JPS63136589A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS63136589A
JPS63136589A JP28328386A JP28328386A JPS63136589A JP S63136589 A JPS63136589 A JP S63136589A JP 28328386 A JP28328386 A JP 28328386A JP 28328386 A JP28328386 A JP 28328386A JP S63136589 A JPS63136589 A JP S63136589A
Authority
JP
Japan
Prior art keywords
semiconductor laser
diffraction grating
phase conjugate
conjugate mirror
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28328386A
Other languages
Japanese (ja)
Inventor
Akihisa Tomita
章久 富田
Takaaki Numai
沼居 貴陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28328386A priority Critical patent/JPS63136589A/en
Publication of JPS63136589A publication Critical patent/JPS63136589A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser device, in which the increase of oscillation line width is reduced even on modulation at high speed, by forming a laser resonator by a phase conjugate mirror and a diffraction grating. CONSTITUTION:A phase conjugate mirror 17 is constituted of a nonlinear type optical medium 101 consisting of a BaTiO3 single crystal, a DFB semiconductor laser 102 generating excitation beams, a reflecting mirror 103 and a convex lens 104. Beams from another end surface 13 of a semiconductor laser 11 are changed into parallel beams by a convex lens 18, a wavelength is selected by a diffraction grating 19 and the beams are returned to the semiconductor laser 11. The phase conjugate mirror 17 and the diffraction grating 19 shape a resonator, interposing a semiconductor laser as an amplifying medium for laser oscillation. The time delay required for feedback up to the semiconductor laser 11 from the phase conjugate mirror 17 is 67ps and response is enabled up to the modulation of approximately several Gb/s.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光通信等に用いられる半導体レーザ装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser device used in optical communications and the like.

(従来の技術) 光伝送において変調時にも線幅の増大しない半導体レー
ザが求められている。従来、単一波長で発振する半導体
レーザであるD F Bレーザはこの要求を十分に満す
ことができず、例えば藤田等によって電子通信学会技術
報告古0QE)!3−76(+983) 37ページお
よび昭和59年度′に子通信学会総合全国大会983で
報告されているように外部共振器による光帰還型半吉体
レーザが線幅増大の抑制のために用いられている。
(Prior Art) In optical transmission, there is a demand for a semiconductor laser whose line width does not increase even during modulation. Conventionally, the DFB laser, which is a semiconductor laser that oscillates at a single wavelength, has not been able to fully meet this requirement; for example, Fujita et al. 3-76 (+983) As reported on page 37 and at the 983 National Conference of the Communication Society in 1983, an optical feedback half-kiss body laser with an external cavity was used to suppress linewidth increase. ing.

第4図は外部共振器型半導体レーザ装置の椹成図である
。本装置では半導体レーザ41の片端面が誘電体膜42
によって低反射率化しである。この半導体レーザ41の
低反射率化された端面41aからの放射光は、誘電体膜
42を経て凸レンズ43に進み、この凸レンズ43で平
行光となり、エタロン45で外部共振2;モードを選択
された後に回折格子46に進み、ここで発振波長が選択
される。この回折格子46と半導体レーザ41の低反射
率化されていない側の端面41bとの間で共振器を形成
する。出力光47は低反射率化されていない端面41b
から凸レンズ44で′ド行光となって取り出される。
FIG. 4 is a diagram showing the construction of an external cavity type semiconductor laser device. In this device, one end surface of the semiconductor laser 41 is covered with a dielectric film 42.
This reduces the reflectance. The emitted light from the end face 41a of the semiconductor laser 41, which has a low reflectance, passes through the dielectric film 42 to the convex lens 43, where it becomes parallel light, and the etalon 45 selects the external resonance 2 mode. The process then proceeds to the diffraction grating 46, where the oscillation wavelength is selected. A resonator is formed between this diffraction grating 46 and the end face 41b of the semiconductor laser 41 on the side where the reflectance is not lowered. The output light 47 is an end face 41b that is not made to have a low reflectance.
The light is extracted from the convex lens 44 as a beam of light.

(発明が解決しようとする問題点) 上に述べた構造を用いても半導体レーザの注入電流を変
調すると、キ中すア′M度の変化に伴−ノで半導体レー
ザ活性層の屈折率が変化する。このため発振光は強度だ
けでなく位相も変調を受ける。
(Problem to be Solved by the Invention) Even with the structure described above, if the injection current of the semiconductor laser is modulated, the refractive index of the semiconductor laser active layer will change as the optical power changes. Change. Therefore, the oscillated light is modulated not only in intensity but also in phase.

位相変調のために発振光の線幅は増大し、変調が高速に
なる程、線幅の増大が顕著となる。そこで、従来の構成
にはこのように発振線幅の小さい範囲で用いるためには
変調速度を大きくとれないという欠点があった。
The line width of the oscillated light increases due to phase modulation, and the faster the modulation becomes, the more remarkable the increase in line width becomes. Therefore, the conventional configuration has the drawback that the modulation speed cannot be increased in order to be used in such a narrow range of oscillation linewidth.

本発明は上述の欠点を除去し、高速変調時にも発振線幅
の増大の小さい半導体レーザ装置を従供することを目的
とする。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a semiconductor laser device in which the oscillation line width increases less even during high-speed modulation.

(問題点を解決するための手段) 本発明の半導体レーザ装置は、位相共役鏡と回折格子と
がレーザ共振器をなしていることを特徴とする。  ′ (作用) 位相共役鏡は第2図に模式的に示される。非線形光学媒
質21に反対方向に伝幡する2本の同一波長の励起光2
2.23が入射されている状態で励起光22、23に小
さな角度をもって同一波長の参照光24を入射するとき
、参照光24を逆方向に伝幡する新しい光が発生する。
(Means for Solving the Problems) The semiconductor laser device of the present invention is characterized in that a phase conjugate mirror and a diffraction grating form a laser resonator. (Operation) A phase conjugate mirror is schematically shown in FIG. Two excitation lights 2 with the same wavelength propagating in opposite directions to the nonlinear optical medium 21
When the reference beam 24 of the same wavelength is incident on the excitation beams 22 and 23 at a small angle while the reference beam 2.23 is being incident, new light that propagates the reference beam 24 in the opposite direction is generated.

この光は位相共投光25となり、空間部分が参照光24
と複素共役の関係にある。このため、例えば第3図に示
すように、光a31から出た出射光301の位相が媒質
32によって乱されても、位相共役鏡33によって反射
された光302が媒質32を通って戻る際完全に逆の位
相変化をうけ、結局光源31に戻る反射光302の位相
は初めに光源31を出た光の位相と同一になり、媒質3
2による位相の乱れは打ち消される。
This light becomes a phase co-projected light 25, and the spatial part becomes the reference light 24.
There is a complex conjugate relationship with Therefore, as shown in FIG. 3, for example, even if the phase of the emitted light 301 emitted from the light a31 is disturbed by the medium 32, the light 302 reflected by the phase conjugate mirror 33 returns through the medium 32 completely. The phase of the reflected light 302 that undergoes a reverse phase change and eventually returns to the light source 31 becomes the same as the phase of the light that initially exited the light source 31, and
The phase disturbance caused by 2 is canceled out.

本発明のように回折格子と位相共役鏡で共振器を構成し
た場合、回折格子で選択された光が半導体レーザ媒質で
位相変調されても、位相共役鏡で反射され再び半導体レ
ーザ媒質を通して回折格子に返ることにより位相変調の
影響は完全に打ち消され回折格子には常に同一の位相の
光が戻る。そこで、半導体レーザを変調しても線幅は増
大しない。
When a resonator is configured with a diffraction grating and a phase conjugate mirror as in the present invention, even if the light selected by the diffraction grating is phase modulated by the semiconductor laser medium, it is reflected by the phase conjugate mirror and passes through the semiconductor laser medium again to the diffraction grating. By returning to , the effect of phase modulation is completely canceled out, and light with the same phase always returns to the diffraction grating. Therefore, even if the semiconductor laser is modulated, the line width will not increase.

(実施例) 第1図は本発明の一実施例を示す構成図である。(Example) FIG. 1 is a block diagram showing an embodiment of the present invention.

両端面を誘電体膜14.15によって1〜2%に低反射
率化した半導体レーザ11の一方の端面12から放射さ
れた光は、凸レンズ16によって平行光となって位相共
役鏡17に入射する6位相共役鏡17は、B。
Light emitted from one end face 12 of the semiconductor laser 11 whose both end faces have a low reflectance of 1 to 2% by dielectric films 14 and 15 is turned into parallel light by the convex lens 16 and enters the phase conjugate mirror 17. The 6-phase conjugate mirror 17 is B.

’l”i 0. il結晶からなる非線形光学媒質10
1と、励起光を発生するDFB半導体レーザ102と、
反射鏡103と、凸レンズ104とから構成される。半
導体レーザ11のもう一方の端面13からの光は凸レン
ズ18で平行光となった後に回折格子19で波長を選択
されて半導体レーザ11に戻る。本実施例の発振波長は
DFB半導体レーザ102の発振波長と同一になるよう
にする。半導体レーザ11の端面12がら位相共役鏡1
7までの距離を10胴、端面12から回折格子19まで
の距離を200鵬とした。位相共役鏡17と回折格子1
9はレーザ発振のための増幅媒質である半導体レーザを
間にはさんで共振器を形成する。位相共役鏡17から半
導体レーザ11までの帰還に要する時間おくれは67p
sであり、数Gb/s程度の変5周まで応答が6エ能で
ある。また、出ノJ光20は半透鏡21によって取り出
される。
'l"i 0. Nonlinear optical medium 10 made of il crystal
1, a DFB semiconductor laser 102 that generates excitation light,
It is composed of a reflecting mirror 103 and a convex lens 104. The light from the other end face 13 of the semiconductor laser 11 is converted into parallel light by a convex lens 18, and then returns to the semiconductor laser 11 after its wavelength is selected by a diffraction grating 19. The oscillation wavelength in this embodiment is made to be the same as the oscillation wavelength of the DFB semiconductor laser 102. Phase conjugate mirror 1 from end face 12 of semiconductor laser 11
The distance from the end face 12 to the diffraction grating 19 was 10 mm, and the distance from the end face 12 to the diffraction grating 19 was 200 mm. Phase conjugate mirror 17 and diffraction grating 1
A resonator 9 is formed by sandwiching a semiconductor laser which is an amplification medium for laser oscillation. The time delay required for return from the phase conjugate mirror 17 to the semiconductor laser 11 is 67p.
s, and the response is 6 functions up to 5 rotations of about several Gb/s. Further, the output J light 20 is extracted by a semi-transparent mirror 21.

(発明の効果) 以上詳述したように本発明によれば、高速変調が口J能
で発振線幅の小さな半導体レーザ装置を得ることができ
る。
(Effects of the Invention) As detailed above, according to the present invention, it is possible to obtain a semiconductor laser device that is capable of high-speed modulation and has a small oscillation linewidth.

4、[ff1面の筒型な説明 第1図は本発明の一実施例を示す構成図である。4, [Cylinder-shaped explanation of ff1 side FIG. 1 is a block diagram showing an embodiment of the present invention.

図中、11は半導体レーザ、12.13は端面、14.
15は誘電体膜、16.18は凸レンズ、17は位相共
役鏡、19は回折格子、20は出力光、21は半透鏡、
101は非線形光学媒質、102は1)FB半導体レー
ザ、103は反射鏡である。
In the figure, 11 is a semiconductor laser, 12.13 is an end face, 14.
15 is a dielectric film, 16 and 18 are convex lenses, 17 is a phase conjugate mirror, 19 is a diffraction grating, 20 is an output light, 21 is a semi-transparent mirror,
101 is a nonlinear optical medium, 102 is 1) an FB semiconductor laser, and 103 is a reflecting mirror.

第2図は位相共役鏡の概念を示す模式図である。FIG. 2 is a schematic diagram showing the concept of a phase conjugate mirror.

図中、22.23は励起光、24は参照光、25は位相
共投光である。
In the figure, 22 and 23 are excitation lights, 24 are reference lights, and 25 are phase co-projection lights.

第3図は位相共役鏡の働きを説明する模式図である。3
1は光源、32は媒質、33は位相共投光であり、30
1は出射光、302は反射光を表す。
FIG. 3 is a schematic diagram illustrating the function of a phase conjugate mirror. 3
1 is a light source, 32 is a medium, 33 is a phase co-projection light, and 30
1 represents emitted light, and 302 represents reflected light.

第4図は従来の外部共振器半導体レーザの構成図である
。図中、41は半導体レーザ、42は誘電体膜、43.
44は凸レンズ、45はエタロン、46は回折格子、4
7は出力光である。
FIG. 4 is a block diagram of a conventional external cavity semiconductor laser. In the figure, 41 is a semiconductor laser, 42 is a dielectric film, 43.
44 is a convex lens, 45 is an etalon, 46 is a diffraction grating, 4
7 is output light.

代理人 弁理士 本 庄 伸 介 第1図 第2図 第3図 第4図Agent: Patent Attorney Shinsuke Honsho Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] レーザ共振器が位相共役鏡と回折格子とからなることを
特徴とする半導体レーザ装置。
A semiconductor laser device characterized in that a laser resonator consists of a phase conjugate mirror and a diffraction grating.
JP28328386A 1986-11-27 1986-11-27 Semiconductor laser device Pending JPS63136589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28328386A JPS63136589A (en) 1986-11-27 1986-11-27 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28328386A JPS63136589A (en) 1986-11-27 1986-11-27 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS63136589A true JPS63136589A (en) 1988-06-08

Family

ID=17663439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28328386A Pending JPS63136589A (en) 1986-11-27 1986-11-27 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS63136589A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100256157B1 (en) * 1995-11-15 2000-05-15 아끼구사 나오유끼 Phase conjugate wave generating device, wavelength converting method, optical dispersion compensating method and multi-wavelength light generating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100256157B1 (en) * 1995-11-15 2000-05-15 아끼구사 나오유끼 Phase conjugate wave generating device, wavelength converting method, optical dispersion compensating method and multi-wavelength light generating device

Similar Documents

Publication Publication Date Title
US5450429A (en) Efficient linear frequency doubled solid-state laser
JPH07154014A (en) Laser diode-pumped solid state laser
JP3683360B2 (en) Polarization control element and solid-state laser
WO2015085544A1 (en) Laser
JPS63136589A (en) Semiconductor laser device
JP3227701B2 (en) Mode-locked semiconductor laser
US20030151797A1 (en) Optical wavelength converting apparatus and optical wavelength converting method
JPS6362917B2 (en)
KR950002068B1 (en) Second harmonic generating system and method
JPH051989B2 (en)
CN218040200U (en) Tunable semiconductor laser light source emitting device
JPH0555680A (en) Pulse light source
JPS6295886A (en) Distribution feedback construction semiconductor laser
JP2978503B2 (en) All-optical control element
JPS61107781A (en) Single axial-mode semiconductor laser device
JP3270648B2 (en) Semiconductor laser device and optical transmitter using the same
JP2850263B2 (en) Optical image processing device
JPS616888A (en) External resonator type semiconductor laser device
JPH05160519A (en) Very short light pulse generating device
JPH0528915B2 (en)
JPS6164182A (en) Optical feedback type semiconductor laser device
JP2703244B2 (en) Light switch
KR100284759B1 (en) Second harmonic generator
JPH0414024A (en) Secondary higher harmonic generation device
JPH01208884A (en) Variable wavelength uniaxial mode laser diode