JPS63136685A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS63136685A
JPS63136685A JP28350486A JP28350486A JPS63136685A JP S63136685 A JPS63136685 A JP S63136685A JP 28350486 A JP28350486 A JP 28350486A JP 28350486 A JP28350486 A JP 28350486A JP S63136685 A JPS63136685 A JP S63136685A
Authority
JP
Japan
Prior art keywords
semiconductor laser
substrate
laser element
marker
stripe electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28350486A
Other languages
Japanese (ja)
Other versions
JP2513198B2 (en
Inventor
Hidehiro Kume
英廣 久米
Yoshiyuki Matsumoto
芳幸 松本
Hiroshi Yoshitoshi
吉利 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP61283504A priority Critical patent/JP2513198B2/en
Publication of JPS63136685A publication Critical patent/JPS63136685A/en
Application granted granted Critical
Publication of JP2513198B2 publication Critical patent/JP2513198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve the accuracy of setting a laser light emitting point against a substrate to an order of several mum and to enable the direction of laser light emission to be set by an order of 0.1 degree by providing a marker which sets the position of installing a semiconductor laser element on the substrate and by positioning the stripe electrode of the semiconductor laser element on the marker on the substrate. CONSTITUTION:Markers 9, 10 for positioning a semiconductor laser element 3 are formed on a substrate 5 by engraving or printing. A photo detector for monitoring is provided on the substrate 5 at the opposite side of the surface which has a light emitting point 8 which emits laser light to a disk. The semiconductor laser element 3 is provided by placing the surface on which an active layer 3c is formed, i.e., a stripe electrode 3g, as an upside and by bringing the semiconductor laser element 3 into contact with the substrate 6 and is fixed on the substrate 5 by placing the vertex of the marker 9 shown by three triangular marks on the bottom line 12 of the cleaved surface 11 of the semiconductor laser element 3 and by so adjusting that the marker 9 in the center of the three triangular marks and the marker 10 formed on the side of the photo detector 4 are on the line of the stripe electrode 3g.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザ装置に係り、特に半導体レーザ素
子の基板への取付けに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a semiconductor laser device, and more particularly to attachment of a semiconductor laser element to a substrate.

〔発明の概要〕[Summary of the invention]

本発明は活性領域上のキャップ層にテーパ状キャビティ
を形成してストライプ電極とした半導体レーザ素子を基
板上に配設し、該半導体レーザ素子の近傍に受光素子を
配設し、この半導体レーザ素子の近傍に受光素子を設け
た半導体レーザ装置に於いて、基板上に半導体レーザ素
子の取付位置を定めるマーカを付して、半導体レーザ素
子のストライプ電極の形成された面と反対側の面が基板
に接触するようにして、基板上のマーカと半導体レーザ
素子のストライプ電極を位置合せして配置することで、
半導体レーザ素子の発光点位置を正確に位置決め出来る
様にしたものである。
In the present invention, a semiconductor laser element is provided on a substrate with a tapered cavity formed in a cap layer above an active region to form a striped electrode, a light receiving element is provided near the semiconductor laser element, and the semiconductor laser element is In a semiconductor laser device in which a light-receiving element is provided near the substrate, a marker is attached on the substrate to determine the mounting position of the semiconductor laser element, and the surface opposite to the surface on which the stripe electrode of the semiconductor laser element is formed is located on the substrate. By aligning and arranging the marker on the substrate and the stripe electrode of the semiconductor laser element so that they are in contact with the
The light emitting point position of the semiconductor laser element can be accurately positioned.

〔従来の技術〕[Conventional technology]

従来の半導体レーザ装置は、第5図に示す如く構成させ
ていた。即ち、第5図でキャップベース(11にはアウ
タリード(2)を有し、このリード(2)は半導体レー
ザ素子(3)とPINダイオード等からなる受光素子(
4)への入出力端子となるものである。キャツブベース
(1)上にはモニタ用の受光素子(4)が配設され、こ
の受光素子(4)の近傍に半導体レーザ素子(3)を配
設した基板(5)を植立し、半導体レーザ素子(3)か
らディスクへ放射するレーザ光とは反文・i側から放出
されるレーザ光をモニタ用の受光素子(4)が受光する
。これら半導体レーザ素子(3)を含む基板(5)と受
光素子(4)はキャンプ(6)で覆われ、キャップ(6
)の上面にはウィンドガラス(7)が嵌め込まれている
A conventional semiconductor laser device was constructed as shown in FIG. That is, in FIG. 5, the cap base (11) has an outer lead (2), and this lead (2) is connected to a light receiving element (2) consisting of a semiconductor laser element (3) and a PIN diode.
4) serves as an input/output terminal. A light receiving element (4) for monitoring is arranged on the cat base (1), and a substrate (5) on which a semiconductor laser element (3) is arranged is planted near this light receiving element (4). The light receiving element (4) for monitoring receives the laser light emitted from the i side, which is the opposite of the laser light emitted from the element (3) to the disk. The substrate (5) containing these semiconductor laser elements (3) and the light receiving element (4) are covered with a camp (6) and a cap (6).
) is fitted with a window glass (7).

基板(5)上に配設する半導体レーザ素子(3)として
は種々の構成のものをとり得るが、特に、第6図に示す
如(、レーザ活性領域上のキャップF!(3e)にテー
パ状キャビティを形成してストライプ電極(3g)とし
たものを用いる。即ち、第6図で半導体レーザ素子(3
)の半導体基板(3a)は、例えば、n型のGaAs 
(ガリウムひ素)よりなり、この半導体基板(3a)上
にクランド層(3b)としてn型の八j!、Ga1−.
 A:(アルミニウム、ガリウムひ素)を、更に、この
クラッド層(3b)上に活性N(3c)としてp型の7
41! y Ga + −y ”を形成し、活性層(3
c)上にp型のA l x Ga1−x Asからなる
クラッドJ! (3d)を積層し、クラッド1m (3
d)上にはp型のGaAsからなるキャンプN (3e
)及び絶縁層(3f)を設けて、このキャップ層(3e
)と絶縁層(3f)にテーバストライプからなるキャビ
ティを形成してストライブ電極(3g)とすることで、
低雑音のマルチモードを維持しつつ、単峰性の遠視野像
が得られる半導体レーザ素子り3)を得ている。
The semiconductor laser element (3) disposed on the substrate (5) can have various configurations, but in particular, as shown in FIG. A stripe electrode (3g) formed by forming a shaped cavity is used.In other words, as shown in FIG.
), the semiconductor substrate (3a) is, for example, n-type GaAs.
(gallium arsenide), and an n-type 8j! , Ga1-.
A: (aluminum, gallium arsenide) is further applied as active N (3c) on this cladding layer (3b) to form a p-type 7
41! y Ga + −y” and the active layer (3
c) Cladding J! consisting of p-type Al x Ga1-x As on top! (3d) is laminated, cladding 1m (3
d) On top is a camp N made of p-type GaAs (3e
) and an insulating layer (3f), and this cap layer (3e
) and the insulating layer (3f) to form a cavity consisting of a Taber stripe to form a striped electrode (3g),
A semiconductor laser device 3) that can obtain a single-peak far-field pattern while maintaining a low-noise multi-mode pattern has been obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の第5図に示す半導体レーザ装置における基板(5
)上の半導体レーザ素子(3)と受光素子(4)との相
対関係を拡大して示すと、第7図の如くなる。
The substrate (5) in the semiconductor laser device shown in FIG.
FIG. 7 shows an enlarged view of the relative relationship between the semiconductor laser element (3) and the light-receiving element (4) above.

一般的には半導体レーザ素子(3)を基板(5)上に配
置する場合には、活性1(3c)からのレーザ発光を考
慮して、活性層(3c)側の面、即ちテーパ状キャビテ
ィのあるストライブ電極(3g)側を基板(5)と接す
る様にしたアンプサイド−ダウン或はジャンクション−
ダウン構造を採っている。
Generally, when a semiconductor laser element (3) is placed on a substrate (5), the surface on the active layer (3c) side, that is, the tapered cavity, is Amplifier side - down or junction - with the stripe electrode (3g) side in contact with the substrate (5)
It has a down structure.

この為に半導体レーザ素子(3)の発光点(8)の位置
決めを基板(5)に対して行う場合には300μ−×2
50μ鋼の寸法を有する半導体レーザ素子(3)の外形
を基準として行なうことになる。この為にキャップ(6
)内に組み込んだ場合の発光点(8)の軸ずれは数10
μ−の誤差を含むことになる。この結果、精密な光学系
を設定しても光源となる半導体レーザ装置の光源位置が
不正確となって全体の精度は上らずに光学系を組み立て
た後に光学ヘッドでは位置調整を行なわなければならな
い欠点があった。
For this reason, when positioning the light emitting point (8) of the semiconductor laser element (3) with respect to the substrate (5), 300μ-×2
The measurement will be performed based on the outer shape of the semiconductor laser element (3) having dimensions of 50μ steel. For this purpose, use a cap (6
), the axis misalignment of the light emitting point (8) is several 10
This includes an error of μ−. As a result, even if a precise optical system is set up, the light source position of the semiconductor laser device that serves as the light source becomes inaccurate, and the overall accuracy does not improve, and the position of the optical head must be adjusted after the optical system is assembled. There were some drawbacks.

を問題点を解決するための手段〕 本発明は活性領域上のキャンプ層(3d)にテーパ状キ
ャビティを形成してストライブ電極(3g)とした半導
体レーザ素子(3)を基板(5)上に配設し、半導体レ
ーザ素子(3)の近傍に受光素子(4)を設けた半導体
レーザ装置に於いて、基板(5)上に半導体レーザ素子
(3)の取付位置を定めるマーカ19)、 01. Q
a、 Q9を付し、半導体レーザ素子(3)のストライ
ブ電極(3g)の形成された面と反対側の面が基板(5
)に接触するようニシテ、基板(5)上(7)?−力+
91.01. Q41. (+9と半導体レーザ素子の
ストライブ電極(3g)とを位置合せする様にしたもの
である。
[Means for Solving the Problem] The present invention provides a semiconductor laser device (3) with a striped electrode (3g) formed by forming a tapered cavity in a camp layer (3d) on an active region on a substrate (5). In a semiconductor laser device in which a light-receiving element (4) is provided in the vicinity of a semiconductor laser element (3), a marker 19) that determines the mounting position of the semiconductor laser element (3) on the substrate (5); 01. Q
a, Q9 is attached, and the surface opposite to the surface on which the stripe electrode (3g) of the semiconductor laser element (3) is formed is the substrate (5).
) on the board (5) (7)? -force+
91.01. Q41. (+9 and the stripe electrode (3g) of the semiconductor laser element are aligned.

〔作 用〕[For production]

本発明の半導体レーザ装置は基板に設けたマーカと半導
体レーザ素子のストライブ電極とを位置合せするために
半導体レーザ素子の発光点位置精度を数μ園又はそれ以
下のオーダの設定が可能となる。
In the semiconductor laser device of the present invention, in order to align the marker provided on the substrate and the stripe electrode of the semiconductor laser element, it is possible to set the light emitting point position accuracy of the semiconductor laser element to an order of several micrometers or less. .

〔実施例〕 以下、本発明による半導体レーザ装置の一実施例を第1
図について説明する。第1図は第7図と同様に半導体□
レーザ装置の基板(5)上に配設した半導体レーザ素子
(3)と受光素子(4)とを併設した場合の拡大斜視図
を示すものであり、基板(5)上には半導体レーザ素子
(3)を位置決めするためのマーカ(9)。
[Example] Hereinafter, a first example of a semiconductor laser device according to the present invention will be described.
The diagram will be explained. Figure 1 is a semiconductor □ similar to Figure 7.
This figure shows an enlarged perspective view of a laser device in which a semiconductor laser element (3) and a light receiving element (4) are arranged on a substrate (5). 3) Marker (9) for positioning.

αeが刻設又は印刷等で形成されている。モニタ用の受
光素子(4)はディスクヘレーザ光を放出する発光点(
8)を有する面とは反対側の基板(5)上に配設される
。半導体レーザ素子(3)は活性1i(3c)が形成さ
れている側の面、即ち、ストライプ電極(3g)を上側
にし、半導体基板(3a)側を基板(5)側に接触させ
て、配置し、三つの三角印で示すマーカ(9)の頂点を
半導体レーザ素子(3g)の臂開面Ql)の下端線αの
に合せると共に、三つの三角印の真中のマーカ(9)及
び受光素子(4)側に形成したマーカOmがストライプ
電極(3g)のライン上にある様に調整して基板(5)
上に固定させる様になされている。
αe is formed by engraving or printing. The light receiving element (4) for monitoring is a light emitting point (4) that emits laser light to the disk.
8) on the opposite side of the substrate (5). The semiconductor laser element (3) is arranged with the surface on which the active layer 1i (3c) is formed, that is, the stripe electrode (3g) facing upward, and the semiconductor substrate (3a) side in contact with the substrate (5) side. Then, align the apex of the marker (9) indicated by the three triangular marks with the lower end line α of the arm opening surface Ql of the semiconductor laser element (3g), and place the marker (9) in the middle of the three triangular marks and the light receiving element. Adjust so that the marker Om formed on the (4) side is on the line of the stripe electrode (3g), and then move the substrate (5).
It is designed to be fixed at the top.

第2図は本発明の半導体レーザ素子の取付けを示す他の
実施例を示すものであり、基板(5)上にはモニタ用の
受光素子(4)が一体に形成され、半導体レーザ素子(
3)からのモニタ用レーザ光を基板平面内で受光する様
になされている。マーカ(91,Qlの配置は第1図と
同様である。
FIG. 2 shows another embodiment of the mounting of the semiconductor laser element of the present invention, in which a light receiving element (4) for monitoring is integrally formed on the substrate (5), and the semiconductor laser element (
The monitor laser beam from 3) is received within the plane of the substrate. The arrangement of markers (91, Ql) is the same as in FIG.

第3図は本発明の半導体レーザ素子の取付けを示す更に
他の実施例を示すものであり、基板(5)上には第2図
に示すと同様にモニタ用の受光素子(4)とディスクへ
放射したレーザの戻り光を検出するための検出用のPI
Nダイオードの如き受光素子03を3分割して2組設け
たもので、半導体レーザ素子(3)を取付ける位置は基
板(5)の略真中で、この位置にマーカT’lll、 
Qlが形成され、第1図と同様の位置合セを行なった後
に基板(5)上に半導体レーザ素子(3)が固定される
FIG. 3 shows still another embodiment showing the mounting of the semiconductor laser element of the present invention, in which a light receiving element (4) for monitoring and a disk are mounted on the substrate (5) in the same way as shown in FIG. A detection PI for detecting the return light of the laser emitted to the
The light-receiving element 03, such as an N diode, is divided into three parts and two sets are provided.The position where the semiconductor laser element (3) is installed is approximately in the center of the substrate (5), and a marker T'llll is placed at this position.
After Ql is formed and the same alignment as shown in FIG. 1 is performed, the semiconductor laser element (3) is fixed on the substrate (5).

上述の各実施例ではマーカ(9)、α〔を三角形状に形
成したが、マーキングの他の実施例を第4図A。
In each of the embodiments described above, the markers (9) and α were formed in a triangular shape, but another embodiment of the marking is shown in FIG. 4A.

Bに示す、第4図A、 Bは受光素子(^)の形成され
た基板(5)の上に半導体レーザ素子を配設した場合の
平面図であり、第4図Aの場合は基板(5)の長手方向
に線状のマーカ■を三本形成し、真中の線状マーカと半
導体レーザ素子(3)のストライプ電極(3g)のライ
ンが同一となる様に合せ、三本の上下の線状のマーカα
船、圓間の間隔を例えば半導体レーザ素子(3)の臂開
面αDの長さし、に等しく取って、半導体レーザ素子(
3)の上下壁を合せる様に固定させている。
4A and 4B are plan views when a semiconductor laser element is disposed on a substrate (5) on which a light receiving element (^) is formed, and in the case of FIG. 4A, the substrate (5) is 5) Form three linear markers ■ in the longitudinal direction, align the middle linear marker so that the lines of the stripe electrode (3g) of the semiconductor laser element (3) are the same, and linear marker α
For example, the distance between the circles is set equal to the length of the arm opening αD of the semiconductor laser device (3),
3) are fixed so that the top and bottom walls are aligned.

第4図Bに示すものは基板(5)の幅方向に半導体レー
ザ素子(3)の奥行き方向の長さL2と等しく二本の線
状のマーカα9を形成し、発光点を合すための三角形マ
ーカ(9)、Qlを線状のマーカ0!9の中心に設ける
様にしたものである。
The one shown in FIG. 4B has two linear markers α9 equal to the length L2 in the depth direction of the semiconductor laser element (3) in the width direction of the substrate (5), and is used to align the light emitting points. A triangular marker (9), Ql, is provided at the center of the linear marker 0!9.

上述においては、本発明の各実施例を説明したが、本発
明はこれらに限られるものではなく、その他種々の変形
が可能である。
Although each embodiment of the present invention has been described above, the present invention is not limited to these, and various other modifications are possible.

本発明は叙上の様に構成させたので、従来の半導体レー
ザ素子(3)の発光点(8)位置を基板(5)の所定位
置に合せるための取付精度が10μmであったものが、
ストライプ電極(3g)位置は活性Jii(3c)の発
光点(8)の真上にある関係から、数μ霧又はそれ以下
の取付精度で半導体レーザ素子(3)を基板(5)に取
付けることが出来た。更にレーザ出射光の方向を0.1
度のオーダで設定可能となり、精密な光学系との組合せ
で組立後の調整が不要な光学ラドが構成可能である。
Since the present invention is configured as described above, the mounting accuracy for aligning the light emitting point (8) position of the semiconductor laser element (3) with a predetermined position on the substrate (5) was 10 μm in the conventional method.
Since the stripe electrode (3g) is located directly above the light emitting point (8) of the active Jii (3c), the semiconductor laser element (3) can be mounted on the substrate (5) with a mounting accuracy of several μm or less. was completed. Furthermore, the direction of the laser emitted light is set to 0.1
Settings can be made on the order of degrees, and in combination with a precise optical system, it is possible to construct an optical rad that does not require adjustment after assembly.

〔発明の効果〕〔Effect of the invention〕

本発明の半導体レーザ装置によればレーザ発光点の基板
に対する取付精度を数μmのオーダに向上させることが
出来て、レーザ出射光の方向角度を0.1度のオーダで
設定できる特長を有する。
According to the semiconductor laser device of the present invention, it is possible to improve the mounting precision of the laser emitting point to the substrate on the order of several μm, and the directional angle of the laser emitted light can be set on the order of 0.1 degree.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体レーザ素子取付状態の一実施例
を示す拡大斜視図、第2図は本発明の半導体レーザ素子
取付状態の他の実施例を示す拡大斜視図、第3図は本発
明の半導体レーザ素子取付状態の更に他の実施例を示す
拡大斜視図、第4図A、Bは本発明のマーカの他の実施
例を示す基板の平面図、第5図は従来の半導体レーザ装
置の一部を切り欠いた斜視図、第6図は従来の半導体レ
ーザ素子の模式的斜視図、第7図は従来の半導体レーザ
素子の取付状態を示す拡大斜視図である。 (1)はキャップペース、(3)は半導体レーザ素子、
(3g)はストライプ電極、(4)は受光素子、(5)
は基板、+91.Q呻、α0.a9はマーカである。
FIG. 1 is an enlarged perspective view showing one embodiment of the semiconductor laser device according to the present invention in a state in which it is attached, FIG. 2 is an enlarged perspective view showing another embodiment in which the semiconductor laser device in accordance with the present invention is mounted, and FIG. 4A and 4B are plan views of a substrate showing other embodiments of the marker of the present invention, and FIG. 5 is a conventional semiconductor laser. FIG. 6 is a schematic perspective view of a conventional semiconductor laser device, and FIG. 7 is an enlarged perspective view showing how the conventional semiconductor laser device is mounted. (1) is a cap paste, (3) is a semiconductor laser element,
(3g) is a stripe electrode, (4) is a light receiving element, (5)
is the board, +91. Q groan, α0. a9 is a marker.

Claims (1)

【特許請求の範囲】 活性領域上のキャップ層にテーパ状キャビティを形成し
てストライプ電極とした半導体レーザ素子を基板上に配
設し、該半導体レーザ素子の近傍に受光素子を設けた半
導体レーザ装置に於いて、上記基板上に半導体レーザ素
子の取付位置を定めるマーカを付して成り、 上記半導体レーザ素子の上記ストライプ電極の形成され
た面と反対側の面が上記基板に接触するようにして、 上記基板上のマーカと半導体レーザ素子のストライプ電
極とが位置合せして配置されて成ることを特徴とする半
導体レーザ装置。
[Scope of Claims] A semiconductor laser device in which a semiconductor laser element is provided on a substrate with a tapered cavity formed in a cap layer above an active region to serve as a stripe electrode, and a light receiving element is provided in the vicinity of the semiconductor laser element. A marker is attached on the substrate to determine the mounting position of the semiconductor laser element, and the surface of the semiconductor laser element opposite to the surface on which the stripe electrode is formed is in contact with the substrate. , A semiconductor laser device characterized in that the marker on the substrate and the stripe electrode of the semiconductor laser element are aligned and arranged.
JP61283504A 1986-11-28 1986-11-28 Semiconductor laser device Expired - Fee Related JP2513198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61283504A JP2513198B2 (en) 1986-11-28 1986-11-28 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61283504A JP2513198B2 (en) 1986-11-28 1986-11-28 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS63136685A true JPS63136685A (en) 1988-06-08
JP2513198B2 JP2513198B2 (en) 1996-07-03

Family

ID=17666404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61283504A Expired - Fee Related JP2513198B2 (en) 1986-11-28 1986-11-28 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2513198B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170781A (en) * 1984-09-13 1986-04-11 Fujitsu Ltd Semiconductor laser and manufacture thereof
JPS61127661U (en) * 1985-01-30 1986-08-11

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170781A (en) * 1984-09-13 1986-04-11 Fujitsu Ltd Semiconductor laser and manufacture thereof
JPS61127661U (en) * 1985-01-30 1986-08-11

Also Published As

Publication number Publication date
JP2513198B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
US5414787A (en) Coupling structure between optical semiconductor and optical waveguide, and coupling method of the same
CA2100115C (en) Method for producing a semiconductor light emitting device
US4768199A (en) Mechanism for self-adjusting positioning of a semiconductor laser relative to an optical fiber to be coupled thereto
US5124281A (en) Method of fabricating a photonics module comprising a spherical lens
US5181216A (en) Photonics module apparatus
US5357536A (en) Method and apparatus for the positioning of laser diodes
US5659566A (en) Semiconductor laser module and method of assembling semiconductor laser module
US20020039805A1 (en) Method for manufacturing laser diode chip, optical transmitting/receiving module and method for aligning positions thereof
JP2006039563A (en) Optoelectronic assembly with coupling mechanism for alignment
EP0984533A3 (en) Positioning and mounting method of a semiconductor laser diode chip
JPS63136685A (en) Semiconductor laser device
JP2002357748A (en) Light path converting reflective body, mounting structure thereof and optical module
US6377385B1 (en) Optical module and optical element configuring the optical module
US7517158B2 (en) Method for manufacturing an optical module
CN114144950A (en) Semiconductor laser device
JP2005017684A (en) Optical module and method for manufacturing the same
US6999494B2 (en) Packaging and passive alignment of microlens and molded receptacle
JPS6218722A (en) Semiconductor device
JPH0339706A (en) Optical module
US20030053763A1 (en) Optical module and method of producing the optical module
JPH04280487A (en) Semiconductor laser equipment
US6922425B2 (en) Semiconductor laser device and optical pickup device
JPH06160676A (en) Manufacture of semiconductor laser module
JPS62140484A (en) Optical semiconductor device
JPS6381988A (en) Opto-electronic device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees