JPH06106028B2 - Piezoelectric resonance motor - Google Patents

Piezoelectric resonance motor

Info

Publication number
JPH06106028B2
JPH06106028B2 JP62020443A JP2044387A JPH06106028B2 JP H06106028 B2 JPH06106028 B2 JP H06106028B2 JP 62020443 A JP62020443 A JP 62020443A JP 2044387 A JP2044387 A JP 2044387A JP H06106028 B2 JPH06106028 B2 JP H06106028B2
Authority
JP
Japan
Prior art keywords
piezoelectric
resonance
base
base body
driver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62020443A
Other languages
Japanese (ja)
Other versions
JPS63277477A (en
Inventor
数馬 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP62020443A priority Critical patent/JPH06106028B2/en
Publication of JPS63277477A publication Critical patent/JPS63277477A/en
Publication of JPH06106028B2 publication Critical patent/JPH06106028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/003Driving devices, e.g. vibrators using longitudinal or radial modes combined with bending modes
    • H02N2/004Rectangular vibrators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/026Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors by pressing one or more vibrators against the driven body

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、圧電共振モータに関するものであり、さら
に詳しくいうと、小形軽量で、高精度な直線駆動の位置
決め制御が容易な圧電共振モータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric resonance motor, and more specifically to a piezoelectric resonance motor that is small and lightweight, and that facilitates highly accurate linear drive positioning control. It is a thing.

〔従来の技術〕[Conventional technology]

第9図,第10図は本出願人が先に出願した(実願昭61−
161013号)、従来のこの種の圧電共振モータであり、図
において、弾性体でなり、角棒状の基体21の一側面に、
2つの駆動子22a,22bが突設されている。駆動子22a,22b
は基体21の振動の腹の位置にある。基体21には屈曲モー
ド用の2つの圧電素子23a,23bが、駆動子22a,22bの各面
には第2の圧電素子24が貼着されている。このように構
成された共振ユニツトU3は、節の位置に形成された取付
穴25により適宜に固定される。,は分極の極性、
A1,A2,B1,B2およびBはそれぞれ接続リードの端子を
示している。
9 and 10 were first filed by the applicant (actual application Sho 61-
161013), which is a conventional piezoelectric resonance motor of this type, in the figure, is made of an elastic body, and is formed on one side surface of the base 21 having a rectangular rod shape.
Two driver elements 22a and 22b are provided in a protruding manner. Driver 22a, 22b
Is at the antinode of vibration of the base 21. Two piezoelectric elements 23a and 23b for bending mode are attached to the base body 21, and a second piezoelectric element 24 is attached to each surface of the driver elements 22a and 22b. The resonance unit U 3 thus configured is appropriately fixed by the mounting hole 25 formed at the node position. , Is the polarization polarity,
A 1 , A 2 , B 1 , B 2 and B respectively represent terminals of connection leads.

以上の構成により、超音波領域の電圧を端子A1とBに
供給すると、基体21と駆動子22a,22bは鎖線のように屈
曲し、駆動子22a,22bの先端に圧接されている被駆動体
(図示せず)は駆動子22aにより実線矢印の方向へ蹴り
出される。
With the above configuration, when a voltage in the ultrasonic region is supplied to the terminals A 1 and B, the base body 21 and the driver elements 22a, 22b bend like a chain line, and the driven elements are pressed against the tips of the driver elements 22a, 22b. The body (not shown) is kicked out by the driver 22a in the direction of the solid arrow.

端子A1とBに電圧を印加すると、共振ユニツトU3は破
線のように屈曲し、こんどは駆動子22bが被駆動体を実
線矢印の方向へ蹴り出す。
When a voltage is applied to the terminals A 1 and B, the resonance unit U 3 bends as shown by the broken line, and the driver 22b kicks the driven body in the direction of the solid arrow.

以上の電圧印加を、端子A2とBを対象にして行うと、端
子A1側とA2側の分極が互いに逆であるため、動作が逆と
なり、被駆動体は破線矢印の方向へ駆動される。
When the above voltage is applied to terminals A 2 and B, the polarization is reversed on the terminals A 1 side and A 2 side, so the operation is reversed and the driven body is driven in the direction of the dashed arrow. To be done.

以上のようにして被駆動体は、2つの互いに反対の方向
へ任意に直線駆動される。
As described above, the driven body is arbitrarily linearly driven in the two opposite directions.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

以上のような従来の圧電共振モータでは、基体のみなら
ず駆動子にも、動作仕様に極性が合致するように、圧電
素子を接合配置しないと所定の動作が得られないことか
ら、製造作業が複雑で、また、駆動子の長さ(高さ)が
ある程度必要とするために、極薄のものが得られないと
いう問題点があつた。
In the conventional piezoelectric resonance motor as described above, a predetermined operation cannot be obtained unless the piezoelectric elements are bonded and arranged so that the polarities match the operating specifications not only on the base body but also on the driver element. There is a problem that an extremely thin one cannot be obtained because it is complicated and requires a certain length (height) of the driver.

この発明はかかる問題点を解消するためになされたもの
で、圧電素子の接合箇所を少なくして製造作業を簡略化
し、薄形で、かつ、低コストの圧電共振モータを得るこ
とを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a piezoelectric resonance motor which is thin and low-cost, which simplifies the manufacturing work by reducing the number of joints of piezoelectric elements. .

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る圧電共振モータは、角棒状の基体と、こ
の基体の所定位置に接合配置され交番電気信号によつて
基体に高調波の屈曲振動および長手伸縮を同時に起こさ
せる複数個の圧電素子と、基体と一体に上記屈曲振動の
方向に突設された少なくとも2つの駆動子とからなる共
振ユニツトを備えている。
A piezoelectric resonance motor according to the present invention comprises a rectangular rod-shaped base body, and a plurality of piezoelectric elements which are jointly arranged at predetermined positions of the base body and which simultaneously cause bending vibration and longitudinal expansion / contraction of harmonics in the base body by an alternating electric signal. , A resonance unit composed of at least two driver elements that are integrally provided with the base body and project in the direction of the bending vibration.

〔作用〕[Action]

この発明においては、基体に屈曲振動を起こさせる圧電
素子と長さ共振を起こさせる圧電素子とに、並列に共振
周波数の交番電気信号を印加すると、共振ユニツトは屈
曲モードと長さモードの両方のモードで同時に振動して
複合共振するので、駆動子の自由端は所定の方向に振動
する。
According to the present invention, when an alternating electric signal having a resonance frequency is applied in parallel to a piezoelectric element that causes flexural vibration and a piezoelectric element that causes length resonance in the base body, the resonance unit has both bending mode and length mode. The free ends of the driver element vibrate in a predetermined direction because they simultaneously vibrate in the modes and undergo complex resonance.

〔実施例〕〔Example〕

第1図〜第5図はこの発明の一実施例を示し、第1図,
第2図において、角棒状の弾性体でなる基体1の下面
に、圧電効果d31の圧電素子2a,2bおよび2cが貼着されて
いる。基体1の上面に一体に突出形成された駆動子3a,3
bは、基体1の屈曲共振動作時の腹部中央に位置して共
振ユニツトU1を形成している。
1 to 5 show an embodiment of the present invention.
In FIG. 2, piezoelectric elements 2a, 2b and 2c having a piezoelectric effect d 31 are attached to the lower surface of a base 1 made of a rectangular rod-shaped elastic body. Driver elements 3a, 3 integrally formed on the upper surface of the base 1
b is located at the center of the abdomen of the base 1 during the bending resonance operation and forms a resonance unit U 1 .

基体1と駆動子3a,3bを一体化した弾性体は、ガラス状
カーボン材や繊維強化金属FRMなど、振動損失が少なく
て耐摩耗性に富み、かつ、熱膨張係数が圧電素子と同
じ、2.5×10-6/℃程度に小さい材料が適している。
The elastic body that integrates the base body 1 and the driver elements 3a, 3b is a vitreous carbon material, fiber reinforced metal FRM, or the like that has little vibration loss and is highly wear-resistant, and has the same coefficient of thermal expansion as the piezoelectric element. A material as small as × 10 -6 / ° C is suitable.

第3図は、第1図,第2図に示す共振ユニツトU1の高調
波(第3上音)共振姿態を示し、節部を5箇所に、腹部
を4箇所a1,a2,b1,b2に形成されるようにし、中心非
対称形になつている。駆動子3a,3bはそれぞれ中心より
外側の腹部a1,a2の位置に設けられている。
FIG. 3 shows the harmonic (third upper sound) resonance state of the resonance unit U 1 shown in FIGS. 1 and 2 , where the nodal portion is at five locations and the abdomen is at four locations a 1 , a 2 , b. It is formed in 1 and b 2 , and has a central asymmetric shape. Drive elements 3a, 3b are provided at the positions of the abdomen a 1, a 2 of the outside of the center, respectively.

以上の構成になる共振ユニツトU1の動作を詳細にみる
と、まず、端子4a,4cから圧電素子2a,2cに交番信号を互
いに並列に印加すると、共振ユニツトU1は、圧電素子2a
により高調波(第3上音)の屈曲振動を起こし、同時に
圧電素子2cによつて角棒状弾性体の長手方向基音共振を
起こして複合振動を行う。
Looking at the operation of the resonance unit U 1 having the above-described configuration in detail, first, when alternating signals are applied in parallel from the terminals 4a and 4c to the piezoelectric elements 2a and 2c, the resonance unit U 1 becomes the piezoelectric element 2a.
Causes flexural vibration of higher harmonics (third upper sound), and at the same time, causes piezoelectric resonance of the rectangular rod-shaped elastic body in the longitudinal direction by the piezoelectric element 2c to perform complex vibration.

長さ方向の基音周波数で発生した振動の節は中心部の一
点にあらわれ、角棒の両端部はそれぞれ変位最大にな
る。
A node of vibration generated at the fundamental frequency in the length direction appears at one point in the central part, and both ends of the square bar have maximum displacement.

いま、駆動子3a,3bの位置が基体1の両端部寄りの腹の
位置にあるため、駆動子3a,3bの先端上面の挙動は、交
互に上下運動を行いながら、それと併行して基体1の長
手方向にも振動することになる。そのため、第4図に示
すように、スライダ5を、プラスチツク製のボールベア
リングなどのコロ6およびバイアス用のバネ手段7によ
り、駆動子3a,3bの先端に圧接しておくと、両者の接触
部分の摩擦により、スライダ5は、第1図の分極配置で
は、実線矢印の方向に移動される。また、圧電素子2cと
2bへの並列給電では、スライダ5は破線矢印の方向へ移
動する。このように電圧印加を切換えることにより、ス
ライダ5の移動方向を任意に制御することができる。ま
た、スライダ5の駆動子との接触面側にはブチルゴム系
のコーテイングを施し、スライダ5の移動を円滑にして
いる。スライダ5の代りにキヤツシユカードなどを移動
させるときは、駆動子3a,3bの先端部に、たとえば、ブ
チルゴム系の混合材を塗布すると、スリツプ動作が少な
くなる。この塗布材は、カードの材料に合わせて、もつ
とも効率のよいものを選択すればよい。
Since the positions of the driver elements 3a and 3b are now antinode positions close to both ends of the base body 1, the behavior of the top surfaces of the tips of the driver elements 3a and 3b alternately moves up and down, and in parallel with that, the base body 1 moves. Will also vibrate in the longitudinal direction. Therefore, as shown in FIG. 4, when the slider 5 is pressed against the tips of the driver elements 3a and 3b by a roller 6 such as a ball bearing made of plastic and a spring means 7 for biasing, the contact portion between them is The friction causes the slider 5 to move in the direction of the solid arrow in the polarized arrangement of FIG. Also, with the piezoelectric element 2c
In parallel power feeding to 2b, the slider 5 moves in the direction of the dashed arrow. By switching the voltage application in this way, the moving direction of the slider 5 can be arbitrarily controlled. In addition, the contact surface side of the slider 5 with the driving element is coated with butyl rubber to smoothen the movement of the slider 5. When a cash card or the like is moved instead of the slider 5, a slip operation is reduced by applying, for example, a butyl rubber-based mixed material to the tip ends of the driver elements 3a and 3b. The coating material may be selected to be highly efficient, depending on the material of the card.

第5図は、共振ユニツトU1の駆動子3a,3bにエンドレス
ベルト8を圧接してエンドレスベルト8を任意の方向に
回転制御する場合を示している。
FIG. 5 shows a case where the endless belt 8 is pressed against the drivers 3a and 3b of the resonance unit U 1 to control the rotation of the endless belt 8 in an arbitrary direction.

なお、第1図,第2図においては、駆動子3a,3bの位置
が基体1両端部の腹の位置である場合を示したが、駆動
子を第3図で中心寄りの腹b1,b2の位置としてもよく、
同様の効果が得られる。この場合は速度よりも高負荷駆
動の用途に供して、より有効である。
Incidentally, FIG. 1, in the second view, drive elements 3a, the position of the 3b showed the case where the position of the antinode of the base 1 at both ends, the belly b 1 of inboard the driver elements in Figure 3, It may be the position of b 2 ,
The same effect can be obtained. In this case, it is more effective when used for high load driving rather than speed.

また、第1図における圧電素子2cは基体1の上、下面に
接合配置してもよく、その一部を切離してフイードバツ
ク端子として自励発振用に仕様する。フイードバツク信
号を圧電素子2a,2dの両方から取出し、これを並列接続
に使用すると、第3上音以外の信号の混入が防止できる
ので、安定した発振を行うのに効果的である。
The piezoelectric element 2c shown in FIG. 1 may be disposed on the upper surface and the lower surface of the substrate 1 by joining, and a part of the piezoelectric element 2c is cut off to be used as a feed back terminal for self-oscillation. When the feedback signal is taken out from both the piezoelectric elements 2a and 2d and used in parallel connection, mixing of signals other than the third overtone can be prevented, which is effective for stable oscillation.

次に上記実施例の具体的数値例を挙げる。Next, specific numerical examples of the above embodiment will be given.

基体:長さ107.8mm×厚さ6.0mm×幅15.0mm 基体の材質:硬質アルミニウム 駆動子:高さ2.0mm×幅3.5mm 駆動子の位置:基体両端より20mm 圧電素子:屈曲用 長さ15mm×幅12mm×厚さ0.6mm 長さ用 長さ30mm×幅12mm×厚さ0.6mm 共振ユニツトU1の厚さ:0.6+6+2=8.6mm 駆動周波数:23.07kHz 入力電圧:6V(r.m.s) スライダ材質:フエノール樹脂、3mm厚 スライダ接触面:バインダ入りブチルゴム、1mm厚 相対的移動力:150グラム 移動スピード:230mm/秒 なお、以上の実験効果は一般材料を用いた場合であり、
使用目的により材料をさらに吟味すれば、より目的に合
つた値が得られることは当然予想される。
Base: Length 107.8 mm x Thickness 6.0 mm x Width 15.0 mm Base material: Hard aluminum Drive element: Height 2.0 mm x Width 3.5 mm Drive element position: 20 mm from both ends of the base Piezoelectric element: Bending length 15 mm x Width 12 mm x thickness 0.6 mm For length Length 30 mm x width 12 mm x thickness 0.6 mm Resonance unit U 1 thickness: 0.6 + 6 + 2 = 8.6 mm Drive frequency: 23.07 kHz Input voltage: 6 V (rms) Slider material: phenol Resin, 3mm thick Slider contact surface: butyl rubber with binder, 1mm thick Relative moving force: 150g Moving speed: 230mm / sec The above experimental results are for the case of using general materials,
It is of course expected that a value more suited to the purpose will be obtained by further examining the material according to the purpose of use.

第6図〜第8図は他の実施例を示し、共振ユニツトU
2は、角棒状の基体9の下面に圧電素子11a,11bを貼着
し、基体9の上面には中央部に圧電素子11cを貼着する
とともに駆動子10a,10bを突設してなるもので、駆動子1
0a,10bは第8図に示す振動の腹の位置C1,C2にある。12
は取付穴で、屈曲と長さ双方の振動の節の位置にある。
FIGS. 6 to 8 show another embodiment of the resonance unit U.
2 , the piezoelectric element 11a, 11b is attached to the lower surface of the rectangular rod-shaped base body 9, the piezoelectric element 11c is attached to the upper surface of the base body 9 in the central portion, and the driver elements 10a, 10b are provided in a protruding manner. And driver 1
0a and 10b are at the antinodes C 1 and C 2 of the vibration shown in FIG. 12
Is a mounting hole, which is located at the node of vibration of both bending and length.

この実施例は、基体9は屈曲モードを高調波(第一上
音)で、長さモードを基音でそれぞれ共振するものであ
る。
In this embodiment, the base 9 resonates in a bending mode as a harmonic (first upper tone) and in a length mode as a fundamental tone.

いま、端子13a,13cから圧電素子11a,11cに共振周波数の
電圧を印加すると、圧電素子11aにより、第8図に示す
ような、第一上音モードが発生する。同時に圧電素子11
cによつて長さモードの共振を起こして複合振動が発生
する。これにより、第6図に示す分極方向の場合、駆動
子10a,10bに圧接されているスライダ(図示せず)は、
実線矢印の方向へ移動する。同様にして、圧電素子11b,
11cに切換えて並列給電すれば、スライダは破線矢印の
方向へ移動する。
When a voltage having a resonance frequency is applied from the terminals 13a and 13c to the piezoelectric elements 11a and 11c, the piezoelectric element 11a causes a first overtone mode as shown in FIG. At the same time piezoelectric element 11
Due to c, the resonance of the length mode is caused and the composite vibration is generated. As a result, in the case of the polarization direction shown in FIG. 6, the slider (not shown) pressed against the driver elements 10a and 10b is
Move in the direction of the solid arrow. Similarly, the piezoelectric element 11b,
By switching to 11c and feeding in parallel, the slider moves in the direction of the dashed arrow.

〔発明の効果〕〔The invention's effect〕

この発明は、以上の説明から明らかなように、圧電素子
が接合されて屈曲振動、伸縮振動を同時に発生する基体
に駆動子を一体に突設し、駆動子先端に所定方向の複合
振動を起こさせるようにしたので、以下のような効果が
得られる。
As is apparent from the above description, the present invention has a structure in which a piezoelectric element is joined to a base body that simultaneously generates bending vibration and stretching vibration, and a driver element is integrally projected to cause a composite vibration in a predetermined direction at the tip of the driver element. Since this is done, the following effects can be obtained.

(イ)小形、薄形、軽量に設計することができ、製造容
易で安価である。
(A) It can be designed to be small, thin and lightweight, easy to manufacture and inexpensive.

(ロ)使用条件によつて寸法等を任意に選べるので、弾
力性のある設計が可能である。
(B) Since the dimensions and the like can be arbitrarily selected according to the usage conditions, an elastic design is possible.

(ハ)駆動電圧が低く、電源が簡単である。(C) The driving voltage is low and the power supply is simple.

(ニ)スライダが駆動子に常に圧接しているので、バツ
クラツシユがなく、即動、即停止ができる。
(D) Since the slider is constantly in pressure contact with the driver, there is no backlash and immediate movement and immediate stop are possible.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第5図はこの発明の一実施例を示し、第1図は
平面図、第2図は側面図、第3図は動作説明線図、第4
図および第5図はそれぞれ応用例の平面図である。第6
図〜第8図は他の実施例を示し、第6図は平面図、第7
図は側面図、第8図は動作説明線図である。第9図は従
来の圧電共振モータの平面図、第10図は同じく側面図で
ある。 1,9……基体、2a,2b,2c,11a,11b,11c……圧電素子、3a,
3b,10a,10b……駆動子、U1,U2……共振ユニツト。
1 to 5 show an embodiment of the present invention, FIG. 1 is a plan view, FIG. 2 is a side view, FIG. 3 is an operation explanatory diagram, and FIG.
FIG. 5 and FIG. 5 are plan views of application examples. Sixth
FIG. 8 to FIG. 8 show another embodiment, FIG. 6 is a plan view, and FIG.
The figure is a side view, and FIG. 8 is an operation explanatory diagram. FIG. 9 is a plan view of a conventional piezoelectric resonance motor, and FIG. 10 is a side view of the same. 1,9 ... Base, 2a, 2b, 2c, 11a, 11b, 11c ... Piezoelectric element, 3a,
3b, 10a, 10b ...... driver elements, U 1, U 2 ...... resonance Yunitsuto.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】角棒状の弾性体でなる基体と、この基体の
一側面所定位置に一体に突設された複数個の駆動子と、
前記基体に接合され交番電圧が加えられて前記基体に高
調波の屈曲共振振動と長さ方向共振振動とを同時に発生
させる複数個の圧電素子とを備えた共振ユニツトからな
る圧電共振モータ。
1. A base made of a rectangular rod-like elastic body, and a plurality of driver elements integrally provided on one side surface at predetermined positions on one side of the base.
A piezoelectric resonance motor comprising a resonance unit, which is joined to the base body and is provided with a plurality of piezoelectric elements which simultaneously generate bending resonance vibrations and longitudinal resonance vibrations of harmonics in the base body when an alternating voltage is applied.
【請求項2】駆動子が、基体の屈曲共振時の腹上中央部
の振動方向側に位置している特許請求の範囲第1項記載
の圧電共振モータ。
2. The piezoelectric resonance motor according to claim 1, wherein the driver element is located on the vibration direction side of the center of the abdomen at the time of flexural resonance of the base body.
【請求項3】分極極性を選択配列した圧電素子に加える
電圧の切換手段を備えた特許請求の範囲第1項記載の圧
電共振モータ。
3. The piezoelectric resonance motor according to claim 1, further comprising switching means for switching a voltage applied to the piezoelectric element in which polarization polarities are selectively arranged.
【請求項4】圧電素子の一部および別個に設けたフイー
ドバツク端子のいずれかからの信号を位相調整して自励
回路を形成した特許請求の範囲第1項記載の圧電共振モ
ータ。
4. A piezoelectric resonance motor according to claim 1, wherein a self-excited circuit is formed by adjusting the phase of a signal from a part of the piezoelectric element or a separately provided feedback back terminal.
JP62020443A 1987-02-02 1987-02-02 Piezoelectric resonance motor Expired - Fee Related JPH06106028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62020443A JPH06106028B2 (en) 1987-02-02 1987-02-02 Piezoelectric resonance motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62020443A JPH06106028B2 (en) 1987-02-02 1987-02-02 Piezoelectric resonance motor

Publications (2)

Publication Number Publication Date
JPS63277477A JPS63277477A (en) 1988-11-15
JPH06106028B2 true JPH06106028B2 (en) 1994-12-21

Family

ID=12027190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62020443A Expired - Fee Related JPH06106028B2 (en) 1987-02-02 1987-02-02 Piezoelectric resonance motor

Country Status (1)

Country Link
JP (1) JPH06106028B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122381A1 (en) 2004-06-09 2005-12-22 Canon Kabushiki Kaisha Vibration wave driven apparatus and vibrator
US7521839B2 (en) 2006-01-10 2009-04-21 Sony Corporation Exciting method for elastic vibration member and vibratory driving device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294269A (en) * 1987-05-22 1988-11-30 Nec Corp Driving method for ultrasonic wave motor
JPS63294270A (en) * 1987-05-22 1988-11-30 Nec Corp Driving method for ultrasonic wave motor
US5136200A (en) * 1989-07-27 1992-08-04 Olympus Optical Co., Ltd. Ultransonic motor
JPH0389875A (en) * 1989-08-31 1991-04-15 Brother Ind Ltd Linear ultrasonic motor
US5105117A (en) * 1989-10-31 1992-04-14 Brother Kogyo Kabushiki Kaisha Ultrasonic motor
JP2996477B2 (en) * 1990-02-05 1999-12-27 キヤノン株式会社 Vibration wave drive
US5073739A (en) * 1990-02-27 1991-12-17 Nisca Corporation Vibration-coupling type ultrasonic actuator and method for operating the same
JP3118251B2 (en) * 1990-11-21 2000-12-18 ニスカ株式会社 Ultrasonic driving device and method
US5416375A (en) * 1992-06-15 1995-05-16 Olympus Optical Co., Ltd. Ultrasonic motor
JPH0741207B2 (en) * 1993-02-18 1995-05-10 インターナショナル・ビジネス・マシーンズ・コーポレイション Micro actuator
US5698930A (en) * 1993-11-15 1997-12-16 Nikon Corporation Ultrasonic wave motor and method of manufacture
JPH07170768A (en) * 1993-12-14 1995-07-04 Nikon Corp Ultrasonic motor
DE69517232T2 (en) * 1994-03-23 2000-10-26 Nikon Corp Ultrasonic motor
JPH07274552A (en) * 1994-04-01 1995-10-20 Nikon Corp Linear motor
EP0691692B1 (en) * 1994-07-05 1999-02-17 Nikon Corporation Vibration driven motor
US6072266A (en) * 1994-12-21 2000-06-06 Nikon Corporation Vibration actuator
JPH08280185A (en) * 1995-04-07 1996-10-22 Nikon Corp Ultrasonic actuator
US5850117A (en) * 1995-06-15 1998-12-15 Nikon Corporation Vibration Actuator and adjustment method therefor
JPH09331686A (en) * 1996-04-11 1997-12-22 Nikon Corp Vibration actuator
JPH10234191A (en) * 1996-12-20 1998-09-02 Nikon Corp Drive and drive device of oscillating actuator
JPH10243668A (en) * 1997-02-24 1998-09-11 Nikon Corp Vibration actuator
JPH11155290A (en) * 1997-09-22 1999-06-08 Nikon Corp Vibration actuator
JP2000060163A (en) 1998-02-10 2000-02-25 Nikon Corp Vibration actuator
US6392328B1 (en) 1999-03-11 2002-05-21 Nikon Corporation Vibration motor
JP4945023B2 (en) * 2000-09-21 2012-06-06 セイコーインスツル株式会社 Electro-mechanical transducer, ultrasonic motor and electronic equipment
JP6932935B2 (en) 2017-02-01 2021-09-08 Tdk株式会社 Piezoelectric actuator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832518A (en) * 1981-08-19 1983-02-25 Nippon Light Metal Co Ltd Manufacture of extruded shape material
JPS6055867A (en) * 1983-09-06 1985-04-01 Matsushita Electric Ind Co Ltd Piezoelectric motor
JPS60194767A (en) * 1984-03-13 1985-10-03 Purimo:Kk Ceramic rotatably drive element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122381A1 (en) 2004-06-09 2005-12-22 Canon Kabushiki Kaisha Vibration wave driven apparatus and vibrator
US7518286B2 (en) 2004-06-09 2009-04-14 Canon Kabushiki Kaisha Vibration wave driven apparatus and vibrator
US7521839B2 (en) 2006-01-10 2009-04-21 Sony Corporation Exciting method for elastic vibration member and vibratory driving device

Also Published As

Publication number Publication date
JPS63277477A (en) 1988-11-15

Similar Documents

Publication Publication Date Title
JPH06106028B2 (en) Piezoelectric resonance motor
US7598656B2 (en) Piezoelectric ultrasound motor
JP2525019B2 (en) Ultrasonic linear motor
JPS60170474A (en) Vibration wave motor
US5561337A (en) Ultrasonic vibrating actuator
JPH0458273B2 (en)
JPS63316675A (en) Piezoelectric linear motor
JP2574577B2 (en) Linear actuator
JP2004304963A (en) Piezoelectric actuator
JPH044772A (en) Ultrasonic motor
JPH066989A (en) Ultrasonic linear motor
JP3551420B2 (en) Ultrasonic actuator
JPH09219544A (en) Rectilinear moving mechanism
JP3551421B2 (en) Ultrasonic actuator
JPH08149862A (en) Ultrasonic oscillator
JPH0697863B2 (en) Piezoelectric drive
JP2946947B2 (en) Linear actuator
JPH1169852A (en) Ultrasonic motor
JPH0552137B2 (en)
JPH04145873A (en) Ultrasonic motor
JP2002300790A (en) Drive device using electromechanical conversion element and driving method of the device
JPH03178574A (en) Ultrasonic linear motor
JPH05316756A (en) Ultrasonic oscillator and driver employing thereof
JP2527200B2 (en) Driving method of ultrasonic motor
JPH01136577A (en) Supersonic motor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees