JPS6313668A - Welding conditions control method - Google Patents

Welding conditions control method

Info

Publication number
JPS6313668A
JPS6313668A JP15606886A JP15606886A JPS6313668A JP S6313668 A JPS6313668 A JP S6313668A JP 15606886 A JP15606886 A JP 15606886A JP 15606886 A JP15606886 A JP 15606886A JP S6313668 A JPS6313668 A JP S6313668A
Authority
JP
Japan
Prior art keywords
welding
molten pool
area
temp
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15606886A
Other languages
Japanese (ja)
Inventor
Toshio Nezu
根津 利雄
Shigekiyo Sagi
鷺 重清
Junichiro Morisawa
森沢 潤一郎
Yoichi Takahashi
高橋 庸一
Hiroo Koide
宏夫 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15606886A priority Critical patent/JPS6313668A/en
Publication of JPS6313668A publication Critical patent/JPS6313668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To correctly control welding conditions by detecting a certain constant length from a welding start point and the temp. area of a molten pool and performing a heat input controlling with the average value thereof as the reference temp. area. CONSTITUTION:A molten pool 15 is observed by an infrared rays camera, a multivalue constant temp. line diagram is made by an infrared rays pick-up device 18 and the bivalent picture image shown in the figure is made by segmenting the diagram at >= a constant temp. by an image processing device 8. For a certain constant length after starting the welding this operation is subjected to a sampling on each a fixed time and its averaged one is taken as the reference temp. area. And this value is compared with the reference value by a computer 16, the welding speed deviation and welding current deviation are calculated and outputted via a welding control device 4. The effect of the material, plate thickness, groove shape, etc. is allowed to include the reference temp. area, so a correct welding control can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、狭開先ホットワイヤTIG溶接法の溶接条件
の制御に係り、特に、溶融池の入熱制御を行なうのに好
適な、溶接条件制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the control of welding conditions in narrow gap hot wire TIG welding, and in particular to a welding method suitable for controlling heat input of a molten pool. Related to condition control method.

〔従来の技術〕[Conventional technology]

従来の溶接制御方法は、特開昭58−16774号公報
に記載の様に、溶融プールの表面温度を検出して、検出
温度に応じて、溶接条件を制御する方法となっていた6 しかし、この表面温度は、溶接物の特性(材質板厚、開
先形状)や溶接層数の影響を受ける為、その都度、基準
となる温度を求めておく必要があり、溶接条件を制御す
る場合、膨大なデータを必要としていた。
Conventional welding control methods, as described in JP-A-58-16774, detect the surface temperature of the molten pool and control welding conditions according to the detected temperature.6 However, This surface temperature is affected by the characteristics of the welded material (material thickness, groove shape) and the number of weld layers, so it is necessary to determine the reference temperature each time, and when controlling the welding conditions, It required a huge amount of data.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、基準温度を設定する際に、材質、板厚
、開先形状、溶接層数の影響が配慮されておらず、これ
らの影響を含めて、基準温度を設定する為には、多大の
実験をしてデータを取る必要があった。
The above conventional technology does not take into consideration the effects of material, plate thickness, groove shape, and number of weld layers when setting the reference temperature.In order to set the reference temperature including these effects, It was necessary to conduct a large amount of experiments and collect data.

本発明の1的は、多大の溶接実験をすることなく、又溶
接物の材質、板厚、開先形状、溶接層数が変っても、基
準どなる温度面積を設定し、溶接物、溶接条件に適応し
て入熱制御を行なうことにある。
One aspect of the present invention is that even if the material, plate thickness, groove shape, and number of welding layers of the welded object change without conducting a large number of welding experiments, the standard temperature area can be set and the welded object and welding conditions can be adjusted. The objective is to perform heat input control in accordance with the

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、7W接開始点か1゛;ある一定の長さ、
溶融池の温度面I有検出し、これのVll均値を求めて
、これを基準となる温度面積とすることにより達成され
る。
The above purpose is 7W contact point or 1゛; a certain length,
This is achieved by detecting the temperature surface I of the molten pool, finding the average value of Vll, and using this as the reference temperature area.

〔作用〕[Effect]

溶接物の特性(材質、板厚、開先形状)や溶接層数、溶
接条件が変化しても、基準となる温度面積をオンライン
で設定出来る。
Even if the characteristics of the workpiece (material, plate thickness, groove shape), number of welding layers, or welding conditions change, the reference temperature area can be set online.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

まず、本装置の全体構成の説明を第1図の本装置の全体
図により説明する。
First, the overall configuration of the present device will be explained with reference to the general diagram of the present device shown in FIG.

本装置は、溶接1〜−チ」と、これを保持し、開(:I
) 先12の中で任意の位置に制御出来る溶接駆動装置2と
溶接部にワイヤ14を送給するワイヤ送給装置3と溶接
トーチ1に電源を供給する溶接電源6とワイヤ14を加
熱する加熱型g5とこれらを直接制御する溶接条件制御
装置4とからなるTIG溶接装置と溶融池15を観察す
る赤外線カメラ7とこれからの信号により、溶融池]−
5の温度分布をH1算する画像処理装置8とと5と溶接
条件制御装置4との間で信号の授受を行なうシステム制
御盤9から構成されている。
This device holds and opens (:I
) A welding drive device 2 that can be controlled to any position within the tip 12, a wire feeding device 3 that feeds the wire 14 to the welding part, a welding power source 6 that supplies power to the welding torch 1, and a heating device that heats the wire 14. A TIG welding device consisting of a mold g5 and a welding condition control device 4 that directly controls these, an infrared camera 7 that observes the molten pool 15, and signals from the molten pool]-
The system includes an image processing device 8 that calculates H1 of the temperature distribution of 5, and a system control panel 9 that sends and receives signals between the welding condition control device 4 and the welding condition control device 5.

次に動作を説明する。Next, the operation will be explained.

赤外線カメラ7は、第3図に示す様に、トーチ1に固定
されており、溶融池15を、斜め上方より観察している
As shown in FIG. 3, the infrared camera 7 is fixed to the torch 1 and observes the molten pool 15 from diagonally above.

溶接駆動装置2は直交する3軸の動作軸を有しており、
第3図の図中に示す様に、溶接トーチ1を開先1に対し
、上下、左右9前後に移動出来る。
The welding drive device 2 has three orthogonal operating axes,
As shown in FIG. 3, the welding torch 1 can be moved up and down, right and left, forward and backward nine times with respect to the groove 1.

溶接ワイヤ14は、ワイヤ送給装置3の送給モータ16
により、溶融池15に送給される。
The welding wire 14 is connected to a feeding motor 16 of the wire feeding device 3.
It is fed to the molten pool 15 by this.

溶接ワイヤ14は、溶着量を増す為に、給電チチップ1
7を介して、加熱電源5により、通電加熱されている。
The welding wire 14 is connected to the power supply chip 1 in order to increase the amount of welding.
It is electrically heated by the heating power supply 5 via the heating power supply 7 .

次に、本装置の溶接制御の内容について、動作を含めて
、第4図で説明する。
Next, the content of welding control of this device, including its operation, will be explained with reference to FIG. 4.

赤外線カメラ7で溶融池15を観察することにより、赤
外線影像装置18は、第5図の様な溶融池15の多値等
混線図を内部モニタ20上に、16段階のグレーコード
で表示するとともに、外部に、第13図の様な多値等温
線図の影像信号19を出力する。
By observing the molten pool 15 with the infrared camera 7, the infrared imaging device 18 displays a multivalued isomixture diagram of the molten pool 15 as shown in FIG. 5 on the internal monitor 20 with a 16-level gray code. , outputs an image signal 19 of a multivalued isotherm diagram as shown in FIG. 13 to the outside.

画像処理装置8は、この信号を内部のマイクロコンピュ
ータ1ににより溶融池の多値等温線図をある一定温度以
にで切り出した第6図の様な2値画像を作成する。
The image processing device 8 uses the internal microcomputer 1 to generate a binary image as shown in FIG. 6, which is a multivalued isothermal diagram of the molten pool cut out at a certain temperature or higher.

次に、この2値画像より、前記のマイクロコンピュータ
により、1ヘーチ1の開先内での位置と溶接入熱の計算
を行なう。
Next, from this binary image, the microcomputer calculates the position within the groove of one heave 1 and the welding heat input.

この計算値により、システム制御盤内のコンピュータ1
6で、基準値と比較して、溶接速度偏差。
Based on this calculated value, computer 1 in the system control panel
6, the welding speed deviation compared to the reference value.

溶接電流偏差をII算して、溶接条件とトーチ位置の情
報17として、溶接条件制御装置4に出力する。
The welding current deviation is calculated and outputted to the welding condition control device 4 as information 17 on the welding conditions and torch position.

溶接条件制御装置では、この信号を受けて、トーチ1の
位置制御を行なうとともに、モータ制御装置により送り
速度の制御を行ない又、溶接電源6、加熱電源5を介し
て、溶融池15の入熱の制御を行なう。
Upon receiving this signal, the welding condition control device controls the position of the torch 1, controls the feed speed by the motor control device, and controls the heat input to the molten pool 15 via the welding power source 6 and heating power source 5. control.

次に、本特許で提案している、溶接入熱を溶融池近傍の
温度面積で制御する場合、基準となる温傅面積の決定の
仕方について、以下説明する。
Next, when the welding heat input is controlled by the temperature area in the vicinity of the molten pool, as proposed in this patent, a method for determining the reference temperature area will be described below.

件によって変化する。Varies depending on the situation.

具体例として、第6図、第8図は、溶接層数の変化によ
り、2値画像の大きさが変化する様子を示している。
As a specific example, FIGS. 6 and 8 show how the size of the binary image changes as the number of welded layers changes.

つまり、第7図のi層目を溶接する場合の2値画像の面
積Siと第9図のi+1層目を溶接する場合の2値画像
の面積S l+1では、第10図の様に、i+1層目の
方が大きくなる。
In other words, the area Si of the binary image when welding the i-th layer in FIG. 7 and the area S l+1 of the binary image when welding the i+1 layer in FIG. The layers are larger.

従って、5層11とi −1−1,lf# 11&、同
一の溶接条件で溶接しようとした場合、前記の様に、あ
る一定の基準値をあらかじめ設定し−r r; <と、
2値画像の大きさに変化が出てくる為、溶接条件制御盤
内では、溶融池の2値画像の面積を、基準値の面積と等
しくなる様に、溶接条件髪制御するので、目的とすると
ころの溶接条件と異なってしまう。
Therefore, when trying to weld the five layers 11 and i -1-1, lf # 11 & under the same welding conditions, a certain reference value is set in advance as described above, and -r r;
Since the size of the binary image changes, the welding condition control panel controls the welding conditions so that the area of the binary image of the molten pool is equal to the area of the reference value. The welding conditions will be different from the actual welding conditions.

従って、これらの溶接物の特性、溶接層数の影響を含ん
だ基準値を設定する必要がある。
Therefore, it is necessary to set reference values that include the effects of these welded product characteristics and the number of welded layers.

以下、この方法について、第11図、第12図により説
明する。
This method will be explained below with reference to FIGS. 11 and 12.

第11図に示す様に、全溶接長詮溶接の学習期扁と溶接
条件制御期間に勺け、学習期間の溶接時シ′ に溶接物の特性及び溶接層数の影響を含んだ基準値を設
定する方法である。
As shown in Fig. 11, during the learning period and the welding condition control period for full weld length and welding, reference values including the effects of the welding material characteristics and the number of weld layers are set during welding during the learning period. This is how to set it.

この場合の、制御方法について、第12図の溶接条件の
制御フローチャー1−を用いて、以下説明する。
The control method in this case will be described below using the welding condition control flowchart 1- in FIG. 12.

まず、溶接条件等の入力データの用み込みとそのデータ
チェックを行なう。このデータがOKの場合、溶接が開
始され、Noの時はデータの再設定を行なう。
First, input data such as welding conditions are incorporated and the data is checked. When this data is OK, welding is started, and when it is No, the data is reset.

次に、溶接を開始し、溶接の学習期間は、溶融池の2値
化された画像の面積をある一定時間毎にサンプリングを
行なうと同時に、本特許では、触れてないが、開先に対
するトーチの位置を検出し、トーチの位置補正を行なう
。これは、トーチが溶接中に開先に対して偏っていると
、トーチが開先の中心にある時と比較して温度面積が変
るのを防ぐためである。
Next, welding is started, and during the welding learning period, the area of the binarized image of the molten pool is sampled at regular intervals, and at the same time, although not mentioned in this patent, the torch is applied to the groove. The position of the torch is detected and the torch position is corrected. This is to prevent the temperature area from changing if the torch is biased against the groove during welding compared to when the torch is in the center of the groove.

次に、溶接の学習期間が終り、溶接条件制御則10図の
様に、標準面積上限S 1maXとSl、i層を次式S
 +may= (1+K) S −、S 5−s−=(
1+K)S、で計算して設定する。ここで、Kは経験的
に決められる定数である。
Next, after the welding learning period is over, as shown in Fig. 10 of the welding condition control law, the standard area upper limit S 1ma
+may= (1+K) S −, S 5−s−=(
Calculate and set as 1+K)S. Here, K is a constant determined empirically.

以下、入熱状態の検出及びトーチ位置の検出を各々行な
い、入熱及びトーチの位置の補正制御を溶接が終了する
まで行なう。
Thereafter, the heat input state and the torch position are detected, and the heat input and torch position are corrected and controlled until welding is completed.

第14図は、溶接入熱の制御フローチャートを示してい
る。
FIG. 14 shows a control flowchart for welding heat input.

図中の左側は、溶接入熱が、許容範囲より大きい場合を
、又、右側は許容範囲より小さい場合の状態を表わして
いる。
The left side of the figure represents the case where the welding heat input is larger than the allowable range, and the right side represents the state when it is smaller than the allowable range.

図中からも解かる様に、溶接入熱の制御は、溶接速度■
、ベース電流■B、ベースワイヤ速度WB、ピーク電流
1. I)、ピークワイヤ速度WPにより行なう。
As can be seen from the figure, welding heat input is controlled by welding speed
, base current ■B, base wire speed WB, peak current 1. I), with peak wire speed WP.

又、溶接条件の制御順序は、溶接速度、ベース電流、ベ
ースワイヤ速度、ピーク電流、ピークワイヤ電流の順で
ある。
The control order of welding conditions is welding speed, base current, base wire speed, peak current, and peak wire current.

〔発明の効果〕 本発明によれば、溶接条件を制御する際の、基準となる
標準温度面積が、材質、板厚、開先形状等の溶接物の特
性の影響を含んだものとなる為、同一溶接線」二を溶接
する揚貞、溶接条件の制御が正確に出来る様になった。
[Effects of the Invention] According to the present invention, the standard temperature area that serves as a reference when controlling welding conditions includes the influence of the characteristics of the welded product such as material, plate thickness, and groove shape. It is now possible to accurately control welding conditions when welding two pieces of the same weld line.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の全体図、第2図は(1υ 狭開先の断面図、第3図は溶接ヘッド部の構成図、第4
図は本装置の構成図、第5図は溶融池の多値等混線図、
第6図はi層を溶接した時の溶融池の2値画像図、第7
図はi層を溶接した時の開先の断面図、第8図はj+1
層を溶接した時の溶融池の2値画像図、第9図はi +
1層を溶接した時の開先の断面図、第10図はi層、j
+1層を溶接した時の温度面積の変化を示す線図、第1
1図は溶接物における制御の状態図、第12図は溶接条
件の制御フローチャート、第13図は影像信号線図、第
14図は溶接の入熱制御のフローチャートである。 1・・・溶接トーチ、2・・・溶接駆動装置、4・・・
溶接条件制御装置、5・・・加熱電源、6・・・溶接電
源、7・・・赤外線カメラ、8・・・画像処理装置、9
・・・システム制御盤、15・・・溶融池。
Fig. 1 is an overall view of one embodiment of the present invention, Fig. 2 is a sectional view of a (1υ narrow gap), Fig. 3 is a configuration diagram of the welding head, and Fig. 4
The figure is a configuration diagram of this device, and Figure 5 is a multi-value equimixture diagram of the molten pool.
Figure 6 is a binary image of the molten pool when the i layer is welded, Figure 7
The figure is a cross-sectional view of the groove when layer i is welded, and Figure 8 is j+1.
A binary image diagram of the molten pool when the layers are welded, Figure 9 is i +
A cross-sectional view of the groove when one layer is welded, Figure 10 is the i layer and j layer.
Diagram showing the change in temperature area when +1 layer is welded, 1st
FIG. 1 is a state diagram of control of a welded object, FIG. 12 is a control flowchart of welding conditions, FIG. 13 is an image signal diagram, and FIG. 14 is a flowchart of welding heat input control. 1... Welding torch, 2... Welding drive device, 4...
Welding condition control device, 5... Heating power source, 6... Welding power source, 7... Infrared camera, 8... Image processing device, 9
...System control panel, 15... Molten pool.

Claims (1)

【特許請求の範囲】[Claims] 1、偏平形の溶接トーチと、これを保持し、開先内の任
意の位置に移動出来きる溶接駆動装置と、ワイヤを送給
するワイヤ送給装置と、溶接トーチに電源を供給する溶
接電源と、ワイヤを加熱する為の加熱電源と、溶接条件
を制御する溶接条件制御装置とからなる溶接装置と、溶
融池を観察する赤外線カメラと、これからの信号により
溶融池の温度面積を計算する画像処理装置と、これと前
記の溶接条件制御装置間の信号の授受を行なうシステム
制御盤からなる溶接装置で、溶融池のある一定温度以上
の面積を求めて、溶接の入熱を制御しながら溶接する場
合において、制御の基準となる溶融池の温度面積を、溶
接始点からある一定の長さの温度面積をサンプリング及
び平均化して、これを基準となる温度面積としたことを
特徴とする溶接条件制御方法。
1. A flat welding torch, a welding drive device that holds it and can move it to any position within the groove, a wire feeding device that feeds the wire, and a welding power source that supplies power to the welding torch. , a welding device consisting of a heating power source to heat the wire, a welding condition control device to control welding conditions, an infrared camera to observe the molten pool, and an image to calculate the temperature area of the molten pool from the signals from this. This welding device consists of a processing device and a system control panel that sends and receives signals between this and the welding condition control device.The welding device determines the area of the molten pool above a certain temperature and performs welding while controlling the welding heat input. Welding conditions characterized in that the temperature area of the molten pool, which serves as a reference for control, is obtained by sampling and averaging the temperature area of a certain length from the welding start point, and using this as the reference temperature area. Control method.
JP15606886A 1986-07-04 1986-07-04 Welding conditions control method Pending JPS6313668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15606886A JPS6313668A (en) 1986-07-04 1986-07-04 Welding conditions control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15606886A JPS6313668A (en) 1986-07-04 1986-07-04 Welding conditions control method

Publications (1)

Publication Number Publication Date
JPS6313668A true JPS6313668A (en) 1988-01-20

Family

ID=15619598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15606886A Pending JPS6313668A (en) 1986-07-04 1986-07-04 Welding conditions control method

Country Status (1)

Country Link
JP (1) JPS6313668A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04182068A (en) * 1990-11-14 1992-06-29 Nkk Corp Method for controlling depth of penetration
DE102007031206B3 (en) * 2007-07-04 2009-02-05 Thermosensorik Gmbh Welding seam inspection method for use during building of car body, in automobile industry, involves using thermal image to detect and evaluate welding seam with respect to different types of defects
JP2010531984A (en) * 2007-07-04 2010-09-30 テルモゼンゾリーク ゲーエムベーハー Method for automatic inspection of weld seams using heat flow thermography
CN110640297A (en) * 2019-09-26 2020-01-03 沈阳航空航天大学 Online control system and method for transient temperature of friction stir welding

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04182068A (en) * 1990-11-14 1992-06-29 Nkk Corp Method for controlling depth of penetration
DE102007031206B3 (en) * 2007-07-04 2009-02-05 Thermosensorik Gmbh Welding seam inspection method for use during building of car body, in automobile industry, involves using thermal image to detect and evaluate welding seam with respect to different types of defects
DE102007031206B8 (en) * 2007-07-04 2009-05-28 Thermosensorik Gmbh Method for automatic inspection of a weld
JP2010531984A (en) * 2007-07-04 2010-09-30 テルモゼンゾリーク ゲーエムベーハー Method for automatic inspection of weld seams using heat flow thermography
US8471207B2 (en) 2007-07-04 2013-06-25 Roman Louban Method for the automatic inspection of a welding seam by means of heat flow thermography
CN110640297A (en) * 2019-09-26 2020-01-03 沈阳航空航天大学 Online control system and method for transient temperature of friction stir welding

Similar Documents

Publication Publication Date Title
US6232572B1 (en) Spot welding control system and control method
CA2515228C (en) Control system using working robot, and work processing method using this system
US5871138A (en) Method and apparatus for continuous finishing hot-rolling a steel strip
US7714253B2 (en) Method and apparatus for the uniform resistance heating of articles
JPS60247475A (en) Method for controlling welding by image processing
US9238286B2 (en) Method of controlling laser beam preheating temperature of surface of workpiece
US3627972A (en) Weld control
WO2018230419A1 (en) Welding system and welding method
JPS6313668A (en) Welding conditions control method
CN106573326A (en) Systems and methods for the control of welding parameters
CN116379765A (en) Automatic feeding control method and system, electronic equipment and storage medium
CN105479022B (en) Laser welder control system
CN111511495A (en) Automated process and/or setup of welding-type systems
CN109590450A (en) The metering method of metal injection molded molding machine
JPH09323173A (en) Welding electric source device and controlling method thereof
JPH1058170A (en) Method and device for judging quality of laser beam welding
JP2000351071A (en) Automatic welding system
US20020011472A1 (en) Resistance welding method
JPH09155543A (en) Automatic welding equipment
JPH0417755B2 (en)
JPH0871750A (en) Welding equipment
US6008481A (en) Method and apparatus for deciding heated state of metal billet
JP3164283B2 (en) Lead frame heating method and apparatus
KR20160130030A (en) Pipe welding apparatus
JP2734306B2 (en) One-side automatic Uranami welding method