JPS6313653A - Continuous casting method for steel - Google Patents

Continuous casting method for steel

Info

Publication number
JPS6313653A
JPS6313653A JP15749686A JP15749686A JPS6313653A JP S6313653 A JPS6313653 A JP S6313653A JP 15749686 A JP15749686 A JP 15749686A JP 15749686 A JP15749686 A JP 15749686A JP S6313653 A JPS6313653 A JP S6313653A
Authority
JP
Japan
Prior art keywords
casting
speed
steady
mold
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15749686A
Other languages
Japanese (ja)
Inventor
Takashi Kanazawa
敬 金沢
Kunio Yasumoto
安元 邦夫
Takeshi Nakai
中井 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15749686A priority Critical patent/JPS6313653A/en
Publication of JPS6313653A publication Critical patent/JPS6313653A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To stably obtain a cast slab having good surface characteristic at little energy consumption by giving the specific strong ultrasonic wave vibration only at the time of condition when casting velocity is out of the stationary velocity. CONSTITUTION:A continuous casting mold 2 fitting the ultrasonic wave vibrator 1, 1 is used and the casting velocity is monitored and only at the time of occurring >=+20% and <=-20% velocity difference to the stationary casting velocity, a control circuit is formed, so as to become to >=15kHz ultrasonic wave vibrator. In this way, a lubricity between the mold and the cast slab is further easily and stably maintained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、超音波振動エネルギーを効率良く使用して
均一2(パウダー潤滑を有効に確保し、表面性状の良好
な鋳片を安定にかつエネルギー消費量少なく製造するこ
とが”i lil )、:鋼の連続鋳造方法に関するも
のである。
[Detailed Description of the Invention] <Industrial Application Field> This invention effectively uses ultrasonic vibration energy to effectively ensure uniform 2 (powder lubrication) and stably produce slabs with good surface properties. The purpose of this invention is to produce steel with low energy consumption.

〈背景技術〉 鋼の連続鋳造においては、鋳型と鋳片との間の摩擦を軽
減して焼付きを防止し安定鋳造状態を得るため、通常、
潤滑剤(鋳造パウダー)の使用と共に鋳型に上下動を与
えるメシレーションの採用が行われている。
<Background technology> In continuous casting of steel, in order to reduce the friction between the mold and the slab to prevent seizure and obtain a stable casting condition,
Along with the use of lubricant (casting powder), mesillation is being used to create vertical movement of the mold.

ところが、これらの手段のみでは潤滑対策が十分とは言
えず、例えば鋳込み開始に続く鋳造速度上昇時や、鋳込
め終了前の鋳造速度下降時等のような“鋳造速度イー安
定時”にはどうしても潤滑性が悪化してしまっC焼付き
を/l易く、ブレークアウトにまでつながると言う懸念
を拭い得なかった。特に、鋳込Iノ開始時は潤滑剤の温
度も低いためにこのような傾向が一層強く、連続鋳造の
安定操業上大きな問題となっていた。
However, these measures alone are not sufficient for lubrication, and it is inevitable that lubrication will occur when the casting speed is stable, such as when the casting speed increases after the start of pouring or when the casting speed decreases before the end of pouring. There was a concern that the lubricity deteriorated and C seizure was more likely to occur, leading to breakouts. In particular, this tendency is even stronger at the start of pouring because the temperature of the lubricant is low, which poses a major problem in terms of stable operation of continuous casting.

そこで、実操業では、鋳造開始時の約30分間、即ち鋳
造速度が目標レベル(定常鋳込み速度)で安定するまで
の間は性状の異なるフロントパウダーを潤滑剤として用
いることが行われている。
Therefore, in actual operations, front powders with different properties are used as a lubricant for about 30 minutes at the start of casting, that is, until the casting speed stabilizes at the target level (steady casting speed).

この“フロントパウダー”は、滓化性が非常に良くて潤
滑性に冨むため鋳込み開始時のブレークアウト防止には
優れた効力を発揮するが、その反面、場面の保温性と言
う点からはそれほど十分な効果が期待できず、従ってこ
れを使用する時期は鋳込み開始後約30分までで、その
後は保温性をも加味した定常鋳込み時(定常速度での鋳
込み時)の鋳造パウダーに切り換えると言う方法が一般
に採られている。しかしながら、前記の如くフロントパ
ウダーは滓化性改善の点にのみ着目して開発されたもの
であるので、熔融した際に鋳型と鋳片との間への不均一
流入が著しく、これに起因して鋳片表面に縦ワレが多発
すると言う問題を避は得ないものであった。
This "front powder" has very good sludge-forming properties and rich lubricity, so it is effective in preventing breakouts at the start of casting, but on the other hand, it has poor heat retention properties. It is not expected to have a sufficient effect, so it should only be used for about 30 minutes after the start of casting, and then switched to a casting powder for steady casting (casting at a steady speed) that also takes into account heat retention. This method is generally adopted. However, as mentioned above, front powder was developed with a focus on improving slag formation, so when it is melted, it flows unevenly between the mold and the slab, which causes problems. Therefore, the problem of frequent occurrence of vertical cracks on the surface of the slab was unavoidable.

−・方、鋳込み終了前の鋳造速度下降時においては、パ
ウダーの種類を変更することこそなされてはいないが、
や4.1. l:J鋳造速度イζ安定に起因した溶融パ
ウダーの流入不拘・が生し、例え°”焼付き”に至るこ
とがないにして4)表面1iCの多発を抑えるのは極め
て困難なことであっ人:。
- On the other hand, when the casting speed decreases before the end of casting, the type of powder is not changed,
Ya 4.1. l: J Casting speed A Due to the stability of ζ, the inflow of molten powder is unrestricted, and even if it does not lead to 'seizing', it is extremely difficult to suppress the occurrence of 1iC on the surface. Man:.

従って、鋼の連続鋳造鋳j1はそのトップ及びボトム部
近傍に和゛!1する」1定常鋳込み部に重度のスカーフ
ィングを族4°必要があり、表面疵のためにクロップと
し゛CLノJすlkてねばならない部分もでてくるなど
、潤滑面からの歩留り(」(下を余儀無くされていたの
である。
Therefore, the continuous casting of steel j1 has a radius near its top and bottom! 1) It is necessary to carry out severe scarfing in the steady casting part, and there are also parts that have to be cropped and removed due to surface flaws. He was forced to look down.

勿論、一定!/7 浩速度の定常9に込み時であっても
、大きなバルジング発Iトやノズル詰まり等によって鋳
造速度が不安定になるとパウダー流入の不均一による潤
滑不良が発生し、この場合にもやはり表面疵の発生やゾ
し・ クアウトを回避することは困難であった。
Of course, constant! /7 Even when the casting speed reaches a steady state, if the casting speed becomes unstable due to large bulging or nozzle clogging, poor lubrication occurs due to uneven powder inflow, and in this case, the surface It was difficult to avoid the occurrence of defects, scratches, and scratches.

このようなことから、最近、鋳型と鋳片との間の潤滑性
をより向1さ廿−とfJf片の表面1−1状を改善すべ
く、通常のすパル 超音波振動をも鋳型に伺1jする連続鋳造方法が提案さ
れた(特開昭56−11156号公報並びに特開昭56
−11153号公報)。
For these reasons, in order to improve the lubricity between the mold and the slab and the surface condition of the fJf slab, we have recently applied regular ultrasonic vibration to the mold. A continuous casting method was proposed (Japanese Unexamined Patent Publications No. 11156/1983 and
-11153).

しかし、該提案は、[付与する超音波振動の振動数が5
KHz未満になると可聴騒音となり、一方50KHzを
越えると機械的振動として働かないので、前記振動数は
5〜50KHzとすべきである」との指摘や[鋳型が相
対的に上昇しているときにのみ振動エネルギーを選択的
に付与するのがエネルギー効率−に良好である]点を明
らかにしてはいるものの、実際にこの方法を実施する場
合には大型の超音波振動装置を用いる必要がある上、印
加エネルギーも膨大なものとなり、決して手軽に採用で
きるような手段ではなかった。
However, in this proposal, [the frequency of the applied ultrasonic vibration is 5
If the frequency is less than KHz, it becomes an audible noise, whereas if it exceeds 50 KHz, it does not function as mechanical vibration, so the frequency should be between 5 and 50 KHz.'' However, when actually implementing this method, it is necessary to use a large ultrasonic vibrator and However, the applied energy was also enormous, and it was not a method that could be easily adopted.

この発明は、鋼の連続鋳造における上述のような問題点
を踏まえた上で、導入が容易でない大型の超音波発生装
置を必要としたり膨大なエネルギー消費を要することな
しに、表面性状の良好な連続鋳造鋳片を安定して製造す
る方法を見出すべく、特に「定常鋳込み時には鋳型と鋳
片との間の潤滑不良が殆ど起きず、従って格別に問題と
なるような表面疵は発生しない1との究明事項に着目し
て進められた本発明H等の研究によって完成されたもの
であり、 オンレートする鋳型に超音波振動を付与しつつ鋼を連続
鋳造する方法において、例えば鋳込み開始時から定常鋳
込め速度に安定するまでの間や、鋳込み終了が近づいて
鋳造速度が定常速度より下降してから鋳込みが終了する
までの間、或いは定常速度での鋳込み時であってもノズ
ル詰まり等の要因で鋳造速度が不安定になった場合等の
ような“鋳造速度が定常鋳込み速度から外れた状態のと
き”にのみ15KIIz以l−の強い超音波振動を付与
して鋳型と鋳J1との間の潤滑1/1を維持し、非定常
部においても表面(’I状の良好な鋳片を消費エネルギ
ー少なく安定し°C製造し得るようにした点、を特徴と
するものである。
This invention takes into consideration the above-mentioned problems in continuous casting of steel, and has developed a method for achieving good surface quality without requiring a large ultrasonic generator that is difficult to introduce or consuming a huge amount of energy. In order to find a method to stably produce continuously cast slabs, we have developed a system in which ``during steady casting, there is almost no lubrication failure between the mold and the slab, and therefore no surface flaws that pose a particular problem occur.'' This was completed through research such as Invention H, which was carried out with a focus on the findings of Until the filling speed stabilizes, after the casting speed drops below the steady speed as the end of casting approaches, and until the end of casting, or even when casting at a steady speed, due to factors such as nozzle clogging. Only when the casting speed deviates from the steady casting speed, such as when the casting speed becomes unstable, a strong ultrasonic vibration of 15 KIIz or more is applied to create a bond between the mold and the cast J1. It is characterized by maintaining lubrication of 1/1 and making it possible to produce slabs with a good surface ('I-shape) even in unsteady parts at a stable temperature with low energy consumption.

なお、この発明において“鋳造速度が定常鋳込み速度か
ら外れた状態のとき゛にのみ超音波振動の強さく振動数
)を15KHz以1.と限定したのは、定常速度での鋳
造時には比較的弱い超音波振動によっても十分な潤滑状
態を維持できるのに対して、定常速度から外れたときに
は15KHz未満の超音波振動では表面疵を生じないだ
けの潤滑状態が維持されなくなるからである。
In addition, in this invention, the reason why the ultrasonic vibration intensity (frequency) is limited to 15 KHz or less only when the casting speed deviates from the steady casting speed is because the ultrasonic vibration is relatively weak when casting at a steady speed. This is because while a sufficient lubrication state can be maintained by sonic vibration, when the speed deviates from a steady state, ultrasonic vibration of less than 15 KHz will not maintain a lubrication state sufficient to prevent surface flaws.

さて、この発明は、連続鋳造鋳型に超音波振動を与えた
ときにもたらされる潤滑特性態様について様々な角度か
ら鋭意研究を重ねて得た本発明者等の知見事項たる、[
鋳型のオシレーション運動に超音波振動を重畳させる場
合、鋳造速度が一定に保たれている間は重畳させる超音
波振動が10KHz以下でも潤滑性が十分維持されるが
、鋳造速度が不安定な場合には少なくとも15KHz以
上の超音波振動を付与してやらないと潤滑性が維持され
ない」と言う事実を基に生み出されたものであり、その
実施には例えば第1図の如くに超音波振動子1.lを取
付けた連続鋳造鋳型2が使用されるが(第1図において
符号3は溶鋼、4は鋳造パウダー、5は凝固シェルを示
している)、この場合、まず鋳造速度をモニターしてお
き、定常鋳込み速度に対して±20%以上の速度差が発
生したときにのみ超音波振動が15KIIz以上となる
ように制御された回路を構成しておけば、鋳型と鋳片間
の潤滑性を一層容易に、かつ安定して維持することがで
きるのである。なぜなら、溶融した鋳造パウダーは鋳造
速度が定常鋳込み速度よりも20%以上外れたときに不
均一流入しがちとなり、鋳型と鋳片間の潤滑性を損なっ
て鋳片表面に疵を発生させる傾向を#1−シているから
である。
Now, this invention is based on the findings of the present inventors obtained through intensive research from various angles on the lubrication characteristics brought about when ultrasonic vibration is applied to a continuous casting mold.
When ultrasonic vibration is superimposed on the oscillation motion of the mold, as long as the casting speed is kept constant, sufficient lubricity can be maintained even if the ultrasonic vibration to be superimposed is 10 KHz or less, but if the casting speed is unstable This method was created based on the fact that lubricity cannot be maintained unless ultrasonic vibrations of at least 15 kHz or more are applied to the lubrication process. A continuous casting mold 2 is used (in FIG. 1, numeral 3 indicates molten steel, 4 indicates casting powder, and 5 indicates solidified shell). In this case, the casting speed is first monitored. By configuring a circuit that controls the ultrasonic vibration to 15 KIIz or more only when a speed difference of ±20% or more from the steady pouring speed occurs, the lubricity between the mold and the slab can be further improved. It can be easily and stably maintained. This is because molten casting powder tends to flow unevenly when the casting speed deviates by more than 20% from the steady pouring speed, which tends to impair the lubricity between the mold and the slab and cause scratches on the slab surface. #1 - Because it is.

ところで、第2図は、十分に満足できる表面性状を有し
た連続鋳造鋳片が得られる超音波振動付与例を示したグ
ラフである。このグラフは[鋳込み開始時と鋳込み終−
r時、並びに鋳込み途中における鋳造速度(1e l一
時の2割以十鋳造速度が低下した区間に18KIIzの
超音波振動が付与されたものの、それ以外の一定鋳造速
度時には1OKHzの超音波振動しか付与されなかった
jごとを示しているが、このように鋳造の全]−程を通
して一定の大きな超音波振動を付りすすることのない音
波振動付与エネルギーを極力少なくした状況下であって
も、鋳造速度不安定時にさえ所定141度の超音波振動
を付与すれば本発明者等の知見通りに鋳造の全工程で十
分な潤滑性が維持され、良好な表面性状の連続鋳造鋳片
が得られるのである。
By the way, FIG. 2 is a graph showing an example of application of ultrasonic vibration to obtain a continuously cast slab having sufficiently satisfactory surface properties. This graph shows [At the start of casting and at the end of casting]
Although ultrasonic vibrations of 18KIIz were applied in the section where the casting speed decreased by more than 20% at time r and during casting (1e l), only ultrasonic vibrations of 1OKHz were applied at other times when the casting speed was constant. However, even under conditions where the energy applied to sonic vibrations is minimized without applying constant large ultrasonic vibrations throughout the entire casting process, casting Even when the speed is unstable, by applying ultrasonic vibration of a predetermined 141 degrees, sufficient lubricity can be maintained throughout the entire casting process, as found by the present inventors, and continuously cast slabs with good surface properties can be obtained. be.

〈発明の効果〉 そして、上述のように構成されるこの発明によってもた
らされる効果の代表的なものとしてfa)  鋳込み開
始時にフロントパウダーを使用する必要がなくなり、し
かも鋳片トップ部のワレが極力減少する、 fb)  鋳込み終了時における鋳造パウダーの不均一
流入が緩和されて鋳片ボトム部の表面疵が減少し、従っ
てスカーフィングの軽度化やクロップロスの低減が可能
となって歩留りが向上する、(C)  鋳込み中のトラ
ブル発生時にも鋳型と鋳片間に十分な潤滑性が保たれ、
表面疵やブレークアウトの発生を亭して防止できる、 +dl  超音波振動エネルギーの利用効率が極めて良
いので、エネルギー消費量の顕著な増大を招くことがな
い、 等を列挙することができるが、以下、実施例によりその
具体的な効果の−・端を比較例と対比しながら説明する
<Effects of the Invention> The representative effects brought about by this invention configured as described above are fa) It is no longer necessary to use front powder at the start of casting, and cracks at the top of the slab are minimized. fb) Uneven inflow of casting powder at the end of casting is alleviated, surface flaws at the bottom of the slab are reduced, and therefore scarfing and crop loss can be reduced, improving yield. (C) Sufficient lubricity is maintained between the mold and the slab even when trouble occurs during casting.
It is possible to suppress and prevent the occurrence of surface flaws and breakouts, and the use efficiency of ultrasonic vibration energy is extremely high, so there is no significant increase in energy consumption. The specific effects will be explained using examples and comparisons with comparative examples.

〈実施例〉 まず、成分組成がC+0.15%(以下、成分割合は重
量%とする) 、Sl +0.45%、Mn : 1.
41%、P: 0.02%、s : 0.009%、旧
: 0.01%、Cr : 0.03%、Cu : 0
.01%、N : 0.0035%6、残部:実質的に
Feである中炭素鋼を250トン転炉にて溶製した後、
湾曲半径が15rnの2ストランド連続鋳造機よって厚
さ:200uX幅:1600龍のスラブを1.8 m/
minの鋳造速度(定常時)で5連鋳した。
<Example> First, the component composition is C + 0.15% (hereinafter, the component ratio is expressed as weight %), Sl + 0.45%, Mn: 1.
41%, P: 0.02%, s: 0.009%, old: 0.01%, Cr: 0.03%, Cu: 0
.. 01%, N: 0.0035%6, balance: After melting medium carbon steel, which is essentially Fe, in a 250-ton converter,
A 2-strand continuous casting machine with a curvature radius of 15rn casts a slab of thickness: 200u x width: 1600 mm at 1.8 m/
Five continuous castings were performed at a casting speed of min (at steady state).

その際、No、lストランドはS前型をオシレーシヨン
するのみ(知育波振動の重畳なし)の通常の鋳込み方法
を採用し、鋳造初期の間は一般に使用されるフロントパ
ウダーを20にg又は10Kg投入し、その後定常パウ
ダーに切換えて鋳込みをwl、Vtシた。
At that time, for the No. and L strands, the normal casting method of only oscillating the S front mold (no superimposition of educational wave vibration) was adopted, and during the initial casting stage, 20 g or 10 kg of commonly used front powder was added. After that, I switched to steady powder and started casting at wl and vt.

一方、No、2ス[ランドでは、鋳型の長辺面に4個の
、そして短辺面の中央に1個の超音波振動子を取付ける
と共に、鋳込み開始時と鋳込み終了時には18KHzの
超音波振動を、そして一定鋳込み時には1OKHzの低
エネルギー超音波振動をそれぞれ重畳するように設定し
、更に鋳造速度のモニターから、実際の鋳造速度が目標
より±20%変動した場合に18Ktlzの超音波振動
を与えるようにも制御回路をセットして鋳込みを行った
。なお、No、2ストランドでは鋳込みの初期から定常
パウダーを使用して鋳込みを実施した。
On the other hand, in No. 2 S[Land], four ultrasonic vibrators are installed on the long side of the mold and one in the center of the short side, and 18KHz ultrasonic vibration is applied at the start and end of casting. and 1 OKHz low energy ultrasonic vibration is set to be superimposed during constant casting, and from the casting speed monitor, 18Ktlz ultrasonic vibration is applied if the actual casting speed fluctuates by ±20% from the target. I set up the control circuit and started casting. In addition, for No. 2 strand, casting was carried out using steady powder from the initial stage of casting.

この際の、鋳込み開始時における各鋳片の縦割れ発生状
況を第3図に、また鋳込み終了時のコーナー横割れ発生
状況を第4図にそれぞれ示す。
At this time, FIG. 3 shows the occurrence of vertical cracks in each slab at the start of casting, and FIG. 4 shows the occurrence of horizontal corner cracks at the end of casting.

上記第3図及び第4図からも明らかであるが、No、l
ストランドでフロントパウダーを20Kg投入した場合
には、鋳造速度が安定してもなおフロントパウダーの影
響が残り、鋳込み長さで約60mまで縦割れが発生する
。このフロントパウダーを10Kgに減らすと縦割れが
減少しその影響も比較的短くなるが、得られた鋳片を観
察すると、その表面には鋳型内でブレークアウトを生じ
た痕跡が明瞭に認められた。これに対して、No、2ス
トランドではフロントパウダーを使用しないために縦ワ
レは皆無であり、iトた超音波振動による潤滑も1分で
ブレークアウトも起こさなかった。
As is clear from the above figures 3 and 4, No.
When 20 kg of front powder is introduced in the form of a strand, even if the casting speed becomes stable, the influence of the front powder remains, and vertical cracks occur up to a casting length of approximately 60 m. When the amount of front powder was reduced to 10 kg, the vertical cracks were reduced and their effect became relatively short, but when the obtained slab was observed, traces of breakout in the mold were clearly observed on its surface. . On the other hand, the No. 2 strand had no vertical cracks because no front powder was used, and no breakout occurred even after 1 minute of lubrication using ultrasonic vibration.

更に、鋳込め終了時の:1−す一横割れも、No、1ス
トランドではd忍IJられた力(N(1,2ストランド
では皆無であった。
Furthermore, there was no horizontal cracking at the end of casting, which was caused by a force (N) in the No. 1 strand (1 and 2 strands).

なお、今回の1!込〕lで番、1定常状態での鋳造速度
は安定していて鋳込め途中での大きな速度変化はなく、
No、lストラン1゛及びNo、2スI・ランド共に該
部分の表面性杖は良々Tであった。
In addition, this time's 1! Including] Number, 1 The casting speed in steady state is stable and there are no large speed changes during pouring.
The surface quality of the No. 1 strand 1 and No. 2 strand I land was good.

以」二に説明した如く、この発明は、オシレーションす
る鋳型に超音波振動を((JJjL、て鋼を連続鋳造す
るに際し、鋳込み開始時、鋳込み終了時、更には鋳造速
度不p;定時にのの超音波振動を強くして各部の潤滑性
を保ら、これに、F、り鋳造パウダーの均一流入を図っ
て鋳片表面欠陥を抑えるものであるので、常時大出力が
出せるような大型の超音波振動発生機を必Iyjとする
ことなく、また極力少ない超音波振動エネルギー消費購
でもって表面疵の少ない高歩留り鋳込を安定して製造で
きる」二、オートスターI・やオーl・スI・ツブの速
度アップも図れて速やかに定常鋳込み速度状態を実現す
ることも可能となるなど、産業上極めて有用な効果がも
たらされるのである。
As explained in Section 2, this invention applies ultrasonic vibrations to an oscillating mold during continuous casting of steel, at the start of casting, at the end of casting, and even at regular intervals. The ultrasonic vibration is strengthened to maintain the lubricity of each part, and in addition, the casting powder is uniformly inflowed to suppress surface defects of the cast slab, so it is possible to create a large-sized product that can constantly produce high output. It is possible to stably produce high-yield castings with few surface defects without the need for an ultrasonic vibration generator, and with as little ultrasonic vibration energy consumption as possible.''2. This brings about extremely useful effects industrially, such as increasing the speed of the sludge and tube and quickly achieving a steady casting speed state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、連続鋳造鋳型への超音波振動子の取付は状況
を示す概略図、 第2図は、この発明による超音波振動付与状況を示すグ
ラフ、 第3図は、実施例における鋳込み開始時の鋳造速度変化
と縦割れ発生状況を示すグラフ、第4図は、実施例にお
ける鋳込み終了時の鋳造速度変化とコーナー横ワレ発生
状況を示すグラフである。 図面において、 l・・・超音波振動子、 2・・・連続鋳造鋳型、3・
・・溶鋼、     4・・・鋳造パウダー、5・・・
凝固シェル。
Fig. 1 is a schematic diagram showing how an ultrasonic vibrator is attached to a continuous casting mold, Fig. 2 is a graph showing how ultrasonic vibration is applied according to the present invention, and Fig. 3 is a start of casting in an example. FIG. 4 is a graph showing changes in casting speed at the end of casting and occurrence of horizontal cracks in the corners in Examples. In the drawings, l... Ultrasonic vibrator, 2... Continuous casting mold, 3...
... Molten steel, 4... Casting powder, 5...
solidified shell.

Claims (2)

【特許請求の範囲】[Claims] (1)オンレートする鋳型に超音波振動を付与しつつ鋼
を連続鋳造する方法において、鋳造速度が定常速度から
外れた状態のときにのみ15KHz以上の強い超音波振
動を付与することを特徴とする鋼の連続鋳造方法。
(1) A method for continuously casting steel while applying ultrasonic vibrations to an on-rate mold, characterized in that strong ultrasonic vibrations of 15 KHz or more are applied only when the casting speed deviates from a steady speed. Continuous casting method for steel.
(2)鋳込み開始から定常鋳込み速度になるまでの間と
、定常速度での鋳込みを終える時点から鋳込み終了まで
の間とに15KHz以上の強い超音波振動を付与する、
特許請求の範囲第1項に記載の鋼の連続鋳造方法。 (2)定常鋳込み速度に対して±20%以上の速度差が
ある場合にのみ15KHz以上の超音波振動を付与する
、特許請求の範囲第1項に記載の鋼の連続鋳造方法。
(2) Applying strong ultrasonic vibrations of 15 KHz or more between the start of casting and the time when the steady casting speed is reached, and from the time when the casting at the steady speed ends until the end of the casting.
A continuous casting method for steel according to claim 1. (2) The continuous steel casting method according to claim 1, wherein ultrasonic vibration of 15 KHz or more is applied only when there is a speed difference of ±20% or more with respect to the steady casting speed.
JP15749686A 1986-07-04 1986-07-04 Continuous casting method for steel Pending JPS6313653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15749686A JPS6313653A (en) 1986-07-04 1986-07-04 Continuous casting method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15749686A JPS6313653A (en) 1986-07-04 1986-07-04 Continuous casting method for steel

Publications (1)

Publication Number Publication Date
JPS6313653A true JPS6313653A (en) 1988-01-20

Family

ID=15650952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15749686A Pending JPS6313653A (en) 1986-07-04 1986-07-04 Continuous casting method for steel

Country Status (1)

Country Link
JP (1) JPS6313653A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1250972A2 (en) * 2001-04-20 2002-10-23 SMS Demag AG Method and device for continuous casting slabs, especially thin slabs

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1250972A2 (en) * 2001-04-20 2002-10-23 SMS Demag AG Method and device for continuous casting slabs, especially thin slabs
EP1250972A3 (en) * 2001-04-20 2004-09-22 SMS Demag AG Method and device for continuous casting slabs, especially thin slabs

Similar Documents

Publication Publication Date Title
JPH04284950A (en) Method for continuously casting metal strip
JP4337565B2 (en) Steel slab continuous casting method
JPS6313653A (en) Continuous casting method for steel
JPH0550201A (en) Light rolling reduction method in continuous casting
JPS6123559A (en) Oscillating method of mold for continuous casting of steel
JP3687535B2 (en) Continuous casting method of steel
US3397733A (en) Method for removal of gas from molten metal during continuous casting
JPS632534A (en) Method of bottom pouring steel ingot making
JP7389335B2 (en) Method for producing thin slabs
JPH08187562A (en) Method for continuously casting steel
JPS5838646A (en) Continuous casting method for slab of middle carbon region steel
JPS586754A (en) Continuous casting method for al or al alloy
JP2000334548A (en) Continuous casting method with continuous continuous casting of mixture of molten steels in same tundish
US3552481A (en) Apparatus for removing gas from molten metal during continuous casting
JPH11192539A (en) Method for continuous casting of chromium-containing molten steel having excellent internal defect resistance
JPH03189050A (en) Method for continuously casting molten steel by twin roll method
JPS59166358A (en) Continuous casting method
JPH0464769B2 (en)
JPH038541A (en) Apparatus for continuously casting strip
JPH01266945A (en) Continuous casting method
JPS61206550A (en) Continuous casting method for steel
JPS63188459A (en) Continuous casting method for round cast billet
JPH11179507A (en) Method for oscillating mold for continuous casting
SU1764785A1 (en) Method for continuous casting of billets
JPS5855153A (en) Continuous casting method for steel