JPH03102975A - Television signal processor - Google Patents

Television signal processor

Info

Publication number
JPH03102975A
JPH03102975A JP1239971A JP23997189A JPH03102975A JP H03102975 A JPH03102975 A JP H03102975A JP 1239971 A JP1239971 A JP 1239971A JP 23997189 A JP23997189 A JP 23997189A JP H03102975 A JPH03102975 A JP H03102975A
Authority
JP
Japan
Prior art keywords
signal
circuit
signals
processing circuit
signal processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1239971A
Other languages
Japanese (ja)
Inventor
Masahiro Kageyama
昌広 影山
Hiroshi Yoshiki
宏 吉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1239971A priority Critical patent/JPH03102975A/en
Publication of JPH03102975A publication Critical patent/JPH03102975A/en
Pending legal-status Critical Current

Links

Landscapes

  • Picture Signal Circuits (AREA)

Abstract

PURPOSE:To obtain a desired frequency characteristic on a CRT even for a signal processed by non-linear processing such as gamma-correction, etc., by providing a circuit to convert an input signal so as to be linear, the circuit to execute desired calculation by its output, and the circuit to execute the non-linear processing equivalent to a transmitting side by its output. CONSTITUTION:A transmitted NTSC signal is separated into a luminance signal Y and a chrominance signal C by a separation circuit 14. The C signal is demodulated into I and Q by a demodulation circuit 15. The signals Y, I, Q are converted by a matrix circuit 19 into R', B', G' signals of red, green and blue gamma-corrected on the transmitting side. These signals are raised to 2.2-th power respectively by using the circuits 21, 22, 23, and are returned once to linear signals R, B, G. The linear signals are applied with interpolation processing by scanning line interpolation circuits 24, 25, 26, and further, are raised to 1/2.2-th power by gamma-correction circuits 27, 28, 29, and are inputted to the CRT 20. Through this configuration, the calculation like the interpolation processing, etc., can be executed on a receiving side without being influenced by the gamma-correction on the transmitting side, and the distortion of luminance, hue and saturation is never caused on the surface of the CRT.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、テレビジョン信号処理回路に係り、特に、送
信側でガンマ補正などの非線形処理を行ったのちに伝送
された信号を受けて,フィルタ処理や走査線補間などの
線形演算を行う信号処理回路に関する. 〔従来の技術〕 受像管のグリッド信号電圧と発光出力(管面輝度)との
関係が、直線的に比例していれば理想的である.しかし
,実際の発光出力は、グリッドに加えた信号電圧の約2
.2乗に比例している.このため、カメラからの信号を
そのまま受像管に加えた場合には、画面の輝度はもちろ
んのこと、カラー受像管の場合には色相や彩度も実際と
異なってくる.それ故、信号を受像管に加える前に出力
信号電圧が入力信号電圧の1/2.2 乗であるような
回路を通し、総合特性が直線的になるように補正してい
る。受像管の信号電圧と発光出力との関係は、一般にガ
ンマ特性と呼ばれ、上記の場合はγ=2.2である.ま
た、上記補正回路をガンマ補正回路と呼ぶ。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a television signal processing circuit, and in particular, to a television signal processing circuit that receives a transmitted signal after performing nonlinear processing such as gamma correction on the transmitting side. It relates to signal processing circuits that perform linear operations such as filter processing and scanning line interpolation. [Prior Art] Ideally, the relationship between the grid signal voltage of the picture tube and the light emission output (tube surface brightness) should be linearly proportional. However, the actual light output is approximately 2 times the signal voltage applied to the grid.
.. It is proportional to the square. For this reason, if the signal from the camera is directly applied to the picture tube, not only the brightness of the screen but also the hue and saturation in the case of a color picture tube will differ from the actual picture. Therefore, before applying the signal to the picture tube, it is corrected so that the overall characteristic becomes linear by passing it through a circuit such that the output signal voltage is 1/2.2 of the input signal voltage. The relationship between the signal voltage of the picture tube and the light emission output is generally called the gamma characteristic, and in the above case, γ=2.2. Further, the above correction circuit is called a gamma correction circuit.

このガンマ補正回路は、受像管のグリッドに信号を加え
る直前に挿入すればよい.しかし、規格制定時の回路の
安定性,経済性の点から,現行テレビジョン方式(NT
 S C方式)では,送信側で,カメラの信号出力をガ
ンマ補正するように定められている. 第2図に,現行テレビジョン方式の送受信機の構或例の
主要部分を示す。まず、送信側では、カメラ4からの赤
,緑,青色の信号(以下、R,G,B信号と略記)を,
それぞれガンマ補正回路5,6,7に入力する(一般に
は、ガンマ補正回路5,6,7がカメラ4に内蔵されて
いる場合が多い).ガンマ補正されたR’ ,G’ ,
B’信号は、マトリクス8により、輝度信号Yと色信号
工およびQに変換する.色信号IおよびQはフィルタ9
および10によりそれぞれ1 . 5 M H zと0
 . 5 M H zに帯域制限する.その後、変調器
11により、色刷搬送波とよばれる搬送波でI信号とQ
信号を直交変調してC信号としたのち,多重回路12を
用いてY信号と多重し.最後にフィルタl3により4 
. 2 M H z  に帯域制限してNTSC信号と
し、伝送する(参考文献二 「カラーテレビジョン」,
第1章,日本放送協会編,日本放送出版協会発行,19
61). 第2図の破線で囲んだ部分は、一般にI DTVと呼ば
れるテレビジョン受像機の構成例を示したものである.
伝送されるNTSC信号は,規格に基づき、l走査線ご
とにインタレース(飛び越し)走査されている。インタ
レース走査のままで画像を表示すると,走査線構造が見
えて画質劣化の原因となったり、フリツカと呼ばれる“
ちらつき”が発生する場合がある.これを防止するため
に、I ’D T Vでは、飛び越されて伝送されない
走査線を受信側で補間再生して順次走査信号とし,表示
する.(参考文献二日経エレクトロニクス, 1987
年10月19日号,no432,ppl02 −105
) IDTV100では、まず,伝送されたNTSC信号を
、YC分離回路14によりY信号とC信号に分離する。
This gamma correction circuit can be inserted just before applying the signal to the picture tube grid. However, the current television system (NT
In the SC method), it is specified that the signal output of the camera is gamma corrected on the transmitting side. Figure 2 shows the main parts of an example of the structure of a current television transmitter/receiver. First, on the transmitting side, the red, green, and blue signals (hereinafter abbreviated as R, G, and B signals) from the camera 4 are
The signals are input to gamma correction circuits 5, 6, and 7, respectively (generally, gamma correction circuits 5, 6, and 7 are often built into the camera 4). Gamma corrected R', G',
The B' signal is converted into a luminance signal Y, a color signal signal, and Q by a matrix 8. Color signals I and Q are filtered by filter 9
and 10 respectively. 5 MHz and 0
.. Bandwidth limited to 5 MHz. After that, the modulator 11 uses a carrier wave called a color printing carrier wave to generate the I signal and the Q signal.
After the signal is orthogonally modulated into a C signal, it is multiplexed with a Y signal using a multiplexing circuit 12. Finally, by filter l3, 4
.. The band is limited to 2 MHz and transmitted as an NTSC signal (Reference 2 "Color Television",
Chapter 1, edited by Japan Broadcasting Corporation, published by Japan Broadcasting Publishing Association, 19
61). The part surrounded by a broken line in FIG. 2 shows an example of the configuration of a television receiver generally called an IDTV.
The transmitted NTSC signal is interlaced scanned every l scanning lines based on the standard. If an image is displayed using interlaced scanning, the scanning line structure becomes visible, causing deterioration in image quality and causing "flicker".
"Flicker" may occur. To prevent this, in I'D TV, skipped scanning lines that are not transmitted are interpolated and reproduced on the receiving side as sequential scanning signals and displayed. (References Ninikkei Electronics, 1987
October 19th issue, no432, ppl02-105
) In the IDTV 100, first, the transmitted NTSC signal is separated into a Y signal and a C signal by the YC separation circuit 14.

C信号は、復調回路15を用いて工信号とQ信号に復調
する。分離・復調されたY,I,Q信号は、それぞれ走
査線補間回路16.17.18を用いて順次走査とした
のち、マトリクス19を用いてR’ ,G’ ,B’信
号に変換し、ガンマ特性を持った受像管20に入力され
る.第3図を用いて、走査線補間について詳しく説明す
る. 同図(a)は,同一フィールド内の上下の走査線Aおよ
びBから、伝送されない走査線Xを補間再生する場合を
示す.この場合は、X=(A+B)/2として,上下の
走査線の平均値をとっている.同図(b)は、同一位置
の前後のフィールドの走査線CおよびDから,走査線X
を補間再生する場合を示す.この場合は.X=(C十D
)/2と表わすことができる.同図(c)は、同図(a
)と同図(b)の補間方法を動き量kによって適応的に
切り替える場合である。予め動き量k (0≦k≦l)
を検出し、X=k・(A+B)/2 +(1−k)・(
C+D)/2として、動き量kが大きい(1に近い)場
合には同図(a)のフィールド内補間値を、動き量kが
小さい(0に近い、すなわち静止している)場合には同
図(b)のフィールド間補間値を出力する。このような
補間処理は、一種のフィルタ処理と考えることができる
The C signal is demodulated into a power signal and a Q signal using a demodulation circuit 15. The separated and demodulated Y, I, and Q signals are sequentially scanned using scanning line interpolation circuits 16, 17, and 18, and then converted into R', G', and B' signals using a matrix 19, The signal is input to a picture tube 20 which has gamma characteristics. Scanning line interpolation will be explained in detail using Figure 3. FIG. 5(a) shows a case in which a scanning line X that is not transmitted is interpolated and reproduced from upper and lower scanning lines A and B in the same field. In this case, X=(A+B)/2, and the average value of the upper and lower scanning lines is taken. In the same figure (b), from scanning lines C and D of the fields before and after the same position, scanning line
The following shows the case of interpolation playback. in this case. X=(C0D
)/2. The same figure (c) is the same figure (a
) and the interpolation method shown in FIG. 3(b) are adaptively switched depending on the amount of motion k. Preliminary movement amount k (0≦k≦l)
Detected, X=k・(A+B)/2 +(1−k)・(
C+D)/2, when the amount of motion k is large (close to 1), use the intra-field interpolated value in (a) of the same figure, and when the amount of motion k is small (close to 0, that is, stationary), use the intra-field interpolated value. The inter-field interpolated values shown in FIG. 2(b) are output. Such interpolation processing can be considered a type of filter processing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第4図も呼は、第2図中のガンマ補正回路5の入出力特
性を示したものであり R / =R 1/′゜2の曲
線である.いま,簡単のため,被写体は白黒画像(すな
わち、R=G=B=Y)であり、走査線Aの電圧がOV
(完全な黒レベル)であり、走査線Bの電圧がIV(完
全な白レベル)であると仮定する.この入力信号に対し
てガンマ補正(1/2.2乗)を行い、A’ =OV,
B’ =IVとして伝送する. 上記第2図に示したHDTVIOOでは,伝送された走
査1!A’およびB′から補間走査線Xを作或する。例
えば、第3図(a)に示したように、上下の走査線の平
均値を出力する場合には,x=(A’ +B’ )/2
=0.5V を補間走査線の電圧とする。しかし、この
信号を受像管に加えても、受像管のガンマ特性のため0
.52″”40.22程度の管面輝度しか得られず、本
来の補間値(A+B)/2よりも必ずδ (この場合は
、0.5−0.22=0.28 > だけ暗くなってし
まう.一般のカラー画像(すなわち、R−I−G−Ih
B)の場合には、輝度だけでなく,色相や彩度も実際と
異なってくる、という欠点があった. 走査線補間を例に挙げて説明を行ったが、補間により新
しい画素やフィールドを作成する場合にも同様の欠点が
生じる.また、補間に限らず、ガンマ補正などの非線形
処理をされた信号に対してフィルタ処理やエッジ・エン
ハンサ(高域強調)などの線形演算を行うと、管面で観
察される輝度は所望の周波数特性とは異なり、受像管入
力の小さい(すなわち、暗い)部分での管面輝度ゲイン
が不足する。
FIG. 4 also shows the input/output characteristics of the gamma correction circuit 5 in FIG. 2, and is a curve of R/=R 1/'°2. For simplicity, the subject is a black and white image (i.e. R=G=B=Y), and the voltage of scanning line A is OV.
(perfect black level) and the voltage of scanning line B is assumed to be IV (perfect white level). Gamma correction (1/2.2 power) is performed on this input signal, and A' = OV,
Transmit as B' = IV. In the HDTV IOO shown in FIG. 2 above, the transmitted scan 1! An interpolated scan line X is created from A' and B'. For example, as shown in Figure 3(a), when outputting the average value of the upper and lower scanning lines, x = (A' + B')/2
=0.5V is the voltage of the interpolation scanning line. However, even if this signal is applied to the picture tube, it will be zero due to the gamma characteristics of the picture tube.
.. The screen brightness is only about 52''40.22, and it is always darker by δ (in this case, 0.5-0.22=0.28>) than the original interpolated value (A+B)/2. General color images (i.e. R-I-G-Ih
In the case of B), there was a drawback that not only the brightness but also the hue and saturation were different from reality. Although the explanation was given using scan line interpolation as an example, similar drawbacks occur when creating new pixels or fields by interpolation. In addition to interpolation, if linear operations such as filter processing and edge enhancer (high frequency emphasis) are performed on signals that have undergone non-linear processing such as gamma correction, the brightness observed on the screen will change to the desired frequency. Unlike the characteristics, the tube surface brightness gain is insufficient in small (i.e., dark) portions of the picture tube input.

従って本発明の目的は、ガンマ補正などの非線形処理を
された信号に対しても、受像管面上で所望の周波数特性
(あるいは出力電圧)が得られるフィルタ回路を提供す
ることにある. 〔発明が解決しようとするm題〕 上記目的は、伝送された信号を線形な信号に変換する第
1の信号処理回路と、第工の信号処理回路の出力を受け
て所望の演算を行う第2の信号処理回路と,第2の信号
処理回路の出力を受けて送信側と等価の非線形処理を行
う第3の信号処理回路を用いることにより,達成できる
, 〔作用〕 送信側で非線形処理された伝送信号に対して、送信側の
非線形処理の逆特性を持った第1の信号処理回路を通し
、一旦線形な信号に戻す.例えば、送信側の非線形処理
がガンマ補正( Rt == RA/Z−2 )の場合
は、R=R′2゛2を出力する.この線形な信号に対し
て,第2の信号処理回路で所望の演算(フィルタ処理や
、補間処理等)を行ったのち,第3の信号処理回路で再
びガンマ補正して出力信号とする。したがって、所望の
演算された信号も正しくガンマ補正でき、受像管上で所
望の周波数特性を実現することができる. 〔実施例〕 以下、図面を用いて本発明を詳細に説明する。
Therefore, an object of the present invention is to provide a filter circuit that can obtain desired frequency characteristics (or output voltage) on the picture tube surface even for signals that have been subjected to nonlinear processing such as gamma correction. [Problem to be solved by the invention] The above object is to provide a first signal processing circuit that converts a transmitted signal into a linear signal, and a second signal processing circuit that receives the output of the first signal processing circuit and performs a desired calculation. This can be achieved by using the second signal processing circuit and a third signal processing circuit that receives the output of the second signal processing circuit and performs nonlinear processing equivalent to that on the transmitting side. The transmitted signal is passed through a first signal processing circuit, which has characteristics inverse to the nonlinear processing on the transmitting side, and is once returned to a linear signal. For example, when the nonlinear processing on the transmitting side is gamma correction (Rt == RA/Z-2), R=R'2'2 is output. A second signal processing circuit performs desired calculations (filter processing, interpolation processing, etc.) on this linear signal, and then a third signal processing circuit performs gamma correction again to produce an output signal. Therefore, the desired calculated signal can also be correctly gamma corrected, and the desired frequency characteristics can be realized on the picture tube. [Example] Hereinafter, the present invention will be explained in detail using the drawings.

第1図に、本発明の一実施例を示す。送信側でガンマ補
正された信号をガンマ回路1に入力し、一旦線形な信号
に変換する。このガンマ回路lでは、入力R′に対して
R=R”・2を出力する.この線形な信号に対して信号
処理回路2で所望の演算(フィルタ処理や,補間処理)
を行ったのち,受像管のガンマ特性を補正するためのガ
ンマ補正回路3を通して,出力信号とする。
FIG. 1 shows an embodiment of the present invention. A gamma-corrected signal on the transmitting side is input to a gamma circuit 1 and is once converted into a linear signal. This gamma circuit 1 outputs R=R"・2 for the input R'. The signal processing circuit 2 performs desired calculations (filter processing, interpolation processing) on this linear signal.
After performing this, the signal is output as an output signal through a gamma correction circuit 3 for correcting the gamma characteristics of the picture tube.

第5図に,本発明をIDTVIOIの走査線補間に応用
した一例を示す.伝送されたNTSC信号から、YC分
離回路14を用いて輝度信号Yと色信号Cを分離する.
C信号は,復調回路15を用いてI信号とQ信号に復調
する.分離・復調されたY,I,Q信号は、マトリクス
19によりR’ ,G’ ,B’信号(送信側でガンマ
補正された赤,緑,青色の信号)に変換する。これらの
信号を,それぞれガンマ回路21,22および23を用
いて信号を2.2乗し、一旦線形な信号R,G,Bに戻
す。この線形な信号に対して、走査線補間回路24.2
5および26を用いて,第3図に示したような走査線補
間処理を行い、さらに,ガンマ補正回路27,28およ
び29により(l/2.2 )乗したのち、受像管20
に入力する.第6図に、本発明を走査線補間に応用した
他の例を示す。
Figure 5 shows an example in which the present invention is applied to scanning line interpolation of IDTVIOI. A YC separation circuit 14 is used to separate a luminance signal Y and a color signal C from the transmitted NTSC signal.
The C signal is demodulated into an I signal and a Q signal using a demodulation circuit 15. The separated and demodulated Y, I, and Q signals are converted by a matrix 19 into R', G', and B' signals (red, green, and blue signals gamma-corrected on the transmitting side). These signals are raised to the 2.2 power using gamma circuits 21, 22, and 23, respectively, and are once returned to linear signals R, G, and B. For this linear signal, the scanning line interpolation circuit 24.2
5 and 26 to perform the scanning line interpolation process as shown in FIG.
Enter. FIG. 6 shows another example in which the present invention is applied to scanning line interpolation.

Y信号に比べて解像度が低くても目立たない工信号およ
びQ信号は、第3図(a)に示すように、高価なフィー
ルドメモリを使用しないフィールド内走査線補間を行う
場合が多い.一方、解像度の低下や残像が目立つY信号
は、第3図(c)のような動き適応形の走査線補間を行
う場合が多い.第6図において,伝送されたNTSC信
号から,YC分離回路l4を用いて輝度信号Yと色信号
Cを分離する.C信号は、復調回路15を用いて工信号
とQ信号に復調する.経済性の点から,輝度信号Yに対
してのみ本発明を適用することもできる。
As shown in FIG. 3(a), intra-field scanning line interpolation is often performed for the optical signal and Q signal, which are less noticeable even if their resolution is lower than the Y signal, without using expensive field memory. On the other hand, for Y signals with noticeable resolution reduction and afterimages, motion adaptive scanning line interpolation as shown in FIG. 3(c) is often performed. In FIG. 6, a YC separation circuit 14 is used to separate a luminance signal Y and a color signal C from the transmitted NTSC signal. The C signal is demodulated into a power signal and a Q signal using a demodulation circuit 15. From the point of view of economy, the present invention can also be applied only to the luminance signal Y.

すなわち,Y信号は,ガンマ回路30により線形な信号
に戻し、走査線補間回路16で補間処理を行い、ガンマ
補正回路31を通したのちにマトリクス19に入力する
。■信号およびQ信号は従来通り,走査線補間回路17
およびl8により補間処理のみを行って,マトリクス1
9に入力する.マトリクスではY,I,Q信号からR’
 ,G’B′信号に変換して受像管20に入力する.こ
の場合、白黒画像(すなわち、R=G=B=Y,I=Q
=O)については、第5図と同等の効果が得られる。ま
た、経済性を考えなければ、工およびQ信号にもY信号
と同様の処理を行ってもよい.第6図中の破線で囲んだ
部分200を、第7図を用いてさらに詳しく説明する。
That is, the Y signal is returned to a linear signal by the gamma circuit 30, interpolated by the scanning line interpolation circuit 16, passed through the gamma correction circuit 31, and then input to the matrix 19. ■Signals and Q signals are handled by the scanning line interpolator 17 as before.
and l8 to perform only interpolation processing, matrix 1
Enter 9. In the matrix, R' from Y, I, Q signals
, G'B' signals and input to the picture tube 20. In this case, a black and white image (i.e. R=G=B=Y, I=Q
=O), the same effect as in FIG. 5 can be obtained. Furthermore, if economic efficiency is not considered, the same processing as the Y signal may be applied to the engineering and Q signals. The portion 200 surrounded by the broken line in FIG. 6 will be explained in more detail using FIG. 7.

同図において,動き検出回路36を用いて、入力信号か
ら予め動き量k (0≦k≦1)を作或する。これは、
同一位置の画素データのlフレーム差や2フレーム差を
とって正規化すればよい.また、入力信号は送信側でガ
ンマ補正されているため、ガンマ回路30を用いて線形
な信号に変換する.この線形な信号から、IH(Hは水
平走査期間)遅延回路32,加算器33および乗算器3
4を用いて、上下の走査線の平均値(すなわち、フィー
ルド内補間値)を作成する.また、263H遅延回路3
5を用いてフィールド間補間値(ただし、同図ではフィ
ールド間の平均値ではなく、前値補間値.もちろん、平
均値でもよい。)を作成する。
In the figure, a motion detection circuit 36 is used to generate a motion amount k (0≦k≦1) from an input signal in advance. this is,
It is sufficient to normalize by taking the difference of 1 frame or 2 frames between pixel data at the same position. Furthermore, since the input signal has been gamma-corrected on the transmitting side, it is converted into a linear signal using the gamma circuit 30. From this linear signal, IH (H is horizontal scanning period) delay circuit 32, adder 33 and multiplier 3
4 to create the average value of the upper and lower scanning lines (that is, the intra-field interpolated value). In addition, the 263H delay circuit 3
5 to create an inter-field interpolated value (however, in the figure, the inter-field interpolated value is not the inter-field average value, but the previous value interpolated value. Of course, the average value may also be used).

乗算器37.38および加算器39を用いて、上記フィ
ールド内補間値とフィールド間補間値とを,上記動き量
kに従って混合し,補間走査線データとする.また、ガ
ンマ回路30の出力を実走査線データとし、切り替え器
40により補間走査線データと切り替えて出力する.こ
のとき,図中では省いているが、実際には実走査線,補
間走査線ともに倍速変換(時間軸を1/2に圧縮)を行
い、1水平走査期間に実走査線と補間走査線を交互に時
間軸多重して、切り替え器40から出力する.この出力
をガンマ補正回路31に通したのち,出力信号とする。
Using multipliers 37, 38 and adder 39, the intra-field interpolated value and the inter-field interpolated value are mixed according to the amount of motion k to produce interpolated scanning line data. Further, the output of the gamma circuit 30 is used as actual scanning line data, which is switched to interpolated scanning line data by a switch 40 and output. At this time, although it is omitted in the figure, in reality, both the actual scanning line and the interpolated scanning line are converted to double speed (compressing the time axis to 1/2), and the actual scanning line and the interpolated scanning line are converted in one horizontal scanning period. The signals are alternately multiplexed on the time axis and output from the switch 40. After passing this output through the gamma correction circuit 31, it is used as an output signal.

第7図に示した構成の変形例を、第8図に示す。A modification of the configuration shown in FIG. 7 is shown in FIG.

同図において、動き検出回路36を用いて,入力信号か
ら予め動き量k (0≦k≦1)を作或する。また、入
力信号を用いて線形な信号に変換する。この線形な信号
から.LH(Hは水平走査期間)遅延回路32,加算器
33および乗算器34を用いて、上下の走査線の平均値
を作成し,さらにガンマ補正回路31を通してフィール
ド内補間値とする.また,入力信号をそのまま263H
遅延回路35に通して,フィールド間補間値を作成する
.このように、遅延だけで、データ間の演算を行わない
前値補間等の場合には,送信側でのガンマ補正の影響を
考慮する必要はない。乗算器37.38および加算器3
9を用いて,上記フィールド内補間値とフィールド間補
間値とを、上記動き量kに従って混合し,補間走査線デ
ータとする.また、入力信号を実走査線データとし、切
り替え器40により補間走査線データと切り替えて出力
する.このとき、図中では省いているが、実際には実走
査線,補間走査線ともに倍速変換(時間軸を1/2に圧
縮)を行い、1水平走査期間に実走査線と補間走査線を
交互に時間軸多重して、切り替え器40から出力する. 上記では,γ=2.2 として説明を行ったが、これ以
外の値でも同様である。また、送信側の非線形処理は受
像管のガンマ補正として説明を行ったが、逆特性の存在
する非線形処理であれば同様である。さらに、受信側で
の所望の演算が走査線補間の場合について説明を行った
が、新しい画素やフィールドを補間する場合や他の線形
演算(例えば,信号の高域成分を強調するエッジ・エン
ハンサや、ブライトネス及びコントラスト調整,周波数
分離のためのフィルタ処理等)を行う場合にも同様であ
る。すなわち、一旦線形の信号に戻したのち、所望の演
算を行い、再びガンマ補正等の非線形処理を行えば、受
像管面上での輝度,色相および彩度の歪を発生しない. 〔発明の効果〕 本発明を適用することにより、送信側のガンマ補正の影
響を受けずに受信側で補間処理などの所望の演算を行う
ことができ、受像管面上での輝度,色相および彩度の歪
が発生しないため、実施して効果は極めて大きい。
In the figure, a motion detection circuit 36 is used to generate a motion amount k (0≦k≦1) from an input signal in advance. It also converts the input signal into a linear signal. From this linear signal. Using the LH (H is horizontal scanning period) delay circuit 32, adder 33, and multiplier 34, an average value of the upper and lower scanning lines is created, which is then passed through the gamma correction circuit 31 to become an intra-field interpolated value. In addition, the input signal can be changed to 263H as it is.
It passes through a delay circuit 35 to create inter-field interpolated values. In this way, in the case of prior value interpolation, etc., which involves only a delay and does not involve calculation between data, there is no need to consider the influence of gamma correction on the transmitting side. Multiplier 37, 38 and adder 3
9, the intra-field interpolated value and the inter-field interpolated value are mixed according to the amount of motion k to obtain interpolated scanning line data. Further, the input signal is actual scanning line data, which is switched to interpolated scanning line data by a switch 40 and output. At this time, although it is omitted in the figure, in reality, both the actual scanning line and the interpolated scanning line are converted to double speed (compressing the time axis to 1/2), and the actual scanning line and the interpolated scanning line are converted in one horizontal scanning period. The signals are alternately multiplexed on the time axis and output from the switch 40. In the above description, γ=2.2, but the same applies to other values. Furthermore, although the nonlinear processing on the transmitting side has been described as gamma correction of the picture tube, the same applies to any nonlinear processing in which an inverse characteristic exists. Furthermore, although we have explained the case where the desired operation on the receiving side is scan line interpolation, there are also cases where new pixels or fields are interpolated, or other linear operations (for example, edge enhancer or , brightness and contrast adjustment, filter processing for frequency separation, etc.). In other words, once the signal is restored to a linear signal, the desired calculation is performed, and nonlinear processing such as gamma correction is performed again, thereby eliminating distortion of brightness, hue, and saturation on the picture tube surface. [Effects of the Invention] By applying the present invention, desired calculations such as interpolation processing can be performed on the receiving side without being affected by gamma correction on the transmitting side, and brightness, hue, and Since no saturation distortion occurs, the effect of implementing this method is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略構或を示すブロック図
、第2図は従来の補間処理を適用した現29.31・・
・ガンマ補正回路、4・・・カメラ、8,19・・・マ
トリクス、9,10.13・・・フィルタ、11・・・
変調器、12・・・多重回路、14・・・YC分離回路
、15・・・復調器、16,17,18,24,25.
26・・・走査線補間回路、20・・・受像管、32.
35・・・遅延回路、33.39・・・加算器、34,
37,38・・・乗算器、36・・・動き検出回路、4
0・・・切り替え器、100,101,102・・・I
DTV. 第6図は本発明を補間処理に応用した実施例の回路ブロ
ック図、第7図および第8図は第6図の一部を詳しく説
明した回路ブロック図である.1,21,22,23,
30・・・ガンマ回路,2・・・信号処理回路、3,5
,6,7,27,28,第3図 第 1  図 第 4 凹
Fig. 1 is a block diagram showing a schematic structure of an embodiment of the present invention, and Fig. 2 is a block diagram showing a schematic structure of an embodiment of the present invention.
- Gamma correction circuit, 4... Camera, 8, 19... Matrix, 9, 10.13... Filter, 11...
Modulator, 12... Multiplex circuit, 14... YC separation circuit, 15... Demodulator, 16, 17, 18, 24, 25.
26... Scanning line interpolation circuit, 20... Picture tube, 32.
35...Delay circuit, 33.39...Adder, 34,
37, 38... Multiplier, 36... Motion detection circuit, 4
0...Switcher, 100, 101, 102...I
DTV. FIG. 6 is a circuit block diagram of an embodiment in which the present invention is applied to interpolation processing, and FIGS. 7 and 8 are circuit block diagrams explaining a part of FIG. 6 in detail. 1, 21, 22, 23,
30... Gamma circuit, 2... Signal processing circuit, 3, 5
, 6, 7, 27, 28, Fig. 3 Fig. 1 Fig. 4 Concave

Claims (1)

【特許請求の範囲】 1、送信側で非線形処理された伝送信号を受けて処理す
る回路において、 伝送された信号を線形な信号に変換する第1の信号処理
回路と、 第1の信号処理回路の出力を受けて所望の演算を行う第
2の信号処理回路と、 第2の信号処理回路の出力を受けて送信側と等価の非線
形処理を行う第3の信号処理回路を備えたことを特徴と
する、テレビジョン信号処理回路。 2、上記非線形処理は、テレビジョンの受像管のガンマ
特性を補正する処理であることを特徴とする、特許請求
範囲第1項記載のテレビジョン信号処理回路。 3、上記第2の信号処理回路は、新しい画素、走査線3
フィールド等を補間して出力する回路であることを特徴
とする、特許請求範囲第1項および第2項記載のテレビ
ジョン信号処理回路。 4、上記第2の信号処理回路は、信号の高域強調を行う
回路であることを特徴とする、特許請求範囲第1項およ
び第2項記載のテレビジョン信号処理回路。
[Claims] 1. In a circuit that receives and processes a transmission signal that has been nonlinearly processed on the transmitting side, a first signal processing circuit that converts the transmitted signal into a linear signal; and a first signal processing circuit. A second signal processing circuit receives the output of the second signal processing circuit and performs a desired calculation, and a third signal processing circuit receives the output of the second signal processing circuit and performs nonlinear processing equivalent to that on the transmitting side. A television signal processing circuit. 2. The television signal processing circuit according to claim 1, wherein the nonlinear processing is a process for correcting gamma characteristics of a picture tube of a television. 3. The second signal processing circuit generates a new pixel, scanning line 3.
3. The television signal processing circuit according to claim 1, wherein the television signal processing circuit is a circuit that interpolates and outputs a field or the like. 4. The television signal processing circuit according to claims 1 and 2, wherein the second signal processing circuit is a circuit that emphasizes high frequencies of the signal.
JP1239971A 1989-09-18 1989-09-18 Television signal processor Pending JPH03102975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1239971A JPH03102975A (en) 1989-09-18 1989-09-18 Television signal processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1239971A JPH03102975A (en) 1989-09-18 1989-09-18 Television signal processor

Publications (1)

Publication Number Publication Date
JPH03102975A true JPH03102975A (en) 1991-04-30

Family

ID=17052560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1239971A Pending JPH03102975A (en) 1989-09-18 1989-09-18 Television signal processor

Country Status (1)

Country Link
JP (1) JPH03102975A (en)

Similar Documents

Publication Publication Date Title
JP3729863B2 (en) Method and apparatus for increasing the vertical resolution of a television signal having a degraded vertical chrominance transition
US6208382B1 (en) Color video processing system and method
US4716462A (en) Motion adaptive television signal processing system
JPH05130632A (en) Video signal processing circuit
US5229847A (en) Television signal processing system including modulated auxiliary carrier
US5161006A (en) Method for separating chrominance and luminance components of a television signal
JP3295762B2 (en) Progressive scan converter
KR100206792B1 (en) Device for improving tv picture quality by using gamma compensation
JPH03102975A (en) Television signal processor
JPH02108390A (en) Luminance signal and chrominance signal separating circuit for pal color television signal
JP3191322B2 (en) Aspect ratio conversion display device
JPS62274993A (en) Television signal processing system
JP2882444B2 (en) Color signal correction device
JP3147428B2 (en) Television signal processing circuit
JP2667492B2 (en) Composite television signal generation circuit
JP2638380B2 (en) High-definition television receiver
KR960002045B1 (en) Sampling frequency converting method and circuit therefor
JPS63136790A (en) Transmission system for component video signal
JPS63275285A (en) Compensation system for gamma correction on image-sending side of television signal
JPH05236496A (en) Color signal correcting device
JPH0316077B2 (en)
JP3256988B2 (en) Image quality correction circuit and image display system
JP2928561B2 (en) Method and apparatus for forming television signal
JP2850125B2 (en) decoder
JPH05347750A (en) Muse decoder