JPS63136584A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS63136584A
JPS63136584A JP28075986A JP28075986A JPS63136584A JP S63136584 A JPS63136584 A JP S63136584A JP 28075986 A JP28075986 A JP 28075986A JP 28075986 A JP28075986 A JP 28075986A JP S63136584 A JPS63136584 A JP S63136584A
Authority
JP
Japan
Prior art keywords
output
semiconductor laser
wavelength
photodetector
error amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28075986A
Other languages
Japanese (ja)
Inventor
Kazuo Suzuki
和雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28075986A priority Critical patent/JPS63136584A/en
Publication of JPS63136584A publication Critical patent/JPS63136584A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser

Abstract

PURPOSE:To obtain a semiconductor laser device having high interchangeability and excellent wavelength controllability even in long-term usage by mounting a photodetector, sensibility of which monotonously depends upon a wavelength, and controlling an operating temperature so that the ratio of an output from the photodetector to an output from a photodetector, sensibility of which does not depend upon the wavelength, is kept constant. CONSTITUTION:An output A from a photodetector, a detecting output of which does not depend upon a wavelength, is compared with reference voltage 14, and the driving currents of a laser are controlled so that an oscillation output is held constant by an output from an error amplifier 15. On the other hand, an output B/A from a divider 11 is compared with reference voltage 17 to a set wavelength, the driving currents of an electronic type cooling heating element are controlled by an output from an error amplifier 18, and a temperature is controlled. Accordingly, when the operating temperature of the semiconductor laser is controlled so that the ratio of an output from the photodetector to the output from the photodetector, sensibility of which does not depend upon the wavelength, is kept constant, the oscillation wavelength of the semiconductor laser can be held constant with out being subject to the effect on an output from the semiconductor laser.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は半導体レーザ装置、特にその発振波長を一定に
制御できる半導体レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Field of Industrial Application) The present invention relates to a semiconductor laser device, and particularly to a semiconductor laser device whose oscillation wavelength can be controlled to a constant value.

(従来の技術) 一般に半導体レーザでは、過大出力によるレーザ破壊を
防ぎ、かつ安定した動作を行わせるために、発振出力光
強度をモニタし、その値を基準1直と比較し、その大小
でレーザの駆動電流を制卸する発振出力制御が必要であ
る。また、半導体レーザを、光ファイバを通す光通信、
また光の透過率を測定するような計測の用途に用いる場
合、発振出力制御に加えて波長制御することが求められ
る。
(Prior art) In general, in semiconductor lasers, in order to prevent damage to the laser due to excessive output and to ensure stable operation, the oscillation output light intensity is monitored, the value is compared with a standard 1st shift, and the laser Oscillation output control is required to control the drive current. In addition, semiconductor lasers can be used for optical communication through optical fibers.
Furthermore, when used for measurement purposes such as measuring light transmittance, wavelength control is required in addition to oscillation output control.

第9図はGaA I As半導体レーザの発振出力を一
定に保つように駆動電流を制御した状態で、温度を変化
させた場合の発振波長の変化を示す。
FIG. 9 shows the change in the oscillation wavelength when the temperature is changed while the drive current is controlled to keep the oscillation output of the GaAIAs semiconductor laser constant.

従来、発振波長を一定に保つためには、出力強度が一定
になるように電流を制御した状態で、パッケージ全体の
温度を一定に保つという間接的な方法で行われてきた。
Conventionally, in order to keep the oscillation wavelength constant, an indirect method has been used in which the temperature of the entire package is kept constant while the current is controlled so that the output intensity is constant.

第10図はその様な目的に用いられる半導体レーザ装置
の一例でおる。この装置では半導体レーザペレット(6
6)がペレットキャリアー(67〉され、ざらにこのキ
ャリアーはゼーベック効果を利用した電子式冷却加熱装
置(68〉にマウントされている。ペレットキャラリア
ーには温度測定用のセンサー(6つ)が固着されている
。半導体レーザペレット(66)の光出力端面と反対側
の端面からの出射光に対しホトダイオード(70)が設
置されており、これによって発振出力光の強度をモニタ
ーする。以上の部品は全体として一個の気密パッケージ
(71〉内に治められており、ざらに電子式冷却加熱装
置2(68)の放熱のためパッケージには=−トシンク
(72)が取り付けられる。
FIG. 10 shows an example of a semiconductor laser device used for such a purpose. This device uses semiconductor laser pellets (6
6) is mounted on a pellet carrier (67), and this carrier is mounted on an electronic cooling and heating device (68) that utilizes the Seebeck effect. Sensors (6) for temperature measurement are fixed to the pellet carrier. A photodiode (70) is installed for the light emitted from the end face opposite to the light output end face of the semiconductor laser pellet (66), and the intensity of the oscillated output light is monitored by this. The whole is housed in one airtight package (71), and a sink (72) is attached to the package for heat radiation of the electronic cooling/heating device 2 (68).

発振出力の安定化のためにはモニター用ホトダイオード
の検出出力を誤差増幅器(73)によって基準電圧(7
Δ)と比較し、この誤差増幅器(73)の出ツクにより
ペレットの駆動電流を制卸することによって行う。なあ
、これにより光出力は一定に保たれる。一方、温度の安
定化のためには温1度センサー(69)の出力を誤差増
幅器(75)によって基準電圧(76)と比較し、この
誤差増幅器(75〉の出力によって電子式冷却加熱装置
(68)を駆動することによって行う。
In order to stabilize the oscillation output, the detection output of the monitor photodiode is connected to the reference voltage (73) by an error amplifier (73).
Δ), and the pellet drive current is controlled by the output of this error amplifier (73). Hey, this keeps the light output constant. On the other hand, in order to stabilize the temperature, the output of the temperature 1 degree sensor (69) is compared with the reference voltage (76) by an error amplifier (75), and the output of this error amplifier (75) is used to determine the temperature of the electronic cooling/heating device ( 68).

即ち、半導体レーザの発振波長の安定化ff1l制御は
、出力光強度モニターからの帰還によって光出力を一定
に保ち、かつパッケージの温度を一定に保つことにより
行なわれている。
That is, the stabilization ff1l control of the oscillation wavelength of the semiconductor laser is performed by keeping the optical output constant based on feedback from the output light intensity monitor and keeping the package temperature constant.

(発明が解決しようとする問題点) 一般に半導体レーザの発振波長の温度特性はべレット毎
に大幅に異なっている。このため上述の温度安定化によ
る発掘波長の制御方式では、レーザ毎に分光器等によっ
て予め発振波長を正確に測定し、求める波長が得られる
ベレットキャリア一温度を求めて、温度制御を行う必要
がある。
(Problems to be Solved by the Invention) Generally, the temperature characteristics of the oscillation wavelength of a semiconductor laser differ significantly from pellet to pellet. For this reason, in the above-mentioned method of controlling the excavation wavelength by temperature stabilization, it is necessary to accurately measure the oscillation wavelength of each laser using a spectrometer, etc., to determine the pellet carrier temperature that provides the desired wavelength, and then perform temperature control. be.

第11図は、ペレットキャリア一温度を一定として駆動
電流を変化した場合の発振波長の変化を示す。これは、
ペレットとペレットキャリアー間の熱抵抗により、例え
ば温度を一定に保っても駆動電流が変化する状態では、
接合部の温度が変化し、発振波長が変化することを示し
ている。また半導体レーザを一定光出力で動作させた場
合の駆動電流は、ペレット自身の劣化により、第12図
に示す様に時間と共に変化する。従って、一定光出力で
動作させるために必要な駆動電流は時間と共に僧大する
FIG. 11 shows the change in the oscillation wavelength when the drive current is changed while keeping the temperature of the pellet carrier constant. this is,
Due to thermal resistance between the pellet and pellet carrier, for example, in a state where the drive current changes even if the temperature is kept constant,
This shows that the temperature of the junction changes and the oscillation wavelength changes. Further, when the semiconductor laser is operated with a constant optical output, the driving current changes with time as shown in FIG. 12 due to deterioration of the pellet itself. Therefore, the drive current required to operate at a constant optical output increases with time.

このため、上述の光出力を一定とし、かつパッケージ温
度を一定に保つ方法では、半導体レーザペレットの長時
間に渡る動作点の変動による発振波長を補償することが
できない。またレーザの駆動電流が一定でも、パッケー
ジ温、度が大巾に変動した場合、瞬間的にペレット発光
部位とペレットキャリアーの温度検出部位に温度差が生
じ発振波長のずれが発生等の場合が必る。
Therefore, the above method of keeping the optical output constant and the package temperature constant cannot compensate for the oscillation wavelength caused by fluctuations in the operating point of the semiconductor laser pellet over a long period of time. Furthermore, even if the laser drive current is constant, if the package temperature or degree fluctuates widely, there will be an instantaneous temperature difference between the pellet light emitting part and the temperature detection part of the pellet carrier, causing a shift in the oscillation wavelength. Ru.

つまり、従来技術では、個々の半導体レーザそれぞれに
ついて、目的とする波長を得るための動作温度を設定す
る必要があり装置の互換性に乏しい。半導体レーザの発
振波長制御の方法としては間接的なものであり、長時間
動作下にあけるペレットの温度−波長特性の変動に対応
できない。また、動作環境の大幅な変化による瞬時の発
掘波長の変動には対応出来ないという欠点を有している
In other words, in the conventional technology, it is necessary to set the operating temperature for each semiconductor laser to obtain the desired wavelength, resulting in poor device compatibility. This is an indirect method of controlling the oscillation wavelength of a semiconductor laser, and cannot cope with fluctuations in the temperature-wavelength characteristics of a pellet that is exposed to long-term operation. Another drawback is that it cannot respond to instantaneous fluctuations in the excavation wavelength due to significant changes in the operating environment.

本発明はより簡便で半導体レーザ毎の互換性が高く、長
時間使用においても波長制卸性が良い半導体レーザ装置
を提供するものでおる。
The present invention provides a semiconductor laser device that is simpler, has high compatibility between semiconductor lasers, and has good wavelength control properties even when used for a long time.

[発明の構成] (問題点を解決するための手段) 本発明は、半導体レーザと、この半導体レーザの出力光
の一部を受光する半導体レーザ光の制御波長帯域におい
て感度が波長に対して依存しない第1の光検出器と、半
導体レーザの出力光の一部を受光する制御波長帯域にお
いて感度が波長に対して単調に依存する第2の光検出器
と、第1および第2の光検出器の出力の比を求める演算
増幅器と、この演算増幅器の出力の基準値からのずれを
求める誤差増幅器と、この誤差増幅器の出力によって駆
動され誤差増幅器の出力が一定になるように半導体レー
ザの温度を上下するための温度制御装置と、半導体レー
ザに電流を流す手段とを備えたことを特徴とする半導体
レーザ装置である。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a semiconductor laser and a semiconductor laser that receives a portion of the output light of the semiconductor laser in a controlled wavelength band in which the sensitivity depends on the wavelength. a first photodetector whose sensitivity monotonically depends on the wavelength in a controlled wavelength band that receives a portion of the output light of the semiconductor laser; and the first and second photodetectors. An operational amplifier that determines the ratio of the outputs of the amplifier, an error amplifier that determines the deviation of the output of this operational amplifier from a reference value, and a semiconductor laser temperature that is driven by the output of this error amplifier so that the output of the error amplifier is constant. This is a semiconductor laser device characterized by comprising a temperature control device for raising and lowering the temperature, and means for passing a current through the semiconductor laser.

更には、半導体レーザと、この半導体レーザの出力光の
一部を受光する感度が波長に依存しない光検出器と、透
過率が波長の測定域において波長に対して単調に変化す
るフィルターを光検出器の前面で所定の周期で抜き差し
する手段と、その複き差しの周期におわせて光検知器の
出力を同期検良し、フィルターが有る揚台と無い場合の
光検出器の出力を得る手段と、フィルターが有る場合の
光検出器の出力と無い場合の光検出器の出力の比を求め
る演算増幅器と、この演算増幅器の出力の基準値からの
ずれを求める誤差増幅器と、この誤差増幅器の出力によ
って駆動され誤差増幅器の出力が一定になるように半導
体レーザの温度を上下するための温度制御装置と、半導
体レーザに電流を流す手段とを備えたことを特徴とする
半導体レーザ装置である。
Furthermore, the photodetector includes a semiconductor laser, a photodetector whose sensitivity does not depend on the wavelength for receiving a portion of the output light of the semiconductor laser, and a filter whose transmittance changes monotonically with respect to the wavelength in the measurement range of the wavelength. A means for inserting and removing at a predetermined cycle on the front of the device, and a means for synchronously inspecting the output of the photodetector according to the cycle of double insertion and obtaining the output of the photodetector with and without a filter. , an operational amplifier that calculates the ratio of the output of the photodetector with and without a filter, an error amplifier that calculates the deviation of the output of this operational amplifier from a reference value, and This semiconductor laser device is characterized in that it is equipped with a temperature control device for raising and lowering the temperature of a semiconductor laser driven by the output so that the output of an error amplifier becomes constant, and means for flowing a current through the semiconductor laser.

(作 用) 感度が波長に単調に依存する光検出器を有しているので
、その検出器の検出出力は半導体レーザの発掘波長と一
対一で対応する。従って、この光検出器の出力と、感度
が波長に依存しない光検出器の出力との比が一定になる
ように半導体レーザの動作温度を制御すれば、半導体レ
ーザの駆動電流に影響されず、半導体レーザの発掘波長
を一定に保つことが可能になる。特に、駆動電流に関係
し接合温度を反映する光出力に対応する成分をも用いて
、温度制御を行なうので、従来技術に競べより一層の正
確な波長制御が、長期間にわたって可能となる。
(Function) Since it has a photodetector whose sensitivity depends monotonically on the wavelength, the detection output of the detector corresponds one-to-one with the excavation wavelength of the semiconductor laser. Therefore, if the operating temperature of the semiconductor laser is controlled so that the ratio between the output of this photodetector and the output of a photodetector whose sensitivity does not depend on wavelength is constant, it will not be affected by the driving current of the semiconductor laser. It becomes possible to keep the excavation wavelength of the semiconductor laser constant. In particular, since temperature control is performed using a component corresponding to the optical output that is related to the drive current and reflects the junction temperature, it is possible to achieve more accurate wavelength control over a long period of time than in the prior art.

〈実施例) この発明の一実施例の半導体レーザ装置を第1図を参照
して説明する。
<Embodiment> A semiconductor laser device according to an embodiment of the present invention will be described with reference to FIG.

半導体レーザペレット(1〉は熱伝導が良好な金属から
なるペレットキャリアー(2)に固着されており、ペレ
ットキャリアー(2)は電子式冷却加熱素子(3)上に
固着されている。これらの部品はすべて気密パッケージ
(4)内におさめられている。レーザ出力光はレンズ(
5)で平行光にされた後ビームスプリッタ(6)によっ
てその一部が取り出される。この光はビームスプリッタ
(7)によって二分割され、一方は感度が波長に依存し
ない光検出器(8)に、また他方は波長に対して透過率
が単調に変化する光学フィルター(9)を通して同じく
感度が波長に依存しない光検出器(10)にそれぞれ入
射される。なあ、光学フィルター(9)と光検出器(1
0)により感度が波長に依存する光検出器が構成される
。各光検出器(8) (10)の出力A、Bは除算器(
11)にて比B/Aが求められる。第2図aはここで用
いた光学フィルタ(9)の波長に対する透過率の特性(
12)、及び同図aは除算器(11)の出力B/Aの波
長に対する依存性(13)を示す。B/Aはフィルター
の透過率とに定数を乗じた特性を示す。
A semiconductor laser pellet (1) is fixed to a pellet carrier (2) made of a metal with good thermal conductivity, and the pellet carrier (2) is fixed to an electronic cooling/heating element (3).These parts All are housed in an airtight package (4).The laser output light is transmitted through a lens (
After the parallel beam is made into parallel light in step 5), a part of it is taken out by a beam splitter (6). This light is split into two by a beam splitter (7), one is passed through a photodetector (8) whose sensitivity is independent of wavelength, and the other is passed through an optical filter (9) whose transmittance varies monotonically with wavelength. The light is respectively incident on a photodetector (10) whose sensitivity is independent of wavelength. Hey, optical filter (9) and photodetector (1)
0) constitutes a photodetector whose sensitivity is wavelength dependent. The outputs A and B of each photodetector (8) (10) are divided by the divider (
The ratio B/A is determined in step 11). Figure 2a shows the transmittance characteristics (
12), and Figure a shows the dependence (13) of the output B/A of the divider (11) on wavelength. B/A represents a characteristic obtained by multiplying the filter transmittance by a constant.

さて、検出出力が波長に対して依存しない光検出器の出
力Aを基準電圧(14〉と比較し誤差増幅器(15)の
出力によって発振出力が一定になるようレーザの駆動電
流を制御する。一方、除算器(11)の出力B/Aは設
定波長(16)に対する基準電圧(17)と比較し、誤
差増幅器(18)の出力によって電子式冷却加熱素子の
駆動電流を制御し、温度をコントロールする。
Now, the output A of the photodetector, whose detection output does not depend on the wavelength, is compared with the reference voltage (14), and the laser drive current is controlled by the output of the error amplifier (15) so that the oscillation output is constant. , the output B/A of the divider (11) is compared with the reference voltage (17) for the set wavelength (16), and the drive current of the electronic cooling/heating element is controlled by the output of the error amplifier (18) to control the temperature. do.

このように本発明では、感度が波長に対して単調に依存
する光検出器を備えているので、その検出器の検出出力
は半導体レーザの発振波長と一対一で対応する。従って
、この光検出器の出力と、感度が波長に依存しない光検
出器の出力との比が一定になるように半導体レーザの動
作温度を制御すれば、半導体レーザの出力影響されるこ
となく、半導体レーザの発振波長を一定に保つことがで
きる。特に、駆動電流に関係し接合温度を反映する光出
力に対応する成分をも用いて、温度制御を行なうので、
従来技術に競べより一層の正確な波長制御が、長期間に
わたって可能となる。
As described above, since the present invention includes a photodetector whose sensitivity monotonically depends on wavelength, the detection output of the detector has a one-to-one correspondence with the oscillation wavelength of the semiconductor laser. Therefore, if the operating temperature of the semiconductor laser is controlled so that the ratio between the output of this photodetector and the output of a photodetector whose sensitivity does not depend on wavelength is constant, the output of the semiconductor laser will not be affected. The oscillation wavelength of the semiconductor laser can be kept constant. In particular, temperature control is performed using a component corresponding to the optical output that is related to the drive current and reflects the junction temperature.
More accurate wavelength control than conventional technology becomes possible over a long period of time.

第3図は、上述の実施例の半導体レーザ装置の発振波長
の温度特性を従来技術と対比して示したものである。第
3図aは従来技術を示し、同図すは本発明の場合を示す
。従来のペレットキャリアの温度を安定化する方法での
外気温度変化(50)に対する発振波長の変化(51)
は、温度の急激に変化する場合にモードのホッピングに
よる発振波長の変動(52)が観測された。一方、本発
明の半導体レーザ技術では外気温度の変化(53)に対
して発振波長(54)は全く変動が認められなかった。
FIG. 3 shows the temperature characteristics of the oscillation wavelength of the semiconductor laser device of the above-described embodiment in comparison with that of the prior art. FIG. 3a shows the prior art, and the same figure shows the case of the present invention. Changes in oscillation wavelength (51) in response to outside temperature changes (50) in a conventional method for stabilizing the temperature of pellet carriers
observed fluctuations in the oscillation wavelength due to mode hopping when the temperature suddenly changes (52). On the other hand, in the semiconductor laser technology of the present invention, no change was observed in the oscillation wavelength (54) with respect to the change in outside temperature (53).

上述の実施例ではレーザ光を一度平行光に直して光検出
器に入射したが、発散光のままでも勿論同様に波長制御
を行うことが出来る。
In the above-described embodiment, the laser beam is once converted into parallel light and then incident on the photodetector, but it is of course possible to perform wavelength control in the same way even if the laser beam remains as divergent light.

次に、この発明の他の実施例を第4図を参照して説明す
る。この実施例は、光検出器を2つ世いるのではなく、
1つの光検出器とフィルタを有する回転光チョッパを用
いるものであり、上述の実施例と同様に半導体レーザの
発振波長の安定化を計ることが出来る。
Next, another embodiment of the invention will be described with reference to FIG. In this embodiment, instead of using two photodetectors,
A rotating optical chopper having one photodetector and a filter is used, and the oscillation wavelength of the semiconductor laser can be stabilized in the same manner as in the above embodiment.

半導体レーザペレット〈19)は熱伝導が良好な金属か
らなるペレットキャリアー(20)に固着されており、
ペレットキャリア=は電子式冷却加熱素子(21)上に
固着されている。これらの部品はすべて気密パッケージ
(22)内におさめられている。レーザ出力光はレンズ
(23)で平行光にされた後、ビームスプリッタ(24
)によってその一部が取り出される。さらにその光は回
転光チョッパ(25)を通り、光検出器(26〉に入射
する。光検出器(26)の出力Cは2個の同期倹波器(
27)、(28)に入力される。
The semiconductor laser pellet (19) is fixed to a pellet carrier (20) made of a metal with good thermal conductivity.
The pellet carrier is fixed on the electronic cooling and heating element (21). All these parts are housed in an airtight package (22). After the laser output light is made into parallel light by a lens (23), it is sent to a beam splitter (24).
) a part of it is extracted. Further, the light passes through a rotating optical chopper (25) and enters a photodetector (26).The output C of the photodetector (26) is transmitted through two synchronous waveform filters (26).
27) and (28).

第5図は回転式光チョッパ(25)の断面図であり、波
長に対して透過率が単調に変化する光学フィルターフィ
ルタ一部(29)及び透過部(30)を有している。こ
の光チョッパのフィルタ一部及び透過部に対応して光検
出器(26)の出力Cは、第6図aに示すようなパルス
出力を示す。この出力パルスCにはフィルターの無いj
1合の光検出器の出力(31)とフィルターのある場合
の光検出器の出力(32)とが交互に現れる。光チョッ
パの回転に同期して雨検出出力の検波用同期パルス発生
器(33)よりパルスD、Eが発生する。パルス01E
は光チョッパの光透過部及びフィルタ一部に合わせて、
第6図bScに示すようなパルスとなっていて、それぞ
れ同期検波器(27)、(28)に入力され、同期検波
器(27)、(28)はそれぞれフィルターの無い場合
の光検出出力(31)とフィルターのある場合の光検出
器ツク(32)を選択的に取出し、またそれを平滑化す
る。
FIG. 5 is a cross-sectional view of the rotary optical chopper (25), which includes an optical filter portion (29) and a transmitting portion (30) whose transmittance changes monotonically with respect to wavelength. The output C of the photodetector (26) corresponding to the filter part and transmission part of this optical chopper shows a pulse output as shown in FIG. 6a. This output pulse C has no filter j
The output of the photodetector (31) in the first case and the output (32) of the photodetector with the filter appear alternately. Pulses D and E are generated from a synchronous pulse generator (33) for detecting rain detection output in synchronization with the rotation of the optical chopper. Pulse 01E
In line with the light transmitting part of the optical chopper and part of the filter,
The pulses are as shown in Fig. 6bSc, and are input to the synchronous detectors (27) and (28), respectively, and the synchronous detectors (27) and (28) each output the photodetection output without a filter ( 31) and the photodetector (32) with a filter are selectively taken out and smoothed.

ここで、フィルターの無い場合の光検出(同期検波器(
27) ’)出力Aと、フィルタのおる場合の光検出(
同期検波器(28) )出力巳は除算器(60)にて比
B/Aが求められる。検出出力が波長に対して依存しな
い光検出器の出力Aを基準電圧(35)と比較し誤差増
幅器(34)の出ノJによって発振出力が一定になるよ
うレーザの駆動電流を制御する。
Here, optical detection without a filter (synchronous detector (
27) ') Output A and light detection with filter (
The ratio B/A of the output signal of the synchronous detector (28) is obtained by a divider (60). The output A of the photodetector, whose detection output does not depend on the wavelength, is compared with a reference voltage (35), and the laser drive current is controlled by the output J of the error amplifier (34) so that the oscillation output is constant.

一方、除算器(60)の出力B/Aは設定波長に対する
基準電圧(61)と比較し、誤差増幅器(62)の出力
によって電子式冷却加熱素子の駆動電流を制御し、温度
をコントロールする。このようにして、上述の実施例と
同様に半導体レーザの発振波長の安定化がなされる。
On the other hand, the output B/A of the divider (60) is compared with a reference voltage (61) for a set wavelength, and the drive current of the electronic cooling/heating element is controlled by the output of the error amplifier (62) to control the temperature. In this way, the oscillation wavelength of the semiconductor laser is stabilized as in the above embodiment.

次に、光検出器を気密パッケージ内に封入した実施例に
つき、第6図を参照して説明する。
Next, an embodiment in which a photodetector is enclosed in an airtight package will be described with reference to FIG.

即ち、この実施例では、レーザペレットク38)は良好
な熱伝導を有するペレットキャリアー(39)に固着さ
れており、このペレットキャリアー (39>は電子式
冷却加熱素子(40)に固着されている。
That is, in this embodiment, the laser pellet 38) is fixed to a pellet carrier (39) with good thermal conductivity, and this pellet carrier (39) is fixed to the electronic cooling/heating element (40). .

ペレットキャリアー(39)には、同一基板上に形成し
た感度が波長に依存しないものと依存するものの2個の
光検出器として3iホトダイオード(41)が固着され
ており、レーザペレットの出射端面と反対の端面からの
放出光が入射する。このホトダイオードは、第7図に断
面溝道を示すように、2個のホトダイオードの一方の表
面にのみ誘電体多層膜又は色ガラスよりなるレーザの波
長制御範囲帯域内において透過率が波長に対して単調に
変化する光フィルターの3膜(48)を形成したもので
おる。即ち、高抵抗3i基板(42)に不純物拡散によ
るn1i(43)を形成され、その上にAUからなる電
極(44)を形成され、さらに分割され2領賊に不純物
拡散によりp′層(45)、(46)を形成され、S 
! 02の保護!1!(47)をその両表面に形成した
後、その一方の表面にのみ、光フィルター形成してなる
。なお、(49)はA1電極である。
A 3i photodiode (41) is fixed to the pellet carrier (39) as two photodetectors, one whose sensitivity does not depend on the wavelength and one whose sensitivity depends on the wavelength, and which are formed on the same substrate. The emitted light from the end face of is incident. As shown in the cross-sectional groove path in Figure 7, this photodiode is made of a dielectric multilayer film or colored glass on one surface of the two photodiodes, and has a transmittance that varies with wavelength within the wavelength control range of the laser. It is made up of three optical filter films (48) that change monotonically. That is, an n1i (43) is formed by impurity diffusion on a high resistance 3i substrate (42), an AU electrode (44) is formed thereon, and a p' layer (45) is further divided into two regions by impurity diffusion. ), (46) are formed, S
! Protection of 02! 1! (47) is formed on both surfaces, and then an optical filter is formed only on one surface. Note that (49) is the A1 electrode.

特にこの実施例では、感度が波長に依存する光検出器と
、依存しない光検出器が気密パッケージ内に収容され、
それぞれにレーザペレットの出射端面と反対の端面から
の放出光が入射するので、光検出器に光を導く光学系の
構成が簡略化され、またそれにより半導体レーザ装置が
コンパクトになる。また、同一基板上に2個のホトダイ
オードを形成したがもちろん個別ホトダイオードを用い
てもよい。また3iホトダイオードに限らず、レーザの
波長に感度を合わせてGe小トダイオード等他の光検出
器を用いてもよい。
In particular, in this embodiment, a photodetector whose sensitivity is wavelength dependent and a photodetector which is independent are housed in a hermetic package;
Since the emitted light from the end face opposite to the emission end face of the laser pellet is incident on each of them, the configuration of the optical system that guides the light to the photodetector is simplified, and the semiconductor laser device is thereby made more compact. Further, although two photodiodes are formed on the same substrate, it is of course possible to use individual photodiodes. In addition, the photodetector is not limited to the 3i photodiode, and other photodetectors such as a small Ge photodiode may be used with sensitivity adjusted to the wavelength of the laser.

なあ、上述の実施例では、温度制卸とともに、光出力制
御(・半導体レーザの駆動電流の制卸)も同時に行なっ
ているが、温度制御のみでも発振波長の充分な安定化が
可能である。
Incidentally, in the above embodiment, optical output control (controlling the drive current of the semiconductor laser) is performed simultaneously with temperature control, but the oscillation wavelength can be sufficiently stabilized by temperature control alone.

[発明の効果] 以上の様に本発明に示した半導体レーザ装置によれば、
半導体レーザの発振波長の安定化を簡単な装置で高精度
に達成できる。
[Effects of the Invention] As described above, according to the semiconductor laser device shown in the present invention,
Stabilization of the oscillation wavelength of a semiconductor laser can be achieved with high precision using a simple device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の半導体レーザ装置を示す図
、第2図は光出力検出器に波長に対して単調な感度依存
性をもたせるための光学フィルターの透過率特性を示す
図、第3図は本発明の半導体レーザ装置と従来装置にお
ける発振波長の温度変化特性を示す図、第4図は本発明
の半導体レーザ装置の他の実施例を示す図、第5図は光
チョッパの断面図、第6図は光検出器の出力波形を示す
図、第7図は本発明の半導体レーザ装置の他の実施例を
示す図、第8図はホトダイオードの断面構造図、第9図
は半導体レーザの発振出力を一定としてパッケージ温度
を変化させた場合の発撮波長の変化を示す図、第10図
は従来の半導体レーザ装置を示す図、第11図は半導体
レーザのパッケージ温度を一定とし、駆動電流を変化さ
せた場合経時変化を示す図でおる。 (1)・・・半導体レーザペレット、 (2)・・・ペレットキャリアー、 (3)・・・電子式冷却加熱素子、 (4)・・・気密パッケージ、 (8)、(1)・・・感度が波長に依存しない光検出器
、(9)・・・光学フィル、ター、 (11)・・・除算機、
FIG. 1 is a diagram showing a semiconductor laser device according to an embodiment of the present invention, and FIG. 2 is a diagram showing transmittance characteristics of an optical filter for giving a light output detector a monotonous sensitivity dependence with respect to wavelength. FIG. 3 is a diagram showing the temperature change characteristics of the oscillation wavelength in the semiconductor laser device of the present invention and the conventional device, FIG. 4 is a diagram showing another embodiment of the semiconductor laser device of the present invention, and FIG. 5 is a diagram of the optical chopper. 6 is a diagram showing the output waveform of the photodetector, FIG. 7 is a diagram showing another embodiment of the semiconductor laser device of the present invention, FIG. 8 is a sectional view of the photodiode, and FIG. 9 is a diagram showing the structure of the photodiode. A diagram showing the change in the emission wavelength when the oscillation output of the semiconductor laser is constant and the package temperature is changed. Figure 10 is a diagram showing a conventional semiconductor laser device. Figure 11 is a diagram showing the change in the emission wavelength when the package temperature of the semiconductor laser is constant. , is a diagram showing changes over time when the drive current is changed. (1)... Semiconductor laser pellet, (2)... Pellet carrier, (3)... Electronic cooling/heating element, (4)... Airtight package, (8), (1)... A photodetector whose sensitivity does not depend on wavelength, (9)...optical filter, (11)...divider,

Claims (8)

【特許請求の範囲】[Claims] (1)半導体レーザと、この半導体レーザの出力光の一
部を受光する前記半導体レーザ光の制御波長帯域におい
て感度が波長に対して依存しない第1の光検出器と、前
記半導体レーザの出力光の一部を受光する前記制御波長
帯域において感度が波長に対して単調に依存する第2の
光検出器と、前記第1および第2の光検出器の出力の比
を求める演算増幅器と、この演算増幅器の出力の基準値
からのずれを求める誤差増幅器と、この誤差増幅器の出
力によって駆動され誤差増幅器の出力が一定になるよう
に前記半導体レーザの温度を上下するための温度制御装
置と、前記半導体レーザに電流を流す手段とを備えたこ
とを特徴とする半導体レーザ装置。
(1) a semiconductor laser, a first photodetector whose sensitivity does not depend on wavelength in the control wavelength band of the semiconductor laser light that receives a portion of the output light of the semiconductor laser, and the output light of the semiconductor laser; a second photodetector whose sensitivity monotonically depends on the wavelength in the controlled wavelength band that receives a portion of the light; an operational amplifier that determines the ratio of the outputs of the first and second photodetectors; an error amplifier that determines the deviation of the output of the operational amplifier from a reference value; a temperature control device that is driven by the output of the error amplifier and increases or decreases the temperature of the semiconductor laser so that the output of the error amplifier becomes constant; 1. A semiconductor laser device comprising: means for passing a current through the semiconductor laser.
(2)前記温度制御装置がペルチェ素子を含むことを特
徴とする特許請求の範囲第1項記載の半導体レーザ装置
(2) The semiconductor laser device according to claim 1, wherein the temperature control device includes a Peltier element.
(3)前記第1の光検出器は、感度が波長の測定域にお
いて波長に依存しない光検出素子と、この光検出素子の
前面に設置された透過率が波長の測定域において波長に
単調に依存にフィルターとを有することを特徴とする特
許請求の範囲第1項記載の半導体レーザ装置。
(3) The first photodetector includes a photodetecting element whose sensitivity does not depend on the wavelength in the wavelength measurement range, and a photodetection element installed in front of the photodetection element whose transmittance is monotonous with the wavelength in the wavelength measurement range. 2. The semiconductor laser device according to claim 1, further comprising a filter.
(4)前記半導体レーザに電流を流す手段は、前記第1
の光検出器の出力と所定の基準値からのずれを求める誤
差増幅器と、この誤差増幅器の出力によつて駆動され誤
差増幅器の出力が一定になるように前記半導体レーザの
電流を上下するための電流制御装置とを備えたことを特
徴とする特許請求の範囲第1項記載の半導体レーザ装置
(4) The means for passing a current through the semiconductor laser includes the first
an error amplifier for determining the deviation between the output of the photodetector and a predetermined reference value; and an error amplifier for driving the output of the error amplifier to increase or decrease the current of the semiconductor laser so that the output of the error amplifier is constant. 2. The semiconductor laser device according to claim 1, further comprising a current control device.
(5)同一基板上に形成された前記半導体レーザ光の制
御波長帯域において感度が波長に依存しない二個のホト
ダイオードの一方の表面に誘電体多層膜又は色ガラスか
らなる光吸収係数が波長に対して単調に変化する薄膜フ
ィルターを形成して前記第2の光検出器とし、またフィ
ルターを形成しない他方を前記第1の光検出器とするこ
とを特徴とする特許請求範囲第1項記載の半導体レーザ
装置。
(5) A dielectric multilayer film or colored glass is formed on one surface of two photodiodes whose sensitivity does not depend on wavelength in the control wavelength band of the semiconductor laser beam formed on the same substrate. The semiconductor according to claim 1, characterized in that a thin film filter that monotonically changes is formed as the second photodetector, and the other without a filter is used as the first photodetector. laser equipment.
(6)半導体レーザと、この半導体レーザの出力光の一
部を受光する感度が波長に依存しない光検出器と、透過
率が波長の測定域において波長に対して単調に変化する
フィルターを前記光検出器の前面で所定の周期で抜き差
しする手段と、その抜き差しの周期にあわせて光検知器
の出力を同期検波し、フィルターが有る場合と無い場合
の光検出器の出力を得る手段と、前記フィルターが有る
場合の光検出器の出力と無い場合の光検出器の出力の比
を求める演算増幅器と、この演算増幅器の出力の基準値
からのずれを求める誤差増幅器と、この誤差増幅器の出
力によって駆動され誤差増幅器の出力が一定になるよう
に前記半導体レーザの温度を上下するための温度制御装
置と、前記半導体レーザに電流を流す手段とを備えたこ
とを特徴とする半導体レーザ装置。
(6) A semiconductor laser, a photodetector whose sensitivity does not depend on the wavelength for receiving a portion of the output light of the semiconductor laser, and a filter whose transmittance changes monotonically with respect to the wavelength in the measurement range of the wavelength. means for inserting and removing at a predetermined period in front of the detector; means for synchronously detecting the output of the photodetector in accordance with the period of the insertion and removal, and obtaining the output of the photodetector with and without a filter; An operational amplifier that calculates the ratio of the output of the photodetector when there is a filter and the output of the photodetector when there is no filter, an error amplifier that calculates the deviation of the output of this operational amplifier from a reference value, and the output of this error amplifier. A semiconductor laser device comprising: a temperature control device for increasing or decreasing the temperature of the semiconductor laser so that the output of the driven error amplifier becomes constant; and means for flowing a current through the semiconductor laser.
(7)前記温度制御装置がペルチェ素子を含むことを特
徴とする特許請求の範囲第6項記載の半導体レーザ装置
(7) The semiconductor laser device according to claim 6, wherein the temperature control device includes a Peltier element.
(8)前記半導体レーザに電流を流す手段は、前記フィ
ルターが有る場合の光検出器の出力とと所定の基準値か
らのずれを求める誤差増幅器と、この誤差増幅器の出力
によって駆動され誤差増幅器の出力が一定になるように
前記半導体レーザの電流を上下するための電流制御装置
とを備えたことを特徴とする特許請求範囲第6項記載の
半導体レーザ装置。
(8) The means for passing a current through the semiconductor laser includes an error amplifier that determines the deviation from the output of the photodetector when the filter is provided and a predetermined reference value, and an error amplifier that is driven by the output of the error amplifier. 7. The semiconductor laser device according to claim 6, further comprising a current control device for increasing and decreasing the current of the semiconductor laser so that the output is constant.
JP28075986A 1986-11-27 1986-11-27 Semiconductor laser device Pending JPS63136584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28075986A JPS63136584A (en) 1986-11-27 1986-11-27 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28075986A JPS63136584A (en) 1986-11-27 1986-11-27 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS63136584A true JPS63136584A (en) 1988-06-08

Family

ID=17629557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28075986A Pending JPS63136584A (en) 1986-11-27 1986-11-27 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS63136584A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154489A (en) * 1988-12-06 1990-06-13 Nec Corp Temperature control circuit
JP2003142766A (en) * 2001-09-06 2003-05-16 Finisar Corp Compact laser package with integrated temperature control

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154489A (en) * 1988-12-06 1990-06-13 Nec Corp Temperature control circuit
JP2737185B2 (en) * 1988-12-06 1998-04-08 日本電気株式会社 Temperature control circuit
JP2003142766A (en) * 2001-09-06 2003-05-16 Finisar Corp Compact laser package with integrated temperature control
JP4566506B2 (en) * 2001-09-06 2010-10-20 フィニサー コーポレイション Compact laser package with built-in temperature controller and optoelectronic module

Similar Documents

Publication Publication Date Title
US6272157B1 (en) Apparatus and method for calibrating a wavelength stabilized laser
EP0111853B1 (en) Temperature measuring apparatus
CA2100828C (en) Stabilization apparatus &amp; method for a sfs
US5003268A (en) Optical signal sampling apparatus
US4796996A (en) Laser temperature modulation and detection method
US4724314A (en) Material characteristics measuring methods and devices
US4988859A (en) Optical waveform measuring device
US4057734A (en) Spectroscopic apparatus with balanced dual detectors
JPS63136680A (en) Semiconductor laser device
JP2546151B2 (en) Laser diode emission wavelength controller
JP2004521500A (en) Wavelength stabilized laser light source
JPS63136584A (en) Semiconductor laser device
US7050164B2 (en) Spectrophotometer
EP0345011B1 (en) Electrical signal observing device
JP3196300B2 (en) Semiconductor laser device
US6545257B2 (en) Thermal-electrically cooled photodetector
JPH04248423A (en) Apparatus for measuring luminescence
KR100282611B1 (en) Photodetector for wavelength stabilization device and active wavelength measurement device and manufacturing method of the photodetector
JPH045547A (en) Carbon dioxide gas sensor
JP3110139B2 (en) Optical fiber temperature sensor
SU945682A1 (en) Device for remote measuring of temperature
JPS6112530B2 (en)
JPH07202311A (en) Wavelength stabilizing method for light semiconductor laser device
JPS5892838A (en) Measuring device for light loss
JP2001289711A (en) Photodetection device