JPS63136790A - Transmission system for component video signal - Google Patents

Transmission system for component video signal

Info

Publication number
JPS63136790A
JPS63136790A JP28213786A JP28213786A JPS63136790A JP S63136790 A JPS63136790 A JP S63136790A JP 28213786 A JP28213786 A JP 28213786A JP 28213786 A JP28213786 A JP 28213786A JP S63136790 A JPS63136790 A JP S63136790A
Authority
JP
Japan
Prior art keywords
signal
correction
luminance
nonlinear
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28213786A
Other languages
Japanese (ja)
Other versions
JPH0748877B2 (en
Inventor
Yuichi Ninomiya
佑一 二宮
Yoshimichi Otsuka
吉道 大塚
Yoshinori Izumi
吉則 和泉
Seiichi Goshi
清一 合志
Yuichi Iwadate
祐一 岩舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP61282137A priority Critical patent/JPH0748877B2/en
Publication of JPS63136790A publication Critical patent/JPS63136790A/en
Publication of JPH0748877B2 publication Critical patent/JPH0748877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce crosstalk from a chrominance signal C to a luminance signal Y by using a signal inputted at the input side of a signal processing circuit as a signal which is in linear relation in terms of level to the gradation of a display picture at least with respect to the luminance signal. CONSTITUTION:A nonlinear correction circuit GAMMAY8 for the luminance signal is provided to the sender side so as to reduce the effect of noise in a transmission line and a nonlinear inverted correction circuit GAMMAY<-9>9 is provided for the luminance signal only to the reception side to restore the correction. In a picture display device at the reception side having a nonlinear in the relation between brightness and input signal such as a CRT, a conventional gamma correction 16 compensating the nonlinearity is executed. Since the nonlinearity correction is less with respect to the chrominance signal, the nonlinear correction circuit GAMMAC6 for reducing the effect of noise in the transmission line is inserted before a signal processing circuit of a MUSE encoder 7. Thus, the crosstalk from the chrominance signal C to the luminance signal Y is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はカラーテレビジョン信号のコンポーネント伝送
方式に係り、特にMUSE信号の伝送方式(ハイビジョ
ン用時間軸圧縮多重サブサンプル伝送方式)に適した方
式に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a component transmission method for color television signals, and is particularly suitable for a MUSE signal transmission method (time axis compression multiplex sub-sampling transmission method for high-vision). It is related to.

(従来の技術) 伝送路のノイズの影響を軽減するため伝送信号に非線形
処理を施すことは従来より知られている。
(Prior Art) It has been known to perform nonlinear processing on a transmission signal in order to reduce the influence of noise on a transmission path.

テレビジョン信号においては受信側の画像表示用陰極線
管(CRT)の非線形を補償するガンマ補正を、一般に
使用する受信機の低廉化のため送信側で行なっており、
これが伝送路のノイズの影響の軽減化に役立っている。
In television signals, gamma correction to compensate for the nonlinearity of the image display cathode ray tube (CRT) on the receiving side is generally performed on the transmitting side to reduce the cost of the receivers used.
This helps reduce the influence of noise on the transmission line.

しかし同時に色信号に乗ったノイズが輝度信号に振りか
わりノイズが目立つことになる。
However, at the same time, the noise on the color signal is transferred to the luminance signal, making the noise noticeable.

(発明が解決しようとする問題点) カラーテレビジョン信号を伝送するに際し、信号源から
得られる三原色カラー画像信号R,G。
(Problems to be Solved by the Invention) When transmitting a color television signal, three primary color image signals R and G are obtained from a signal source.

Bをそのままの形態にては伝送せず、マトリックス処理
して輝度信号Yと色信号Cとに変換して伝送するとこと
が通常行なわれている。この時輝度信号Yは被写体の輝
度に関する情報のみを伝送し、色信号Cは被写体の色に
関する情報のみを伝送することを目的としているもので
あるから、本来色信号Cが変化しても輝度信号Yの信号
レベルが一定であれば、画像表示装置に表示された画像
の輝度は変化せず一定である筈であり、これを定輝度原
理と称しており、この原理を満足する伝送を定輝度伝送
と呼んでいる。
Normally, B is not transmitted in its original form, but is converted into a luminance signal Y and a color signal C through matrix processing and then transmitted. At this time, the luminance signal Y is intended to transmit only information regarding the luminance of the subject, and the color signal C is intended to transmit only information regarding the color of the subject, so even if the color signal C changes, the luminance signal If the Y signal level is constant, the brightness of the image displayed on the image display device should remain constant without changing.This is called the constant brightness principle, and transmission that satisfies this principle is called constant brightness. It's called transmission.

しかしながら実際には受信側におけるCRTの非線形を
補償するためのガンマ補正を、送信側で行なった後前記
マトリックス処理して送信しており、そのための前述の
定輝度伝送が成立しておらず、輝度信号Yの一部が色信
号Cの一部に変換されて伝送されている。したがって色
信号Cの伝送帯域が制限されてその高域成分が減衰する
と、色信号Cに変換された一部の輝度信号も減衰を受け
て、再生輝度信号Yの信号レベルの再現性が劣化したり
、狭帯域伝送により色信号Cに乗ったノイズが輝度信号
Yに振りかわりノイズが目立つ欠点が生じる。この定輝
度原理の不成立は、ガンマ補正しない三原色信号を輝度
信号Yと色信号Cに変換し、YC分離後色信号の伝送帯
域を狭帯域化することのみでも生じるが、前述のガンマ
補正後のマトリックス処理の方が輝度信号の劣化は著し
い。
However, in reality, gamma correction to compensate for CRT nonlinearity on the receiving side is performed on the transmitting side, and then the above-mentioned matrix processing is performed before transmission. A portion of the signal Y is converted into a portion of the color signal C and is transmitted. Therefore, when the transmission band of the color signal C is restricted and its high-frequency components are attenuated, some of the luminance signals converted to the color signal C are also attenuated, and the reproducibility of the signal level of the reproduced luminance signal Y deteriorates. Also, due to narrowband transmission, noise on the color signal C is transferred to the luminance signal Y, resulting in a disadvantage that the noise is noticeable. This failure of the constant luminance principle can occur simply by converting the three primary color signals without gamma correction into a luminance signal Y and a color signal C, and narrowing the transmission band of the color signal after YC separation. Matrix processing causes more significant deterioration of the luminance signal.

これをさけるため従来の定輝度伝送方式は、送信側での
ガンマ補正をさけたり、本願人になる特開昭60−10
9989号“カラー画像表示方式”明細書記載のごとく
、広帯域の高品位カラーテレビジョン画像信号を不十分
な伝送帯域幅にて伝送したとき、受信側装置における輝
度レベル再現性の低下を別途補償して高品位の再生画質
を確保している。
In order to avoid this, the conventional constant brightness transmission method avoids gamma correction on the transmitting side, and
As described in the specification of No. 9989 "Color Image Display System", when a wideband high-definition color television image signal is transmitted with an insufficient transmission bandwidth, the reduction in brightness level reproducibility in the receiving device is separately compensated for. This ensures high quality playback.

しかしこれとても伝送系の色信号にのったノイズの輝度
信号への振りかわりの劣化を考慮しておらず不十分であ
る。
However, this method is insufficient because it does not take into consideration the deterioration caused by the transfer of noise on the color signal of the transmission system to the luminance signal.

従って本発明伝送方式の目的は、上述の諸欠点を改善し
、前述の定輝度伝送方式の利点を残しつつ伝送路でのノ
イズの影響を排除したコンポーネント映像信号伝送方式
を提供せんとするものである。
Therefore, the purpose of the transmission system of the present invention is to improve the above-mentioned drawbacks and provide a component video signal transmission system that eliminates the influence of noise on the transmission path while retaining the advantages of the constant brightness transmission system described above. be.

(問題点を解決するための手段) この目的を達成するため、本発明伝送方式は、コンポー
ネント映像信号を伝送するにあたり、伝送系を構成する
送信側、受信側の各信号処理回路の入力側において、そ
れら各信号処理回路に入力される信号を、少なくとも輝
度信号に関しては、受信側で表示される表示画像の階調
とレベル的に直線関係にある信号としたことを特徴とす
るものである。
(Means for Solving the Problems) In order to achieve this object, the transmission system of the present invention, when transmitting component video signals, uses The signal input to each of the signal processing circuits is characterized in that, at least regarding the luminance signal, the signal is in a linear relationship in level with the gradation of the display image displayed on the receiving side.

さらに本発明の好適な実施態様は、前記コンポーネント
映像信号伝送方式が、送信側においてマトリックス回路
により三原色信号から輝度信号と色信号に変換され、受
信側において前記変換された輝度信号と色信号を逆マト
リックス回路により逆変換される形態の時、送信側の前
記マトリックス回路と受信側の前記逆マトリックス回路
との間でのみ伝送信号が非線形補正および非線形逆補正
されることを特徴とするものである。
Further, in a preferred embodiment of the present invention, in the component video signal transmission method, the three primary color signals are converted into a luminance signal and a color signal by a matrix circuit on the transmitting side, and the converted luminance signal and color signal are inverted on the receiving side. When the inverse conversion is performed by a matrix circuit, the transmitted signal is subjected to nonlinear correction and nonlinear inverse correction only between the matrix circuit on the transmitting side and the inverse matrix circuit on the receiving side.

(実施例) 以下添付図面を参照し実施例により本発明の詳細な説明
する。
(Examples) The present invention will be described in detail below by way of examples with reference to the accompanying drawings.

本発明伝送方式を高品位テレビジョン信号伝送方式に関
わるM U S E(Multiple Sub−Ny
quistSampling Encoding)伝送
方式に適用した実施例の系統略ブロック線図を第1図に
示す。
The transmission method of the present invention is applied to MUSE (Multiple Sub-Ny) related to high-definition television signal transmission method.
FIG. 1 shows a schematic block diagram of an embodiment applied to the quistSampling (Encoding) transmission system.

MUSE伝送方式とは広帯域の高品位テレビジョン信号
を有効に帯域圧縮して伝送する方式の1つで、フレーム
間とフィールド間のオフセットサブサンプリングを用い
た多重サブサンプル伝送方式であるが、詳細については
例えば本願人になる特願昭60−125049号6時間
軸圧縮多重サブサンプル伝送方式”、特願昭60−10
6132号“多重サブサンプル伝送方式”などを参照さ
れたい。
The MUSE transmission method is a method for effectively compressing and transmitting wideband high-definition television signals, and is a multiple subsampling transmission method using offset subsampling between frames and fields. For example, the applicant's patent application No. 60-125049 6 "Time axis compression multiplex sub-sample transmission system", Japanese Patent Application No. 1986-10
Please refer to No. 6132, “Multiple subsample transmission system”.

第1図示のガンマ逆補正回路(γ−1)lは、通常のカ
ラーテレビジョン信号の伝送では送信側で受信側におけ
るCRTの非線形を補償するためγ補正しており、これ
をもとの線形R,G、B入力信号にもどし前述の定輝度
伝送を達成するためのもので、気体放電型表示パネルの
ように表示装置の入力信号と表示装置の発光輝度とが線
形関係にある系の入力信号ではこの必要はない。
The gamma inverse correction circuit (γ-1) l shown in Figure 1 performs γ correction on the transmitting side to compensate for the nonlinearity of the CRT on the receiving side in normal color television signal transmission. This is to achieve the above-mentioned constant brightness transmission by returning the R, G, and B input signals, and is the input for a system where the input signal of the display device and the luminance of the display device are in a linear relationship, such as a gas discharge display panel. This is not necessary for signals.

本発明伝送方式の骨子とする所は、その特許請求の範囲
に記載のごとく、例えば第1図示の系統を有する伝送系
において、送信側、受信側の各信号処理回路、すなわち
マトリックス処理回路MTX2、輝度信号用帯域制限フ
ィルタL P F (Y)3、広帯域色信号用帯域制限
フィルタL P F (CI)4および狭帯域色信号用
帯域制限フィルタL P F (Cm)5からなる信号
処理回路、MUSEエンコーダ7の信号処理回路、MU
SEデコーダ10の信号処理回路、輝度信号用帯域制限
フィルタL P F (Y)12、広帯域色信号用帯域
制限フィルタL P F (CI)13、狭帯域色信号
用帯域制限フィルタL P F (Cz)14および逆
マトリツクス処理回路MTX−’15からなる信号処理
回路などのそれぞれの入力側において、それら各信号処
理回路に入力される信号を、少なくとも輝度信号に関し
て受信側で表示される表示画像の階調とレベル的に直線
関係にある信号とすることである。すなわち前記直線関
係にある輝度信号が前記各信号処理回路の入力側に常に
存在するようにこの伝送系を組めばよいということであ
る。
As described in the claims, the gist of the transmission system of the present invention is, for example, in a transmission system having the system shown in FIG. a signal processing circuit consisting of a band-limiting filter LPF (Y)3 for luminance signals, a band-limiting filter LPF (CI)4 for wide-band chrominance signals, and a band-limiting filter LPF (Cm)5 for narrow-band chrominance signals; Signal processing circuit of MUSE encoder 7, MU
Signal processing circuit of SE decoder 10, band-limiting filter for luminance signal LPF (Y) 12, band-limiting filter for wide-band chrominance signal LPF (CI) 13, band-limiting filter for narrow-band chrominance signal LPF (Cz ) 14 and an inverse matrix processing circuit MTX-'15, the signals input to each of the signal processing circuits are processed to determine the level of the display image displayed on the receiving side, at least with respect to the luminance signal. The goal is to create a signal that has a linear relationship with the key in terms of level. In other words, the transmission system may be constructed so that the luminance signal having the linear relationship is always present on the input side of each of the signal processing circuits.

ということはすくなくとも輝度信号に関する非線形補正
とその非線形逆補正とが前記各信号処理回路間でクロー
ズしておればよいということである。
This means that at least the nonlinear correction regarding the luminance signal and the nonlinear inverse correction thereof need to be closed between the respective signal processing circuits.

第1図で伝送路のノイズの影響を軽減するため送信側に
設けた輝度信号のみの非線形補正回路rv8とその補正
をもとにもどす受信側に設けた輝度信号のみの非線形逆
補正回路rv−’9とは正にそれで、M U ’S R
エンコーダ7の信号処理回路とMUSEデコーダ10の
信号処理回路間でクローズしている。かくて得られた逆
マトリックス処理回路MTX−’15後の復元三原色信
号は、もし受信側の画像表示装置がCRTのように発光
輝度と入力信号の関係が非線形を有するものでは、そこ
ではしめでその非線形を補償する通常のガンマ補正γ1
6を実施すればよく、気体放電表示パネルのように線形
特性を有するものではガンマ補正する必要はない。
Figure 1 shows a nonlinear correction circuit rv8 for only the luminance signal provided on the transmitting side to reduce the influence of noise on the transmission path, and a nonlinear reverse correction circuit rv8 for only the luminance signal provided on the receiving side to restore the correction. '9 is exactly that, M U 'S R
The signal processing circuit of the encoder 7 and the signal processing circuit of the MUSE decoder 10 are closed. The restored three primary color signals obtained after the inverse matrix processing circuit MTX-'15 are Normal gamma correction γ1 to compensate for nonlinearity
6, and there is no need to perform gamma correction for devices with linear characteristics such as gas discharge display panels.

第1図示の例では色信号Cに関しては非線形補正が少な
くてすむので、MUSEエンコーダ7の信号処理回路の
前で伝送路のノイズの影響を軽減するための非線形補正
回路1’c6を挿入している。
In the example shown in the first figure, since less nonlinear correction is required for the color signal C, a nonlinear correction circuit 1'c6 is inserted in front of the signal processing circuit of the MUSE encoder 7 to reduce the influence of noise on the transmission path. There is.

これは信号処理回路の信号処理の精度が十分に高ければ
、輝度信号Yと同様にMUSF、エンコーダ7の信号処
理回路の後で非線形補正した方がよい。
If the signal processing accuracy of the signal processing circuit is sufficiently high, it is better to perform nonlinear correction after the signal processing circuit of the MUSF and encoder 7, similarly to the luminance signal Y.

この伝送路用の非線形補正の特性は輝度信号Yと色信号
Cとで著しく異なっており、輝度信号Yの補正は従来の
カメラ側のガンマ補正(第2図(a)参照)と特性が非
常に近い形rVであるが、色信号Cの補正は第2図(b
)に示すように極く彩度の低い部分の傾斜がたっている
ほぼ直線に近い形rcがよい。
The characteristics of this nonlinear correction for the transmission path are significantly different between the luminance signal Y and the chrominance signal C, and the characteristics of the correction of the luminance signal Y are significantly different from the conventional gamma correction on the camera side (see Figure 2 (a)). However, the correction of the color signal C is as shown in Fig. 2 (b
), it is better to have an rc shape that is almost a straight line with a slope in the part with extremely low saturation.

このようにする理由は、第1図示のように受信側の画像
表示装置にCRTを用いる場合、その非線形性をガンマ
補正回路γ16で完全に補償し得ることはあり得ないの
で、どうしても色信号Cより輝度信号Yへのクロストー
クがCRT上で発生する。これは色信号の彩度の高い部
分はど著しいので彩度の高い部分の色信号CのS/Nは
良くしておくのが望ましい。従って色信号の非線形補正
回路rc6の特性は、第2図(b)に示すように輝度信
号Yに対する伝送用の非線形補正回路r’y8の特性第
2図(a)図示と違ってレベルの高い部分を次第に低い
傾斜としない方がよい。
The reason for doing this is that when a CRT is used as the image display device on the receiving side as shown in the first diagram, it is impossible for the gamma correction circuit γ16 to completely compensate for its nonlinearity. Crosstalk to the luminance signal Y occurs on the CRT. This is particularly noticeable in the highly saturated portions of the color signal, so it is desirable to have a good S/N ratio for the color signal C in the highly saturated portions. Therefore, the characteristics of the color signal nonlinear correction circuit rc6 are of a higher level, as shown in FIG. 2(b), unlike the characteristics of the nonlinear correction circuit r'y8 for transmission of the luminance signal Y, as shown in FIG. 2(a). It is better not to have sections with progressively lower slopes.

なお第1図示のMUSEエンコーダ、デコーダはディジ
タル方式で構成するのが普通であるから、実際の回路で
はそれぞれの入力側、出力側にA/D。
Note that the MUSE encoder and decoder shown in Figure 1 are usually constructed using a digital system, so in actual circuits, A/Ds are installed on the input and output sides of each.

D/A変換器が挿入される。A D/A converter is inserted.

また、第1図示のような構成をとると、MUSEエンコ
ーダ、デコーダの信号処理は、輝度信号Yに関してはす
べて線形レベル空間内での処理となり、これは次の点で
極めて重要なことである。すなわちMUSE方式では画
像の内容に応じて例えば静止画か動画かに応じて少なく
とも2種類の空間フィルタを用い切替えて使用する。こ
の場合電気信号のレベルと表示装置上の表示レベルが線
形関係にないと、空間フィルタの通過帯域幅の狭い方が
電気信号の平均レベルは同等であってもピークレベルが
低下する(高域カットのため)ので、2種類のフィルタ
を通過してきた信号の表示上の平均レベルが変動してし
まう。実際にはCRTの表示特性は2乗以上の曲線であ
るから、動画で画像のぼけた部分は暗くなり、これが動
画/静止画の切替わり時に画像を不安定にする原因とな
る。
Further, when the configuration shown in FIG. 1 is adopted, the signal processing of the MUSE encoder and decoder is performed in the linear level space for the luminance signal Y, which is extremely important in the following respect. That is, in the MUSE method, at least two types of spatial filters are used and switched depending on the content of the image, for example, whether it is a still image or a moving image. In this case, if there is no linear relationship between the level of the electrical signal and the display level on the display device, the narrower the passband width of the spatial filter will lower the peak level even if the average level of the electrical signal is the same (high-frequency cutoff). Therefore, the displayed average level of the signals that have passed through the two types of filters fluctuates. In reality, the display characteristic of a CRT is a curve of the square or higher power, so blurred parts of a moving image become dark, which causes the image to become unstable when switching between moving images and still images.

以上本発明方式を高品位テレビジョン信号伝送方式に関
わるMUSE伝送方式に適用した実施例につき説明して
きたが、本発明伝送方式はこれに限定されるものでなく
、前述のごとくすくなくとも輝度信号が、各信号処理回
路の入力端で表示画像の階調とレベル的に直線関係にあ
る系が成立する可能性のある伝送系にすべて適用できる
ことを付記しておく。
The embodiments in which the method of the present invention is applied to the MUSE transmission method related to the high-definition television signal transmission method have been described above, but the transmission method of the present invention is not limited to this. It should be noted that the present invention is applicable to all transmission systems in which a system having a linear relationship in level with the gradation of a display image may be established at the input end of each signal processing circuit.

(発明の効果) 本発明伝送方式を採用することにより、カラーテレビジ
ョン信号の伝送において色信号Cから輝度信号Yへのク
ロストークが削減され、かつ伝送路ノイズの視覚的な目
立ち易さと整合した伝送方式を作ることができる。
(Effects of the Invention) By adopting the transmission method of the present invention, crosstalk from color signal C to luminance signal Y is reduced in the transmission of color television signals, and it is consistent with the visual conspicuousness of transmission line noise. Transmission methods can be created.

また電気信号と画像表示装置上の表示が直線関係を有す
るので、色信号の伝送帯域は従来より狭くてよいし、伝
送路ノイズの影響も軽減され、MUSE伝送方式のよう
に動画と静止画とで異なった空間フィルタを用いるもの
でも動画/静止画の切替えの不連続性が軽減される。
In addition, since there is a linear relationship between the electrical signal and the display on the image display device, the transmission band of the color signal can be narrower than before, and the influence of transmission line noise is reduced, and as with the MUSE transmission method, it is possible to Even if different spatial filters are used, the discontinuity in switching between moving images and still images can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明伝送方式をMUSE伝送方式に適用した
実施例の系統略ブロック線図を示し、第2図は本発明に
関わる実施例に使用される伝送路用非線形補正回路の補
正曲線の輝度信号骨1’y(a)と色信号分子C(b)
とについて示す。 1・・・ガンマ逆補正回路 2・・・マトリックス回路 3.12・・・輝度信号用LPF 4.13・・・広帯域色信号用LPF 5.14・・・狭帯域色信号用LPF 6.11・・・伝送用色信号非線形補正および逆補正回
路 7・・・MUSEエンコーダ 8.9・・・伝送用輝度信号非線形補正および逆補正回
路 10・・・MUSEデコーダ 15・・・逆マトリックス回路 16・・・ガンマ補正回路
FIG. 1 shows a schematic block diagram of an embodiment in which the transmission method of the present invention is applied to the MUSE transmission method, and FIG. 2 shows a correction curve of a nonlinear correction circuit for a transmission line used in an embodiment related to the present invention. Luminance signal bone 1'y (a) and color signal molecule C (b)
and is shown. 1... Gamma inverse correction circuit 2... Matrix circuit 3.12... LPF for luminance signal 4.13... LPF for wideband color signal 5.14... LPF for narrowband color signal 6.11 ...Transmission color signal nonlinear correction and inverse correction circuit 7...MUSE encoder 8.9...Transmission luminance signal nonlinear correction and inverse correction circuit 10...MUSE decoder 15...Inverse matrix circuit 16.・・Gamma correction circuit

Claims (1)

【特許請求の範囲】 1、コンポーネント映像信号を伝送するにあたり、伝送
系を構成する送信側、受信側の各信号処理回路の入力側
において、それら各信号処理回路に入力される信号を、
少なくとも輝度信号に関しては、受信側で表示される表
示画像の階調とレベル的に直線関係にある信号としたこ
とを特徴とするコンポーネント映像信号伝送方式。 2、前記コンポーネント映像信号伝送方式が、送信側に
おいてマトリックス回路により三原色信号から輝度信号
と色信号に変換され、受信側において前記変換された輝
度信号と色信号を逆マトリックス回路により逆変換され
る形態の時、送信側の前記マトリックス回路と受信側の
前記逆マトリックス回路との間でのみ伝送信号が非線形
補正および非線形逆補正されることを特徴とする特許請
求の範囲第1項に記載のコンポーネント映像信号伝送方
式。 3、前記非線形補正が、輝度信号と色信号のそれぞれに
ついて個別の特性による補正であることを特徴とする特
許請求の範囲第2項に記載のコンポーネント映像信号伝
送方式。 4、前記非線形補正が、信号レベルの低い側の傾斜より
より緩やかな高い側の傾斜の特性曲線を有する補正であ
ることを特徴とする特許請求の範囲第2項または第3項
に記載のコンポーネント映像信号伝送方式。 5、色信号の前記非線形補正が、輝度信号の前記非線形
補正に比して、信号レベルの高い側と低い側での傾斜の
差異を小さくした特性曲線を有する補正であることを特
徴とする特許請求の範囲第2項から第4項のいずれかに
記載のコンポーネント映像信号伝送方式。
[Claims] 1. When transmitting a component video signal, on the input side of each signal processing circuit on the transmitting side and receiving side that constitute the transmission system, the signal input to each signal processing circuit,
A component video signal transmission system characterized in that at least a luminance signal is a signal that has a linear relationship in level with the gradation of a display image displayed on a receiving side. 2. In the component video signal transmission method, the three primary color signals are converted into luminance signals and color signals by a matrix circuit on the transmitting side, and the converted luminance signals and color signals are inversely converted by an inverse matrix circuit on the receiving side. In the component video according to claim 1, the transmission signal is nonlinearly corrected and nonlinearly inversely corrected only between the matrix circuit on the transmitting side and the inverse matrix circuit on the receiving side. Signal transmission method. 3. The component video signal transmission system according to claim 2, wherein the nonlinear correction is correction based on individual characteristics for each of the luminance signal and the color signal. 4. The component according to claim 2 or 3, wherein the nonlinear correction is a correction having a characteristic curve with a slope on the high side of the signal level that is gentler than a slope on the low side of the signal level. Video signal transmission method. 5. A patent characterized in that the nonlinear correction of the color signal is a correction having a characteristic curve that has a smaller difference in slope between the high side and the low side of the signal level compared to the nonlinear correction of the luminance signal. A component video signal transmission system according to any one of claims 2 to 4.
JP61282137A 1986-11-28 1986-11-28 Component video signal transmission system Expired - Fee Related JPH0748877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61282137A JPH0748877B2 (en) 1986-11-28 1986-11-28 Component video signal transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61282137A JPH0748877B2 (en) 1986-11-28 1986-11-28 Component video signal transmission system

Publications (2)

Publication Number Publication Date
JPS63136790A true JPS63136790A (en) 1988-06-08
JPH0748877B2 JPH0748877B2 (en) 1995-05-24

Family

ID=17648590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61282137A Expired - Fee Related JPH0748877B2 (en) 1986-11-28 1986-11-28 Component video signal transmission system

Country Status (1)

Country Link
JP (1) JPH0748877B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139089A (en) * 1989-10-24 1991-06-13 Fujitsu General Ltd Muse down converter
US5061991A (en) * 1989-04-28 1991-10-29 Etat Francais Represente Par Le Ministre Des Postes, Des Telecommunications Et De L'espace (Centre National D'etudes Des Telecommunications) Emission-reception system for the transmission of animated color pictures and sound from two independent channels
US5311297A (en) * 1990-06-07 1994-05-10 Matsushita Electric Industrial Co., Ltd. HDTV to conventional TV signal converting apparatus with non-linear level correction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478621A (en) * 1977-12-05 1979-06-22 Matsushita Electric Ind Co Ltd Color pickup device
JPS5915557A (en) * 1982-07-19 1984-01-26 株式会社山東鉄工所 High temperature steam treating apparatus
JPS6155316A (en) * 1984-08-28 1986-03-19 Nissan Motor Co Ltd Supercharging pressure controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478621A (en) * 1977-12-05 1979-06-22 Matsushita Electric Ind Co Ltd Color pickup device
JPS5915557A (en) * 1982-07-19 1984-01-26 株式会社山東鉄工所 High temperature steam treating apparatus
JPS6155316A (en) * 1984-08-28 1986-03-19 Nissan Motor Co Ltd Supercharging pressure controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061991A (en) * 1989-04-28 1991-10-29 Etat Francais Represente Par Le Ministre Des Postes, Des Telecommunications Et De L'espace (Centre National D'etudes Des Telecommunications) Emission-reception system for the transmission of animated color pictures and sound from two independent channels
JPH03139089A (en) * 1989-10-24 1991-06-13 Fujitsu General Ltd Muse down converter
US5311297A (en) * 1990-06-07 1994-05-10 Matsushita Electric Industrial Co., Ltd. HDTV to conventional TV signal converting apparatus with non-linear level correction

Also Published As

Publication number Publication date
JPH0748877B2 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
JP3729863B2 (en) Method and apparatus for increasing the vertical resolution of a television signal having a degraded vertical chrominance transition
US5258829A (en) Color display apparatus for use with input signals having different color reproduction characteristics
US6208382B1 (en) Color video processing system and method
US5786871A (en) Constant luminance corrector
WO1998027745A1 (en) Method and apparatus for compensation of luminance defects caused by chrominance signal processing
JPS62253285A (en) Method and apparatus for processing color video signal
JPS63136790A (en) Transmission system for component video signal
KR940011112B1 (en) Tv signal converting apparatus with non-linear level correction
US6424384B1 (en) Method and apparatus for improved signal filtering
JPH04323988A (en) Sampling rate conversion system
JPH0365865A (en) Output circuit for muse decoder
JP2882444B2 (en) Color signal correction device
JPS62274993A (en) Television signal processing system
JPH0417486A (en) Solid-state color image pickup device
KR910009883B1 (en) Color television transmission circuit
JPH05236496A (en) Color signal correcting device
JP3047636B2 (en) MUSE decoder
JP2638380B2 (en) High-definition television receiver
JPH11196295A (en) Noise reduction circuit
JPH04239890A (en) Liquid crystal system hdtv receiver
JPH05347750A (en) Muse decoder
CA2027336A1 (en) Video panning system for widescreen television
JPH03102975A (en) Television signal processor
JPS62224175A (en) System conversion transmission system
GB2287846A (en) Coding a video signal using constant and non-constant luminance principles

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees