JPS6313648A - Adjusting method for molten steel temperature in tundish - Google Patents

Adjusting method for molten steel temperature in tundish

Info

Publication number
JPS6313648A
JPS6313648A JP15510886A JP15510886A JPS6313648A JP S6313648 A JPS6313648 A JP S6313648A JP 15510886 A JP15510886 A JP 15510886A JP 15510886 A JP15510886 A JP 15510886A JP S6313648 A JPS6313648 A JP S6313648A
Authority
JP
Japan
Prior art keywords
molten steel
tundish
inert gas
coolant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15510886A
Other languages
Japanese (ja)
Other versions
JPH02145B2 (en
Inventor
Koichi Kudo
紘一 工藤
Rokuro Komagine
駒木根 六郎
Hirokuni Uezaki
植崎 啓邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15510886A priority Critical patent/JPS6313648A/en
Publication of JPS6313648A publication Critical patent/JPS6313648A/en
Publication of JPH02145B2 publication Critical patent/JPH02145B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/118Refining the metal by circulating the metal under, over or around weirs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To smoothly melt a cooling material and to make sure stable molten steel temp. by blowing inert gas at the specific quality into molten steel in a molten steel stirring room and charging the cooling material in the opened molten steel surface. CONSTITUTION:The molten steel in a ladle is poured through a long nozzle 5 and at the time of blowing the inert gas into the molten steel in the molten steel stirring room 2 through the long nozzle 5, the molten steel becomes easily to strong molten steel flow and shifting of heat to the cooling material is smoothly executed. The blowing quantity of inert gas is provided at >=0.5Nm<3>/Hr. The slag layer 10 is formed on the molten steel surface in a tundish 1, but by charging the cooling material as aiming at the opened molten steel surface 11 formed by blowing the inert gas, the cooling material is not covered by the slag and the cooling material is rapidly melted.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は鋼材小片よりなる冷却材をタンディツシュ内の
溶鋼に投入して、鋼の連続鋳造におけるタンディツシュ
内溶鋼温度の調整方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for adjusting the temperature of molten steel in a tundish in continuous steel casting by introducing a coolant made of small pieces of steel into the molten steel in the tundish.

[従来の技術] 高温の溶鋼に鋼の線条や小片を冷却材として投入し、溶
鋼温度を例えば(液相線+40℃)近傍の温度に調整す
ることは、高温の溶鋼によって冷却材は溶は易いため、
容易である。しかしながら例えば(液相線+10℃)近
傍の温度に調整する際は溶鋼温度が低いために冷却材は
溶は難く、スムーズに溶けなかったり溶は残ったりする
ため、所望の温度に調節することは容易ではない。一方
鋳造温度を下げると紡片の内部組織が改善される場合が
多いが、この際の鋳造温度は(液相線+10〜20℃)
の糺温を1111とするものであり、温度調節は上述の
ごとき困難を伴う。特開昭54−21816号公帽は、
タンディツシュ内に、溶解しうるような金属線条を連続
的に供給し、タンディツシュ内の溶融金属の温度を低下
させる技術である。しかしながら溶鋼湿度が低い場合や
、多量の冷却材を供給する場合は、特別の工夫を行わず
に金属線条を連続的に供給しただけでは、スムーズな温
度調節は行い鐙い。又特公昭54−24372号公報は
、タンディツシュ内の溶鋼に冷却材を投入し、取鍋から
の溶鋼注入流エネルギーにより攪拌して、溶鋼温度を(
液相線)〜(液相線+10℃)に制御する方法である。
[Prior art] Injecting steel strips or small pieces into high-temperature molten steel as a coolant and adjusting the molten steel temperature to, for example, a temperature close to (liquidus line +40°C), the coolant is cooled by the high-temperature molten steel. Because it is easy,
It's easy. However, when adjusting the temperature to around (liquidus line + 10℃), for example, the coolant is difficult to melt because the molten steel temperature is low, and it may not melt smoothly or the melt may remain, so it is difficult to adjust the temperature to the desired temperature. It's not easy. On the other hand, lowering the casting temperature often improves the internal structure of the spun pieces, but the casting temperature in this case is (liquidus +10 to 20°C).
The temperature is 1111, and temperature control is accompanied by the above-mentioned difficulties. The Japanese Patent Publication No. 54-21816 hat is
This is a technique in which a molten metal wire is continuously supplied into a tundish to lower the temperature of the molten metal within the tundish. However, when the humidity of molten steel is low or when a large amount of coolant is supplied, it is not possible to smoothly adjust the temperature by simply supplying metal wire continuously without any special measures. Moreover, in Japanese Patent Publication No. 54-24372, a coolant is poured into the molten steel in the tundish, and the molten steel is stirred by the energy of the molten steel injection flow from the ladle, and the molten steel temperature is increased (
This is a method of controlling the temperature between the liquidus line and the liquidus line +10°C.

通常溶鋼はタンディツシュノズルから連続鋳造鋳型に注
入されるが、タンディツシュ内の溶鋼深さは略一定で操
業を行うことが多く、取鍋溶鋼ヘットの変化に応じ取鍋
ノズルを開閉や絞りを繰返してタンディツシュ内の溶鋼
深さを調節する。このような場合に特公昭54−243
72号の方法を行うと、取鍋ノズルの開閉や絞りの都度
溶鋼注入流エルメギ−は変るため、冷却材の溶解は不安
定となり、又例えば取鍋ノズルを閉めた際は溶鋼注入流
エネルギーがなくなるために、攪拌は不十分となる。
Normally, molten steel is injected into a continuous casting mold from a tundish nozzle, but operations are often performed with the molten steel depth in the tundish being approximately constant, and the ladle nozzle is repeatedly opened and closed or throttled according to changes in the ladle molten steel height. to adjust the depth of molten steel in the tundish. In such cases, the special public
When method No. 72 is carried out, the melting of the coolant becomes unstable because the molten steel injection flow hermegi changes each time the ladle nozzle is opened/closed or throttled, and for example, when the ladle nozzle is closed, the molten steel injection flow energy changes. As a result, stirring becomes insufficient.

[発明が解決しようとする問題点] 本発明は、溶鋼を冷却するために投入した冷却材を常に
迅速確実に溶解せしめる事を目的としており、例えば液
相線温度に近い低温に溶鋼温度を調節する場合であって
も、溶鋼を温度の変動が小さくnつ所望の温度に調節す
ることを目的としている。
[Problems to be Solved by the Invention] The purpose of the present invention is to always quickly and reliably melt the coolant introduced to cool the molten steel. For example, by adjusting the temperature of the molten steel to a low temperature close to the liquidus temperature. Even in cases where the temperature changes are small, the purpose is to adjust the molten steel to a desired temperature with small temperature fluctuations.

[問題点を解決するための手段] 本発明は、タンディツシュの一部に堰よりなる溶鋼攪拌
室を設け、1一端が取鍋ノズルに連設され下端は該溶鋼
攪拌室の溶鋼中に浸漬されたロングノズルを介して、1
1女鍋7111鋼をタンディツシュに注入すると共に、
該ロングノズルを介して不活性ガスを溶鋼攪拌室の溶鋼
中に0 、5 N rrr / Hr以上吹込み、不活
性ガス吹込みによるボイルでできた裸湯部分に、鋼材小
片よりなる冷却材を所望の割合で投入する事を特徴とす
る、鋼の連続鋳造におけるタンディツシュ内溶鋼温度の
調整方法である。
[Means for Solving the Problems] The present invention provides a molten steel stirring chamber consisting of a weir in a part of the tundish, one end of which is connected to a ladle nozzle, and the lower end of which is immersed in the molten steel of the molten steel stirring chamber. 1 through a long nozzle.
Inject 1 woman pot 7111 steel into tanditshu,
Inert gas is blown into the molten steel in the molten steel stirring chamber through the long nozzle at a rate of 0.5 N rrr/Hr or more, and a coolant made of small pieces of steel is applied to the bare hot water portion formed by boiling due to the inert gas injection. This is a method for adjusting the temperature of molten steel in a tundish in continuous steel casting, which is characterized by charging at a desired ratio.

[作用] 本発明では、タンディツシュの一部に堰よりなる溶鋼攪
拌室を設置Jろ。タンディツシュの溶鋼攪拌室内の溶鋼
釦攪)′1゛すると、強い攪拌力が得られ。
[Function] In the present invention, a molten steel stirring chamber consisting of a weir is installed in a part of the tundish. Stirring the molten steel button in the molten steel stirring chamber of the tanditshu) When the molten steel button is stirred, a strong stirring force can be obtained.

従って冷却材はtl?41−J易い。第1図は本発明の
溶鋼攪拌室の例であるが、この例では冷却材は不堪で囲
った内に投入するとよい。攪拌室の大きさはタンディツ
シュ容址によって異なるが、」二層のrIJQlは]、
 、 5〜2 、5 m 、不服の中Qよけ0.5〜1
.2mである。本発明ではロングノズルを介して取鍋溶
鋼を注入し、又ロングノズルを介して不活性ガスを溶鋼
攪拌室内の溶鋼中に吹込む。タンディツシュ内の取鍋溶
鋼を効率よく攪拌するには、同一のロングノズルを介し
て吹込まれた不活性ガスにより行うのがよく、溶鋼は容
易に強い溶鋼流となるため、冷却材との熱の授受は円滑
に行われる。第2図は多孔質煉瓦から不活性ガスを導入
する例である。ロングノズルを溶鋼攪拌室に浸漬する深
さは操業に適するように選定するが、本発明では約25
0mm浸漬することにより活発な攪拌が得られた。次に
不活性ガスの吹入量は0.5NrI?/Ilr以1−が
望ましい。第3図は鋳造中にタンディツシュノズル間の
上部(内側及び外側ストランド間)の溶鋼温度を測定し
た結果で、Aは溶鋼攪拌室を設けて、不活性ガスの吹込
がない場合、Bは溶鋼攪拌室を設けないでINrn″/
Hr吹込んだ場合、Cは本発明の方法で溶鋼攪拌室を設
けINrn’/Tlr吹込んだ例である。第3図Aにみ
られるごとく、不活性ガスの吹込がないと、溶鋼の攪拌
力は弱く冷却材はスムーズに溶解しないため温度の変動
が大きい。又第3図11にみられるごとく、攪拌室を設
けないで不活性ガスを吹込んでも第3図へ同様、冷却材
はスムーズに溶解しないため、温度の変動は大きい。第
3図Cの場合は、安定して強力な溶鋼攪拌流が形成され
、溶鋼流と冷却材の熱の授受が活発となるため、タンデ
ィツシュ内の溶鋼温度を安定にする。この不活性ガスの
吹込は更に別の効果として鋼浴面に裸湯を形成するため
、必要である。即ちタンディツシュ内の鋼浴面にはスラ
グ層10が形成されているが、通常はスラグ層を通過す
る際、冷却材の表面がスラグで覆われ、これが断熱層と
なり冷却材の溶解を遅らせる。本発明では不活性ガスの
吹込で形成された裸湯11をめがけて冷却材を投入する
ため、冷却材がスラグで覆われることがなく、冷却材の
溶解が速かである。次に本発明で使用する冷却材は鋼材
小片であるが、これについて説明する。迅速に溶ける冷
却材としてはその融点が低いもの即ち高炭素系が望まし
い。k例えば鋳造速度が5トン/分の連続特進溶鋼の温
度を20℃下げるには約50kg/分の冷却材の添加と
なるが、これは3mmφの鋼線では約1000m/分の
供給速度となる。従って高強度の高炭素鋼の線条を連続
的に供給するには、大規模な冷却材の供給装置が必要で
ある。
Therefore, the coolant is tl? 41-J easy. FIG. 1 shows an example of the molten steel stirring chamber of the present invention. In this example, the coolant is not suitable for use, so it is preferable to put it in an enclosed chamber. The size of the stirring chamber varies depending on the space of the tank, but the two-layer rIJQl is
, 5~2, 5 m, dissatisfied middle Q shield 0.5~1
.. It is 2m. In the present invention, molten steel in a ladle is injected through a long nozzle, and inert gas is blown into the molten steel in a molten steel stirring chamber through the long nozzle. In order to efficiently stir the molten steel in the ladle in the tundish, it is best to use inert gas blown in through the same long nozzle.The molten steel easily becomes a strong molten steel flow, so the heat exchange with the coolant is prevented. Transfers will be made smoothly. Figure 2 shows an example of introducing inert gas through porous bricks. The depth at which the long nozzle is immersed in the molten steel stirring chamber is selected to suit the operation, but in the present invention, the depth is approximately 25 mm.
Active stirring was obtained by immersing the sample 0 mm deep. Next, is the amount of inert gas injected 0.5NrI? /Ilr or less 1- is desirable. Figure 3 shows the results of measuring the temperature of molten steel in the upper part between the tundish nozzles (between the inner and outer strands) during casting. INrn''/ without stirring chamber
In the case of Hr injection, C is an example in which a molten steel stirring chamber was provided by the method of the present invention and INrn'/Tlr injection was performed. As shown in FIG. 3A, without inert gas blowing, the stirring power of the molten steel is weak and the coolant does not melt smoothly, resulting in large temperature fluctuations. Furthermore, as shown in FIG. 3, even if an inert gas is blown in without providing a stirring chamber, the coolant does not dissolve smoothly, resulting in large temperature fluctuations, as in FIG. In the case of FIG. 3C, a stable and strong molten steel agitation flow is formed, and heat transfer between the molten steel flow and the coolant becomes active, thereby stabilizing the molten steel temperature in the tundish. The blowing of this inert gas is necessary because, as a further effect, it forms bare hot water on the surface of the steel bath. That is, a slag layer 10 is formed on the surface of the steel bath in the tundish, and normally when the coolant passes through the slag layer, the surface of the coolant is covered with slag, which acts as a heat insulating layer and delays the melting of the coolant. In the present invention, since the coolant is poured into the bare hot water 11 formed by blowing inert gas, the coolant is not covered with slag, and the coolant melts quickly. Next, the coolant used in the present invention is a small piece of steel, and this will be explained. The rapidly melting coolant is preferably one with a low melting point, that is, a high carbon type. For example, in order to lower the temperature of continuous special molten steel by 20°C at a casting speed of 5 tons/min, approximately 50 kg/min of coolant must be added, but this corresponds to a supply speed of approximately 1000 m/min for a 3 mm diameter steel wire. . Therefore, a large-scale coolant supply system is required to continuously supply high-strength, high-carbon steel wire.

しかし鋼材小片の場合は例えば5.5Iφの線材を長さ
約1.00mmに切断した鋼材小片は、簡易なコンベヤ
やシュートで、同時に数本宛連続して添加する事は容易
であり、従って簡易な冷却材供給設備で使用できる冷却
材である。冷却材としては他の鋼材小片でもよいが、高
炭素系の鋼材小片の原料としては、線材が入手が容易で
ある。
However, in the case of small pieces of steel, for example, small pieces of steel made by cutting a 5.5Iφ wire rod to a length of about 1.00 mm can be easily added to several pieces at the same time using a simple conveyor or chute, and therefore it is easy to add small pieces of steel to several pieces at the same time using a simple conveyor or chute. This is a coolant that can be used in coolant supply equipment. Although other pieces of steel may be used as the coolant, wire rods are easily available as raw materials for the pieces of high carbon steel.

[実施例] (1)タンディツシュ大きさく容量)  15トン堰の
太きさく」1堰rjl) Q11600+nm(不堪巾
)Q2  900mm ロングノズル浸漬深さ     250mm不活性ガス
供給量 0 、5〜1 、 ON rri” / Hr
タンディツシュ内への溶鋼供給初期からタンディツシュ
注入末期までのタンディツシュ内温度の推移を第4図に
示ず。第4図から明かなように本発明によれば湿度調整
が確実にでき11標温度に対し±5℃の範囲に充分満足
している。
[Example] (1) Tanditsh size and capacity) 15 ton weir thickness 1 weir rjl) Q11600+nm (unresistant width) Q2 900mm Long nozzle immersion depth 250mm Inert gas supply amount 0, 5 to 1, ON rri” / Hr
Figure 4 does not show the change in temperature inside the tundish from the beginning of molten steel supply into the tundish to the end of the tundish injection. As is clear from FIG. 4, according to the present invention, humidity can be controlled reliably and the range of ±5° C. for 11 standard temperatures is satisfactorily achieved.

(2)実施例(1)と同じタンディツシュで他の条件が
略同−のチャージを選び不活性ガス吹込みの有無及び溶
鋼IlF、 !’l!室の有無で冷却材の未溶解発生率
の比較を行った。その結果を第5図に示した。本発明で
は未溶解発生は皆無となっている。
(2) Select a charge with the same tundish as in Example (1) with almost the same other conditions as the presence or absence of inert gas injection and the molten steel IIF, ! 'l! The incidence of undissolved coolant was compared between the presence and absence of a chamber. The results are shown in FIG. In the present invention, there is no occurrence of undissolved material.

[発明の効果] 以」二の説明から明かなどとく、本発明の方法では冷却
材は溶は易い状態で添加され、且つタンディツシュ内溶
鋼は゛):tに安定した強い攪拌力で冷却材と接触する
ために熱の授受はスムーズであり、従って例えば液相線
n、λ度に近い低温に溶鋼温度を調節する場合であって
も、冷却材の溶解はスムーズであり、11つ安定した溶
鋼温度が確保できろ。
[Effects of the Invention] As is clear from the following explanation, in the method of the present invention, the coolant is added in a state where it is easily melted, and the molten steel in the tundish is brought into contact with the coolant with a stable strong stirring force at t. Therefore, even when adjusting the molten steel temperature to a low temperature close to the liquidus line n or λ degrees, the melting of the coolant is smooth and the molten steel temperature remains stable. Can be secured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のタンディツシュの溶鋼攪拌室の例を示
す図、第2図は本発明のロングノズルの例を示す図、第
;3図は溶鋼温度の調整精度を示す図、第4図は経過時
間と溶鋼供給速度、タンディツシュ内温度及び冷却材投
入速度の関係図、第5図はタンディツシュ内冷却材未溶
解発生率を示す図である。
Figure 1 is a diagram showing an example of the molten steel stirring chamber of the tundish of the present invention, Figure 2 is a diagram showing an example of the long nozzle of the present invention, Figure 3 is a diagram showing the adjustment accuracy of the molten steel temperature, and Figure 4 is a diagram showing an example of the long nozzle of the present invention. 5 is a diagram showing the relationship between elapsed time, molten steel supply rate, tundish internal temperature, and coolant injection rate, and FIG. 5 is a diagram showing the incidence of unmelted coolant in the tundish.

Claims (1)

【特許請求の範囲】[Claims] タンディッシュの一部に堰よりなる溶鋼攪拌室を設け、
上端が取鍋ノズルに連設され下端は該溶鋼攪拌室の溶鋼
中に浸漬されたロングノズルを介して、取鍋溶鋼をタン
ディッシュに注入すると共に該ロングノズルを介して不
活性ガスを溶鋼攪拌室の溶鋼中に0.5Nm^3/Hr
以上吹込み、不活性ガス吹込によるボイルでできた裸湯
部分に、鋼材小片よりなる冷却材を所望の割合で投入す
る事を特徴とする、鋼の連続鋳造におけるタンディッシ
ュ内溶鋼温度調整方法。
A molten steel stirring chamber consisting of a weir is installed in a part of the tundish.
Through a long nozzle whose upper end is connected to the ladle nozzle and whose lower end is immersed in the molten steel in the molten steel stirring chamber, the ladle molten steel is injected into the tundish, and at the same time inert gas is stirred into the molten steel through the long nozzle. 0.5Nm^3/Hr in the molten steel in the chamber
A method for adjusting the temperature of molten steel in a tundish in continuous steel casting, characterized by introducing a coolant made of small pieces of steel at a desired ratio into the bare hot water portion formed by boiling by blowing inert gas.
JP15510886A 1986-07-03 1986-07-03 Adjusting method for molten steel temperature in tundish Granted JPS6313648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15510886A JPS6313648A (en) 1986-07-03 1986-07-03 Adjusting method for molten steel temperature in tundish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15510886A JPS6313648A (en) 1986-07-03 1986-07-03 Adjusting method for molten steel temperature in tundish

Publications (2)

Publication Number Publication Date
JPS6313648A true JPS6313648A (en) 1988-01-20
JPH02145B2 JPH02145B2 (en) 1990-01-05

Family

ID=15598779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15510886A Granted JPS6313648A (en) 1986-07-03 1986-07-03 Adjusting method for molten steel temperature in tundish

Country Status (1)

Country Link
JP (1) JPS6313648A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021087968A (en) * 2019-12-04 2021-06-10 日本製鉄株式会社 Method of manufacturing thin cast piece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021087968A (en) * 2019-12-04 2021-06-10 日本製鉄株式会社 Method of manufacturing thin cast piece

Also Published As

Publication number Publication date
JPH02145B2 (en) 1990-01-05

Similar Documents

Publication Publication Date Title
KR100894114B1 (en) Ladle refining of steel
UA39902C2 (en) METHOD AND DEVICE FOR DIRECTED HARDENING OF MELT
JPH02220749A (en) Initial stage casting method in continuous casting of stainless steel
JPS6313648A (en) Adjusting method for molten steel temperature in tundish
US5139236A (en) Melt facility for continuous upcaster
JPH03243254A (en) Method for heating molten steel in tundish and tundish providing heating device
JPH0714547B2 (en) Continuous casting method for molten steel
JPS63183760A (en) Method for continuously casting multiple kinds of steel slab
JPS59137157A (en) Inoculating method in casting
JP3256148B2 (en) Continuous casting method of steel with large shrinkage during solidification process
JPS613822A (en) Method for adding alloy element of which vapor pressure is increased by temperature of molten steel to molten steel
JPS61232047A (en) Method for controlling temperature of molten metal for continuous casting
Fitzpatrick A Jet Pump for Use With Molten Aluminum
JPS62192237A (en) Production of lead free cutting steel
JPS63140746A (en) Casting apparatus
KR20130139178A (en) Apparatus for producing semi-solid metal, method for producing semi-solid metal, and semi-solid metal
JPS61133307A (en) Refining method of molten steel
Barnhardt et al. Liquid steel temperature control at the Steelton plant of the Bethlehem Steel Corporation
SU1214314A1 (en) Open mould for horizontal continuous and semi-continuous billet-casting machines
Guhl Quality Inspection and Control of Cast Iron Melts by Computer Aided Thermal Analysis
KR19980019684A (en) Alloy element addition method
JP2002011553A (en) Method for producing small lot of materials in continuous casting
JP2002178108A (en) Method for continuously casting steel
JPS563638A (en) Al alloy improving flux
JPS5836275B2 (en) Method for continuous quantitative supply of molten slag