JPS63136982A - Electrostatic actuator - Google Patents

Electrostatic actuator

Info

Publication number
JPS63136982A
JPS63136982A JP28324886A JP28324886A JPS63136982A JP S63136982 A JPS63136982 A JP S63136982A JP 28324886 A JP28324886 A JP 28324886A JP 28324886 A JP28324886 A JP 28324886A JP S63136982 A JPS63136982 A JP S63136982A
Authority
JP
Japan
Prior art keywords
stator
movable element
dielectric
electrodes
electrostatic actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28324886A
Other languages
Japanese (ja)
Inventor
Yasuhiko Ishiwatari
恭彦 石渡
Eigo Kawakami
英悟 川上
Satoshi Yuasa
聡 湯浅
Masato Niibe
正人 新部
Tomoji Komata
小俣 智司
Hiroshi Yoneda
弘 米田
Nobuo Watanabe
信男 渡辺
Hiroyasu Nose
博康 能瀬
Tetsuya Yano
哲哉 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP28324886A priority Critical patent/JPS63136982A/en
Publication of JPS63136982A publication Critical patent/JPS63136982A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)

Abstract

PURPOSE:To easily work an electrostatic actuator by composing a movable element of a conductive material, and disposing a dielectric layer on the surface of the element to simplify the construction. CONSTITUTION:An electrostatic actuator is composed of stators 10a-10c, and movable elements 30a, 30b. An electrode pattern 20 made of a conductor is formed at a predetermined interval on the stator 10, and a dielectric pattern 40 is formed at a pitch to become 1:1.16 ratio with the pattern 20 of the stator 10 is also formed on the element 30. The interval (d) of the electrode 20 of the stator 10 and the pattern 40 of the element 30 is held at 0.1-0.2mm, and all the elements 30 are supported integrally movably in directions of arrows A, B, as shown. Thus, in order to move the element 30, a predetermined pulselike voltage is sequentially applied in a moving direction to the electrodes 20 of the stator 10 to draw the element 30 between the electrodes to which the voltage is applied.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は静電気力を用いた静電アクチュエータに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrostatic actuator using electrostatic force.

[従来の技術] 従来の静電力を用いた静電アクチュエータでは、例えば
第4図に示す如く、表面に所定間隔で複数の電極を配設
した固定子10a、10bが所定の間隙dをもって対向
するよう構成され、その固定子10a、10b間の中間
位置を、固定子10a、10bに接触することなく該固
定子10a、10bと平行に移動可能に支持された可動
子2より構成されている。そして、この可動子2は所定
間隔で誘電体部3と非誘電体部4が交互に配列されるよ
う構成されている。この可動子2を駆動するには、固定
子10a、10bの対向電8i11間に所定の電圧を印
加する。すると、電極間に生起される静電エネルギーが
最小になるように、誘電体部3を電圧の印加された対向
する電極間に引き込む力が生じ、この力を利用して可動
子3の移動を行なうものである。
[Prior Art] In a conventional electrostatic actuator using electrostatic force, as shown in FIG. 4, for example, stators 10a and 10b each having a plurality of electrodes disposed on their surfaces at predetermined intervals face each other with a predetermined gap d. The movable element 2 is supported at an intermediate position between the stators 10a and 10b so as to be movable in parallel with the stators 10a and 10b without contacting the stators 10a and 10b. The movable element 2 is configured such that dielectric portions 3 and non-dielectric portions 4 are alternately arranged at predetermined intervals. In order to drive the movable element 2, a predetermined voltage is applied between the opposing voltages 8i11 of the stators 10a and 10b. Then, a force is generated that draws the dielectric part 3 between the opposing electrodes to which a voltage is applied so that the electrostatic energy generated between the electrodes is minimized, and this force is used to move the movable element 3. It is something to do.

他の構成としては、可動子2の固定子電極11の対向面
に該電極と一定の比率を有する電極パターンを配設して
、例えば可動子2の電極を接地電位に保持し、該電極と
所定の電位の印加された固定子電極11間に働く吸引力
を利用して可動子を移動されるアクチュエータがある。
As another configuration, an electrode pattern having a certain ratio with the stator electrode 11 of the movable element 2 is arranged on the opposing surface of the stator electrode 11, so that, for example, the electrode of the movable element 2 is held at a ground potential, and the electrode pattern is There is an actuator in which a movable element is moved using an attractive force acting between stator electrodes 11 to which a predetermined potential is applied.

このような構造のアクチュエータにおいては、駆動力は
電極間の距離、及び誘電体3の誘電率により左右される
。このため、駆動力を強(するには、電極間の距離を短
くする、誘電体の誘電率を高くする等が必要である。
In an actuator having such a structure, the driving force depends on the distance between the electrodes and the dielectric constant of the dielectric 3. Therefore, in order to strengthen the driving force, it is necessary to shorten the distance between the electrodes, increase the dielectric constant of the dielectric, etc.

また、もつとも有効なのは、固定子と可動子の組合せの
一単位を積層することである。
Furthermore, what is most effective is to stack one unit of the stator and mover combination.

[発明が解決しようとする問題点] しかし、電極を固定した固定子を対向させたものを一単
位として積層するのは、構造的に大きくなり、積層密度
も小さくなるという欠点があった。また、固定子の対向
電極間には所定の間隔を保って可動子を保持しなければ
ならず、部品の精密な加工と組立精度が要求されていた
。さらに、可動子においても構成が複雑であり、各誘電
体部3と非誘電体部4とを形成しなければならず、製作
は非常に手間のかかるものであった。
[Problems to be Solved by the Invention] However, stacking opposing stators to which electrodes are fixed as one unit has the disadvantage that the structure becomes large and the stacking density becomes low. Furthermore, the movable element must be held with a predetermined distance between the opposing electrodes of the stator, requiring precise processing and assembly accuracy of the parts. Furthermore, the structure of the movable element is also complicated, and each dielectric part 3 and non-dielectric part 4 must be formed, making manufacturing very time-consuming.

[問題点を解決するための手段]゛ 本発明は上述の問題点を解決することを目的として成さ
れてもので、この問題点を解決する一手段として本実施
例は以下の構成を備える。
[Means for Solving the Problems] The present invention has been made for the purpose of solving the above-mentioned problems, and as a means for solving the problems, this embodiment has the following configuration.

即ち、表面部に所定間隔で複数の電極を配列した絶縁性
材料より成る固定子と、該固定子と所定間隙を保ち該固
定子に対して相対的に8勤する導電性材料より成りその
表面に所定間隔の誘電体層が配設されている可動子によ
り構成されている。
That is, a stator made of an insulating material on which a plurality of electrodes are arranged at predetermined intervals on its surface, and a conductive material that maintains a predetermined gap with the stator and moves relative to the stator. It is composed of a movable element on which dielectric layers are disposed at predetermined intervals.

[作用] 以上の構成において、可動子を誘電材料で構成したこと
により、該可動子を容易に接地電位等にでき、固定子の
電極と可動子との間隙を保つのが、精度的に容易になっ
た。また、可動子の表面に誘電体層を配設することによ
り、構造的に小さくなり、積層密度を大きくできる。し
かも、可動子の構成も簡単であり、加工も容易であり、
かつ必要な強度をもたせることもできる。
[Function] In the above configuration, since the movable element is made of a dielectric material, the movable element can be easily brought to a ground potential, etc., and it is easy to maintain the gap between the electrodes of the stator and the movable element in terms of accuracy. Became. Further, by disposing a dielectric layer on the surface of the movable element, the structure can be made smaller and the lamination density can be increased. Moreover, the movable element has a simple configuration and is easy to process.
It can also provide the necessary strength.

[実施例] 以下、図面を参照して本発明に係る一実施例を詳細に説
明する。
[Example] Hereinafter, an example according to the present invention will be described in detail with reference to the drawings.

[第1実施例] 第1図は本発明に係る一実施例の概略構成図であり、第
4図と同様構成には同一番号を付し、説明を省略する。
[First Embodiment] FIG. 1 is a schematic configuration diagram of an embodiment according to the present invention, and components similar to those in FIG. 4 are designated by the same numbers, and explanations thereof will be omitted.

図中10a、10b、10cはそれぞれ第4図と同様の
固定子であり、30a、30bは可動子である。固定子
10の表面には所定間隔で導電体より成る電極パターン
20が形成されている。固定子10は絶縁材料、例えば
ガラス又はフェノール樹脂等で構成されるのが最通であ
るが、本実施例ではガラスで構成している。固定子10
は厚さ約11の平板形状であり、表面には所定間隔、所
定幅の導電体、例えばAn製の電極パターン20が形成
されている。この電極はAnに限るものではなく、Cu
、Ag、Au、Cr等任意の導電性金属で形成できる。
In the figure, 10a, 10b, and 10c are stators similar to those in FIG. 4, and 30a, 30b are movers. Electrode patterns 20 made of a conductor are formed on the surface of the stator 10 at predetermined intervals. The stator 10 is usually made of an insulating material such as glass or phenol resin, but in this embodiment it is made of glass. Stator 10
has a flat plate shape with a thickness of about 11 mm, and electrode patterns 20 made of a conductor, for example, An, are formed on the surface at predetermined intervals and with a predetermined width. This electrode is not limited to An, but also Cu.
, Ag, Au, Cr, or any other conductive metal.

本実施例では電極ピッチは約2mmとなっている。なお
、両面に電極の配設されている固定子tabにおいては
、表裏まったく同一の電極パターンとなっている。そし
て各固定子10は全て一体に形成されている。
In this example, the electrode pitch is about 2 mm. In addition, in the stator tab in which electrodes are arranged on both sides, the electrode pattern is exactly the same on the front and back sides. All of the stators 10 are integrally formed.

一方、可動子30は、#(Cu)製の厚さ約o、smm
の銅(Cu)製の平板形状であり、表面に固定子10の
電極パターンと(1、1,18)の比となるようなピッ
チに誘電体パターン4oが形成されている0本実施例で
は誘電体としてPZT(チタン酸ジルコン酸鉛)が用い
られている。固定子10の電極20と可動子3oの誘電
体パターン40との間[dは略0.1mm 〜0.2m
mに保たれており、この間隙を保って図の矢印へ方内ま
たは矢印B方向に全ての可動子3oが一体として移動自
在に支持されている; なお、第1図には電極30及び誘電体4oは2組のみ図
示しているが、図の左方に同様構成が連続しているもの
である。
On the other hand, the mover 30 is made of #(Cu) and has a thickness of approximately o, smm.
In this embodiment, a dielectric pattern 4o is formed on the surface at a pitch having a ratio of (1, 1, 18) to the electrode pattern of the stator 10. PZT (lead zirconate titanate) is used as the dielectric. Between the electrode 20 of the stator 10 and the dielectric pattern 40 of the mover 3o [d is approximately 0.1 mm to 0.2 m]
m, and all the movers 3o are supported so as to be able to move as one in the direction of the arrow in the figure or in the direction of the arrow B while maintaining this gap; Although only two sets of bodies 4o are shown, the same structure continues on the left side of the figure.

以上の構成を備える本実施゛例の可動子30を移動させ
るには、固定子!Oの各電極20に所定のパルス状電圧
を順次移動方向に印加して、可動子30(の誘電体40
)をこの電圧の印加されている電極間に引き込むことに
より行なう、即ち、電極20に移動させようとする方向
に所定のタイミングで順次所定値の電圧を印加すれば、
可動子30が導電性であることより、この可動子30を
いずれか1点で接地することにより、容易に電圧の印加
された電極20と可動子30との間に電位差が生起でき
、この間に移動電界が発生し、電極間に位置する可動子
30の誘電体に電荷が誘起され、8勤電界に対しである
スベリをもって同じ方向に追従する駆動力が働く。
In order to move the movable element 30 of this embodiment having the above configuration, the stator! A predetermined pulsed voltage is sequentially applied to each electrode 20 of the movable element 30 (the dielectric material 40 of the movable element 30).
) is performed by drawing the voltage between the electrodes to which this voltage is applied, that is, by sequentially applying a voltage of a predetermined value at a predetermined timing in the direction in which the electrode 20 is to be moved,
Since the movable element 30 is conductive, by grounding the movable element 30 at any one point, a potential difference can easily be generated between the electrode 20 to which voltage is applied and the movable element 30. A moving electric field is generated, charges are induced in the dielectric of the mover 30 located between the electrodes, and a driving force is exerted that follows the electric field in the same direction with a certain slippage.

本実施例では、第1図の構成で固定子1oの電極に最大
1.5KVの電位を印加した時に、約3g−calのト
ルクが得られた。これは、可動子の片側対向面のみの一
層に電極パターンが配列された構成におけるトルクであ
る0、7〜0.8g−cIIlの場合と比し、約4倍の
出力が得られたことになる。このように、電極パターン
と誘電体との組を積層することで、大きな出力を取り出
すことができ、出力不足を補うことができる。
In this example, when a maximum potential of 1.5 KV was applied to the electrodes of the stator 1o with the configuration shown in FIG. 1, a torque of about 3 g-cal was obtained. This means that approximately four times the output was obtained compared to the torque of 0.7 to 0.8 g-cIIl in a configuration in which the electrode patterns were arranged in a single layer on only one opposing surface of the mover. Become. In this way, by stacking pairs of electrode patterns and dielectrics, a large output can be obtained and a lack of output can be compensated for.

以上の構成を備える本実施例を具体的なアクチュエータ
に構成した例を第2図に示す。
FIG. 2 shows an example in which the present embodiment having the above configuration is configured into a specific actuator.

図中17a、17bは固定子1o最外部上面にシャフト
16a、tabを支持するシャフト支持部、31a、3
1bはシャフト16a、16bに摺動自在に遊嵌された
可動子腕部である。ここでは電極と誘電体とを6層8組
としている。可動子30は固定子10に固定されたシャ
フト16a。
In the figure, 17a and 17b are shaft support parts 31a and 3 that support the shaft 16a and tab on the outermost upper surface of the stator 1o.
Reference numeral 1b designates a movable arm portion that is slidably and loosely fitted onto the shafts 16a and 16b. Here, there are eight sets of six layers of electrodes and dielectrics. The mover 30 is a shaft 16a fixed to the stator 10.

16bにより位置規制され、図の矢印方向のみに移動す
るリニヤタイプのアクチュエータとなっている。
It is a linear type actuator whose position is regulated by 16b and which moves only in the direction of the arrow in the figure.

[第2実施例] 以上の説明はりニヤタイプのアクチュエータについて説
明したが、本発明はこれに限るものではなく、回転タイ
プのアクチュエータにも応用できる。この本発明に係る
一実施例の回転タイプのアクチュエータの概略斜視図を
第3図に示す。
[Second Embodiment] Although the above description has been made regarding a linear type actuator, the present invention is not limited thereto, and can also be applied to a rotary type actuator. FIG. 3 shows a schematic perspective view of a rotary type actuator according to an embodiment of the present invention.

図中、15a、15b、15cは第1図図示の固定子1
0と同様に絶縁材料で構成された平板状固定子、35a
、35b、35cは第1図図示の可動子30と同様に導
電性材料で構成された回転子、50は回転子35に固着
された駆動軸である。駆動@50は平板状固定子35a
、35cに回転自在に軸支されている。なお、平板状固
定子15bは駆動軸50を回転自在に軸支する構成とし
ても、また、駆動軸50よりやや大の中心穴部を備える
構成としてもよい。
In the figure, 15a, 15b, and 15c are the stator 1 shown in FIG.
A flat stator 35a made of insulating material like 0
, 35b, and 35c are rotors made of a conductive material similar to the mover 30 shown in FIG. 1, and 50 is a drive shaft fixed to the rotor 35. Drive@50 is a flat stator 35a
, 35c for rotation. Note that the flat stator 15b may be configured to rotatably support the drive shaft 50, or may be configured to have a center hole slightly larger than the drive shaft 50.

平板状固定子15は直径約5cmの円形形状であり、厚
さ約1 mmである。そして、平板状固定子15の表面
には、軸線を中心として放射上に所定間隔、所定幅の導
電体より成る電極パターン25が形成されている。本実
施例では電極ピッチは約2mmとなっている。なお、両
面に電極の配設されている平板状固定子15bにおいて
は、表裏まったく同一の電極パターンとなっている。
The flat stator 15 has a circular shape with a diameter of about 5 cm and a thickness of about 1 mm. Electrode patterns 25 made of conductors are formed on the surface of the flat stator 15 at predetermined intervals and with a predetermined width radially around the axis. In this example, the electrode pitch is about 2 mm. In addition, in the flat stator 15b in which electrodes are arranged on both sides, the electrode pattern is exactly the same on the front and back sides.

平板状固定子15a、15b、15cの各放射状の対応
電極には共通の駆動信号が印加され、放射状の特定位置
では全て同一の回転力が働くよう構成されている。
A common drive signal is applied to each of the radial corresponding electrodes of the flat stators 15a, 15b, and 15c, so that the same rotational force acts on all the radial specific positions.

一方、回転子35は、平板状の直径約5cm、厚さ約0
.5mmであり、表面には平板状固定子15の電極パタ
ーンと(1; 1.16)の比となるようなピッチに誘
電体パターン45が形成されている。本実施例では誘電
体としてPZT(チタン酸ジルコン酸鉛)が用いられて
いる。平板状固定子15の電極25と回転子35の誘電
体パターン45との間隙dは0.1mm〜0.2ml1
1に保たれている。この各回転子35は駆動軸50を介
して全て電気的に接続され、例えば接地電位に保持され
ている。
On the other hand, the rotor 35 is a flat plate with a diameter of about 5 cm and a thickness of about 0.
.. 5 mm, and dielectric patterns 45 are formed on the surface at a pitch such that the electrode pattern of the flat stator 15 has a ratio of (1; 1.16). In this embodiment, PZT (lead zirconate titanate) is used as the dielectric. The gap d between the electrodes 25 of the flat stator 15 and the dielectric pattern 45 of the rotor 35 is 0.1 mm to 0.2 ml1.
It is kept at 1. These rotors 35 are all electrically connected via a drive shaft 50 and held at, for example, a ground potential.

以上の構成を備える平板状固定子15の電極25に電圧
を印加すると、電極25と対向する回転体35の誘電体
45の電極対向面に印加電圧と逆極性の電荷が誘起され
る。この状態で電圧を印加する電極25を順次変更し、
所定のパルス状電圧が順次回転方向に印加されると、電
極より発生する電気力線により回転電界が発生する。す
ると、誘電体45に誘起された電荷がこの回転電界に引
っ張られ、回転電界に追従して回転子35が回転する。
When a voltage is applied to the electrodes 25 of the plate-shaped stator 15 having the above configuration, charges having the opposite polarity to the applied voltage are induced on the electrode-facing surface of the dielectric 45 of the rotating body 35 that faces the electrodes 25. In this state, the electrode 25 to which voltage is applied is sequentially changed,
When a predetermined pulsed voltage is sequentially applied in the rotational direction, a rotating electric field is generated by electric lines of force generated from the electrodes. Then, the charges induced in the dielectric 45 are pulled by this rotating electric field, and the rotor 35 rotates following the rotating electric field.

以上説明した如く本実施例によれば、固定子10または
15と可動子30または回転体35との組を複数積層す
ることにより大きなトルクが得られる。
As explained above, according to this embodiment, a large torque can be obtained by stacking a plurality of pairs of the stator 10 or 15 and the movable element 30 or the rotating body 35.

[発明の効果] 以上説明した如く本発明によれば、可動子を容易に接地
電位等にでき、固定子の電極と可動子との間隙を保つの
が精度的に容易になり、また、可動子の両面に導電体層
を配設することにより、構造的に小さくなり、積層密度
を大きくできる。
[Effects of the Invention] As explained above, according to the present invention, the movable element can be easily brought to the ground potential, etc., it is easy to accurately maintain the gap between the electrodes of the stator and the movable element, and the movable element can be easily grounded. By disposing conductor layers on both sides of the element, the structure can be made smaller and the lamination density can be increased.

しかも、可動子の構成も簡単であり、加工も容易であり
、かつ必要な強度をもたせることもできる。
Moreover, the movable element has a simple structure, is easy to process, and can have the necessary strength.

このため、容易に固定子と可動子とを積層することがで
き、大きなトルクを得ることが容易になった。
Therefore, the stator and the movable element can be easily stacked on top of each other, making it easy to obtain a large torque.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る一実施例の概略構成図、第2図は
本実施例の概路外観斜視図、 第3図は本発明に係る他の実施例の概路外観斜視図、 第4図は一般的な静電アクチュエータの構成を示す図で
ある。 図中1.10.15・・・固定子、2.30・・・可動
子、3,40.45・・・誘電体、4・・・非誘電体、
16・・・シャフト、20・・・導電体、31・・・可
動子腕部、35・・・回転子である。 特許出願人  キャノン株式会社 *+m 第2図 第4図
FIG. 1 is a schematic configuration diagram of an embodiment according to the present invention, FIG. 2 is a perspective view of the outline appearance of this embodiment, and FIG. 3 is a perspective view of the outline appearance of another embodiment according to the invention. FIG. 4 is a diagram showing the configuration of a general electrostatic actuator. In the figure, 1.10.15... Stator, 2.30... Mover, 3, 40.45... Dielectric, 4... Non-dielectric,
16...Shaft, 20...Conductor, 31...Mover arm, 35...Rotor. Patent applicant Canon Co., Ltd. *+m Figure 2 Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)表面部に所定間隔で複数の電極を配列した絶縁性
材料より成る固定子と、該固定子と所定間隙を保ち該固
定子に対して相対的に移動する導電性材料より成りその
表面に所定間隔の誘電体層がを配設されている可動子と
により構成されていることを特徴とする静電アクチュエ
ータ。
(1) A stator made of an insulating material with a plurality of electrodes arranged at predetermined intervals on its surface, and a surface made of a conductive material that maintains a predetermined gap with the stator and moves relative to the stator. 1. An electrostatic actuator comprising: a movable element having dielectric layers disposed at predetermined intervals; and a movable element.
(2)誘電体層は可動子の表裏両面に配設され、固定子
は該可動子の表裏両面対向位置に所定間隙を維持して支
持されていることを特徴とする特許請求の範囲第1項記
載の静電アクチュエータ。
(2) The dielectric layer is disposed on both the front and back sides of the movable element, and the stator is supported at a position where both the front and back sides of the movable element face each other with a predetermined gap maintained. Electrostatic actuator as described in section.
(3)固定子及び可動子を所定間隙を維持して積層し、
可動子間は互いに電気的に接続されていることを特徴と
する特許請求の範囲第2項記載の静電アクチュエータ。
(3) Stacking the stator and mover with a predetermined gap maintained,
3. The electrostatic actuator according to claim 2, wherein the movers are electrically connected to each other.
(4)可動子は導電材料により形成され、表面に所定間
隔で誘電材料を配設して成ることを特徴とする特許請求
の範囲第1項より第3項のいずれかに記載の静電アクチ
ュエータ。
(4) The electrostatic actuator according to any one of claims 1 to 3, wherein the mover is made of a conductive material, and a dielectric material is disposed on the surface at predetermined intervals. .
JP28324886A 1986-11-28 1986-11-28 Electrostatic actuator Pending JPS63136982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28324886A JPS63136982A (en) 1986-11-28 1986-11-28 Electrostatic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28324886A JPS63136982A (en) 1986-11-28 1986-11-28 Electrostatic actuator

Publications (1)

Publication Number Publication Date
JPS63136982A true JPS63136982A (en) 1988-06-09

Family

ID=17663002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28324886A Pending JPS63136982A (en) 1986-11-28 1986-11-28 Electrostatic actuator

Country Status (1)

Country Link
JP (1) JPS63136982A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154073A (en) * 1986-12-17 1988-06-27 Toshiaki Watanabe Semiconductor motor
JPS6474071A (en) * 1987-09-11 1989-03-20 Toshiba Corp Static actuator
EP0381212A2 (en) * 1989-02-02 1990-08-08 Hitachi, Ltd. Electrostatic-type multidimensional actuator
JPH02285978A (en) * 1989-04-24 1990-11-26 Res Dev Corp Of Japan Electrostatic actuator using film
US5072288A (en) * 1989-02-21 1991-12-10 Cornell Research Foundation, Inc. Microdynamic release structure
US5084645A (en) * 1989-11-30 1992-01-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electrorepulsive actuator
US5149673A (en) * 1989-02-21 1992-09-22 Cornell Research Foundation, Inc. Selective chemical vapor deposition of tungsten for microdynamic structures
JPH04285485A (en) * 1991-03-11 1992-10-09 Semiconductor Energy Lab Co Ltd Accelerator for object and its accelerating method
US5235187A (en) * 1991-05-14 1993-08-10 Cornell Research Foundation Methods of fabricating integrated, aligned tunneling tip pairs
US5378954A (en) * 1990-04-16 1995-01-03 Fujitsu Limited Electrostatic actuator
US5399415A (en) * 1993-02-05 1995-03-21 Cornell Research Foundation, Inc. Isolated tungsten microelectromechanical structures
US5426070A (en) * 1993-05-26 1995-06-20 Cornell Research Foundation, Inc. Microstructures and high temperature isolation process for fabrication thereof
US5430339A (en) * 1990-02-02 1995-07-04 Fraunhofer Gesellschaft Zur Foerderung Der Forschung E.V. Electric motor
US5536988A (en) * 1993-06-01 1996-07-16 Cornell Research Foundation, Inc. Compound stage MEM actuator suspended for multidimensional motion
US5572076A (en) * 1989-02-02 1996-11-05 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Dielectric micromechanical element
US5610335A (en) * 1993-05-26 1997-03-11 Cornell Research Foundation Microelectromechanical lateral accelerometer
US5640133A (en) * 1995-06-23 1997-06-17 Cornell Research Foundation, Inc. Capacitance based tunable micromechanical resonators
US5726509A (en) * 1989-02-02 1998-03-10 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Dielectric motor
US5914553A (en) * 1997-06-16 1999-06-22 Cornell Research Foundation, Inc. Multistable tunable micromechanical resonators
US7265476B1 (en) * 2003-10-31 2007-09-04 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration MEMS micro-translation device with improved linear travel capability
WO2008026407A1 (en) * 2006-08-31 2008-03-06 Sanyo Electric Co., Ltd. Electrostatic operation device
US7514840B2 (en) * 2004-11-24 2009-04-07 Alps Electric Co., Ltd. Electrostatic actuator
US7583006B2 (en) * 2005-07-26 2009-09-01 Siimpel Corporation MEMS digital linear actuator
US20090236932A1 (en) * 2008-03-24 2009-09-24 Sanyo Electric Co., Ltd. Electrostatic acting device
JP2010081724A (en) * 2008-09-25 2010-04-08 Sanyo Electric Co Ltd Electrostatic inductive power generation device
US7834513B2 (en) * 2007-09-10 2010-11-16 Lawrence Livermore National Security, Llc Electrostatic generator/motor having rotors of varying thickness and a central stator electrically connected together into two groups
US8643249B2 (en) 2007-09-10 2014-02-04 Lawrence Livermore National Security, Llc Electrostatic generator/motor configurations
US9270204B2 (en) 2013-06-13 2016-02-23 Lawrence Livermore National Security, Llc Technique for enhancing the power output of an electrostatic generator employing parametric resonance
US9614462B2 (en) 2007-09-10 2017-04-04 Lawrence Livermore National Security, Llc Rippled disc electrostatic generator/motor configurations utilizing magnetic insulation
US10110146B2 (en) 2014-09-30 2018-10-23 Lawrence Livermore National Security, Llc Pulse-train drive system for electrostatic generators and motors

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154073A (en) * 1986-12-17 1988-06-27 Toshiaki Watanabe Semiconductor motor
JPH0520994B2 (en) * 1986-12-17 1993-03-23 Takahashi Akio
JPS6474071A (en) * 1987-09-11 1989-03-20 Toshiba Corp Static actuator
US5572076A (en) * 1989-02-02 1996-11-05 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Dielectric micromechanical element
EP0381212A2 (en) * 1989-02-02 1990-08-08 Hitachi, Ltd. Electrostatic-type multidimensional actuator
US5726509A (en) * 1989-02-02 1998-03-10 Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Dielectric motor
US5149673A (en) * 1989-02-21 1992-09-22 Cornell Research Foundation, Inc. Selective chemical vapor deposition of tungsten for microdynamic structures
US5072288A (en) * 1989-02-21 1991-12-10 Cornell Research Foundation, Inc. Microdynamic release structure
JPH0691754B2 (en) * 1989-04-24 1994-11-14 新技術事業団 Contact electrostatic actuator using film
JPH02285978A (en) * 1989-04-24 1990-11-26 Res Dev Corp Of Japan Electrostatic actuator using film
US5084645A (en) * 1989-11-30 1992-01-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electrorepulsive actuator
US5430339A (en) * 1990-02-02 1995-07-04 Fraunhofer Gesellschaft Zur Foerderung Der Forschung E.V. Electric motor
US5378954A (en) * 1990-04-16 1995-01-03 Fujitsu Limited Electrostatic actuator
US5585683A (en) * 1990-04-16 1996-12-17 Fujitsu Limited Electrostatic actuators of various configuration with belt-like electrodes to induce an image charge on a resistance member and cause relative motion
JPH04285485A (en) * 1991-03-11 1992-10-09 Semiconductor Energy Lab Co Ltd Accelerator for object and its accelerating method
US5235187A (en) * 1991-05-14 1993-08-10 Cornell Research Foundation Methods of fabricating integrated, aligned tunneling tip pairs
US5449903A (en) * 1991-05-14 1995-09-12 Cornell Research Foundation, Inc. Methods of fabricating integrated, aligned tunneling tip pairs
US5399415A (en) * 1993-02-05 1995-03-21 Cornell Research Foundation, Inc. Isolated tungsten microelectromechanical structures
US5426070A (en) * 1993-05-26 1995-06-20 Cornell Research Foundation, Inc. Microstructures and high temperature isolation process for fabrication thereof
US5610335A (en) * 1993-05-26 1997-03-11 Cornell Research Foundation Microelectromechanical lateral accelerometer
US5536988A (en) * 1993-06-01 1996-07-16 Cornell Research Foundation, Inc. Compound stage MEM actuator suspended for multidimensional motion
US5726073A (en) * 1993-06-01 1998-03-10 Cornell Research Foundation, Inc. Compound stage MEM actuator suspended for multidimensional motion
US5640133A (en) * 1995-06-23 1997-06-17 Cornell Research Foundation, Inc. Capacitance based tunable micromechanical resonators
US5914553A (en) * 1997-06-16 1999-06-22 Cornell Research Foundation, Inc. Multistable tunable micromechanical resonators
US7265476B1 (en) * 2003-10-31 2007-09-04 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration MEMS micro-translation device with improved linear travel capability
US7514840B2 (en) * 2004-11-24 2009-04-07 Alps Electric Co., Ltd. Electrostatic actuator
US7583006B2 (en) * 2005-07-26 2009-09-01 Siimpel Corporation MEMS digital linear actuator
WO2008026407A1 (en) * 2006-08-31 2008-03-06 Sanyo Electric Co., Ltd. Electrostatic operation device
US8466600B2 (en) 2006-08-31 2013-06-18 Sanyo Electric Co., Ltd. Electrostatic operation device
JP5216590B2 (en) * 2006-08-31 2013-06-19 三洋電機株式会社 Electrostatic operation device
US7834513B2 (en) * 2007-09-10 2010-11-16 Lawrence Livermore National Security, Llc Electrostatic generator/motor having rotors of varying thickness and a central stator electrically connected together into two groups
US8643249B2 (en) 2007-09-10 2014-02-04 Lawrence Livermore National Security, Llc Electrostatic generator/motor configurations
US9614462B2 (en) 2007-09-10 2017-04-04 Lawrence Livermore National Security, Llc Rippled disc electrostatic generator/motor configurations utilizing magnetic insulation
US20090236932A1 (en) * 2008-03-24 2009-09-24 Sanyo Electric Co., Ltd. Electrostatic acting device
JP2010081724A (en) * 2008-09-25 2010-04-08 Sanyo Electric Co Ltd Electrostatic inductive power generation device
US9270204B2 (en) 2013-06-13 2016-02-23 Lawrence Livermore National Security, Llc Technique for enhancing the power output of an electrostatic generator employing parametric resonance
US10110146B2 (en) 2014-09-30 2018-10-23 Lawrence Livermore National Security, Llc Pulse-train drive system for electrostatic generators and motors
US10554151B2 (en) 2014-09-30 2020-02-04 Lawrence Livermore National Security, Llc Pulse-train drive system for electrostatic generators and motors

Similar Documents

Publication Publication Date Title
JPS63136982A (en) Electrostatic actuator
US3696258A (en) Electret motors capable of continuous rotation
JP3006178B2 (en) Electrostatic actuator
JPH08266071A (en) Multiaxis drive equipment
US6943481B2 (en) Vibration member and vibration wave driving apparatus
JP3095642B2 (en) Electrostatic actuator and driving method thereof
DE3883483T2 (en) Ultrasonic motor arrangement.
JPS63136979A (en) Electrostatic actuator
JP3311034B2 (en) Laminated piezoelectric element, method for manufacturing laminated piezoelectric element, vibration wave driving device, and apparatus equipped with vibration wave driving device
JP2923974B2 (en) Electrostatic actuator
JP3426690B2 (en) Laminated electrostatic motor and method of manufacturing electrodes thereof
JP2979569B2 (en) Electrostatic actuator
JPS6395860A (en) Electrostatic actuator
JPH03183371A (en) Multilayer piezoelectric actuator
JPS6395866A (en) Electrostatic actuator
JPS6395859A (en) Electrostatic actuator
JP3414467B2 (en) Electrostatic motor
JP3059038B2 (en) Laminated piezoelectric element, vibration wave driving device, and device equipped with vibration wave driving device
JPS6395861A (en) Electrostatic actuator
JPH03251087A (en) Piezoelectric actuator
JP3278031B2 (en) Wobble type electrostatic motor and driving method thereof
JPH0650949B2 (en) Method for manufacturing piezoelectric actuator
JPH02114871A (en) Pyroelectricity actuator
JPH0520995B2 (en)
JPS6395862A (en) Electrostatic actuator