Piezoelectric driver | |
JPH01218367A (en) | Piezoelectric driver | |
JP2730070B2 (en) | Ultrasonic motor drive circuit | |
JP2000060152A (en) | Ultrasonic motor | |
JPH06121557A (en) | Ultrasonic motor and driving method therefor | |
JP3018400B2 (en) | Wave motor | |
JPS6339473A (en) | Ultrasonic linear motor | |
JPH0647345A (en) | Ultrasonic driving device | |
JPH06106029B2 (en) | Ultrasonic motor | |
JP2543160B2 (en) | Toroidal ultrasonic motor | |
JPH0654556A (en) | Ultrasonic motor for linaer driving | |
JPH05111268A (en) | Piezoelectric actuator |