JPS63135920A - Driving method for liquid crystal optical device - Google Patents

Driving method for liquid crystal optical device

Info

Publication number
JPS63135920A
JPS63135920A JP61282471A JP28247186A JPS63135920A JP S63135920 A JPS63135920 A JP S63135920A JP 61282471 A JP61282471 A JP 61282471A JP 28247186 A JP28247186 A JP 28247186A JP S63135920 A JPS63135920 A JP S63135920A
Authority
JP
Japan
Prior art keywords
voltage
liquid crystal
period
driving
shutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61282471A
Other languages
Japanese (ja)
Other versions
JPH0833533B2 (en
Inventor
Hiroshi Fujimura
浩 藤村
Masakatsu Higa
政勝 比嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP61282471A priority Critical patent/JPH0833533B2/en
Priority to US07/066,720 priority patent/US4836654A/en
Priority to EP87109190A priority patent/EP0251230B1/en
Priority to DE3789168T priority patent/DE3789168T2/en
Priority to KR1019870006656A priority patent/KR900007726B1/en
Publication of JPS63135920A publication Critical patent/JPS63135920A/en
Priority to US07/316,221 priority patent/US4946260A/en
Publication of JPH0833533B2 publication Critical patent/JPH0833533B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To obtain a sufficient transmission liquid quantity in a shutter-ON state and to perform a fast shutter operation, by impressing an open operation voltage which holds an optical shutter in a state where a beam of light transmits for a time longer than a selective period allocated for the control of one optical shutter. CONSTITUTION:In the driving of a liquid crystal optical device which controls the light transmission states of plural optical shutters, by impressing the open operation voltage which holds one optical shutter in the state where the beam of light transmits for the time longer than the selective period allocated for the control of one optical shutter, out of one repeating period where the light transmission state of the optical shutter is controlled in order, the ON-state of the selective period can be expanded to the extent of a part of non-selective period. In such way, it is possible to obtain a sufficient transmission light quantity in the shutter-ON state, and to perform the fast shutter operation. Also, it is possible to control the transmission light quantity by combining the waveforms of liquid crystal driving signals and to improve a temperature characteristics.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、2周波駆動用液晶を用いた液晶光学素子の駆
動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for driving a liquid crystal optical element using a dual-frequency driving liquid crystal.

[従来技術とその問題点] 近年、液晶を用いて光の透過状態を制御する光学装置が
広く使用されている。これらの光学装置のうち、光の遮
断状態と透過状態を高速度で切換え動作させる液晶シャ
ッタは、電子写真式プリンタの光制御素子として用いら
れている。この種、従来の液晶シャッタにおいては、高
速のシャッタ速度が要求されるため、電界制御複屈折率
モードの液晶素子を使用して2周波駆動するようにして
いる。すなわち、第13図(a)、(b)に示すように
高周波電界f、と低周波電界fLを組合わせ、液晶素子
のオン/オフ制御を行なっている。
[Prior art and its problems] In recent years, optical devices that use liquid crystals to control the transmission state of light have been widely used. Among these optical devices, liquid crystal shutters that switch between a light blocking state and a light transmitting state at high speed are used as light control elements in electrophotographic printers. In this kind of conventional liquid crystal shutter, since a high shutter speed is required, a liquid crystal element of electric field control birefringence mode is used and driven at two frequencies. That is, as shown in FIGS. 13(a) and 13(b), a high frequency electric field f and a low frequency electric field fL are combined to perform on/off control of the liquid crystal element.

複数のシャッタをダイナミック駆動する場合、−書込み
期間は、選択期間と非選択期間とによって構成され、選
択期間は高周波電界fHと低周波電界fLを1/2周期
づつ印加することにより指定し、非選択期間は重畳電界
fH/fLと低周波電界fLを1/2周期づつ印加する
ことにより指定している。
When dynamically driving multiple shutters, - the write period consists of a selection period and a non-selection period, the selection period is specified by applying a high-frequency electric field fH and a low-frequency electric field fL every 1/2 period; The selection period is specified by applying the superimposed electric field fH/fL and the low frequency electric field fL every 1/2 period.

上記のように従来の液晶光学素子の駆動方法は、−書込
み期間(オン期間)のうち、選択期間のみシャッタがオ
ンするものであり、このためシャッタを透過する光量が
少なく、シャッタ速度を高速化する上で問題となってい
る。
As mentioned above, in the conventional driving method for liquid crystal optical elements, - the shutter is turned on only during the selected period during the writing period (on period), so the amount of light that passes through the shutter is small, increasing the shutter speed. There is a problem in doing so.

[発明の目的] 本発明は上記事情に鑑みてなされたもので、シャッタオ
ン状態において充分な透過光量が得られ、高速シャッタ
動作が可能な液晶光学素子の駆動方法を提供することを
目的とする。
[Object of the Invention] The present invention was made in view of the above circumstances, and an object of the present invention is to provide a method for driving a liquid crystal optical element that can obtain a sufficient amount of transmitted light in the shutter-on state and can perform high-speed shutter operation. .

[発明の要点コ 本発明は、複数の光シャッタの光透過状態を制御する液
晶光学素子の駆動方法において、光シャッタの光透過状
態を順次制御する1繰返し期間のうち、1つの光シャッ
タを制御するために割当てられた選択期間よりも長い時
間、前記1つの光シャッタを光が透過する状態に持続す
る開動作電圧を液晶素子の電極に印加するようにしたも
のである。
[Summary of the Invention] The present invention provides a method for driving a liquid crystal optical element that controls the light transmission states of a plurality of light shutters, in which one light shutter is controlled in one repetition period in which the light transmission states of the light shutters are sequentially controlled. An opening voltage is applied to the electrodes of the liquid crystal element to maintain the one optical shutter in a state where light is transmitted for a longer time than the selection period allocated for the purpose of the present invention.

[発明の実施例] 以下、本発明を液晶シャッタに実施した場合について説
明する。まず、液晶シャッタの構成について第1図及び
第2図により説明する。第2図において11.12はそ
れぞれ透明なガラス板からなる一対の基板で、これら基
板11.12は横長枠状のシール材13により一定の間
隔を保って接着されている。そして、上記基板11.1
2間には、電極14a。
[Embodiments of the Invention] Hereinafter, a case where the present invention is implemented in a liquid crystal shutter will be described. First, the structure of the liquid crystal shutter will be explained with reference to FIGS. 1 and 2. In FIG. 2, reference numerals 11 and 12 denote a pair of substrates each made of a transparent glass plate, and these substrates 11 and 12 are adhered at a constant distance by a sealing material 13 in the shape of an oblong frame. And the substrate 11.1
An electrode 14a is provided between the two.

14b及び配向膜15a、 15bに挟まれて光シャッ
タを形成する2周波駆動用液晶IBが封入される。また
、上記基板11.12の外面には、それぞれ偏光板17
a、17bが被若される。
14b and the alignment films 15a and 15b, a two-frequency driving liquid crystal IB forming an optical shutter is enclosed. Further, polarizing plates 17 are provided on the outer surfaces of the substrates 11 and 12, respectively.
a, 17b are rejuvenated.

そして、上記一方の基板11(信号電極基板という)の
内面には、第1図に示すようにその全長に亘って多数の
信号電極18a・・・、18b・・・が2列に並べて形
成され、これら信号電極18a・・・、18b・・・か
らは交互に信号電極基板11の一側部及び他側部に帯状
の端子I9・・・が並列して導出されている。これら信
号電極18a・・・、18b・・・、端子19・・・は
、酸化インジュウムなどの透明導電材料により一体に形
成されたもので、信号電極18a・・・、tab・・・
のシャッタ部S1・・・、S2・・・に対応する部分を
除いた部分、及び端子19の上にはそれぞれクロム等の
金属膜20が被着されている。上記一方の信号電極18
a・・・は、他方の信号電極18b・・・に対して1/
2ピツチずらして配列されており、従って、上記シャッ
タ部S1・・・、S2・・・は、1/2ピツチのずれを
もって2列に配列形成されている。
As shown in FIG. 1, on the inner surface of one of the substrates 11 (referred to as a signal electrode substrate), a large number of signal electrodes 18a..., 18b... are formed in two rows over the entire length thereof. , strip-shaped terminals I9 are led out in parallel from these signal electrodes 18a..., 18b... alternately on one side and the other side of the signal electrode substrate 11. These signal electrodes 18a..., 18b..., terminals 19... are integrally formed from a transparent conductive material such as indium oxide, and the signal electrodes 18a..., tab...
A metal film 20 of chromium or the like is deposited on the terminals 19 and on the terminals 19 except for the parts corresponding to the shutter parts S1, S2, and so on. One of the signal electrodes 18
a... is 1/1/1 with respect to the other signal electrode 18b...
The shutter parts S1..., S2... are arranged in two rows with a shift of 1/2 pitch.

また、他方の基板12(以下コモン電極基板という)の
内面には、信号電極基板11の各信号電極18a・・・
、18b・・・に対向して一対の帯状のコモン電極21
a、21bがコモン電極基板12の長手力向沿いに平行
に微少間隔をもって酸化インジュウムなどの透明導電材
料により形成され、これらコモン電極21a、21bの
上にシャッタ部S1・・・、S2・・・に対応する部分
を除いてクロム等の金属膜22が被着されている。上記
金属膜20は、信号電極18a・・・、18b・・・及
び端子19の電気抵抗を小さくするために、また、上記
金属膜22はコモン電極21a、21bの電気抵抗を小
さくするためと、シャッタ部S1・・・、S2・・・の
光透過面積を規制するために設けられたちのでる。
Further, on the inner surface of the other substrate 12 (hereinafter referred to as a common electrode substrate), each signal electrode 18a of the signal electrode substrate 11...
, 18b... A pair of band-shaped common electrodes 21
a, 21b are formed of a transparent conductive material such as indium oxide at minute intervals in parallel along the longitudinal direction of the common electrode substrate 12, and shutter parts S1..., S2... are formed on these common electrodes 21a, 21b. A metal film 22 made of chromium or the like is deposited except for the portion corresponding to . The metal film 20 is used to reduce the electrical resistance of the signal electrodes 18a..., 18b... and the terminal 19, and the metal film 22 is used to reduce the electrical resistance of the common electrodes 21a, 21b. The shutter portions S1..., S2... are provided to regulate the light transmission area.

更に、光の出射側となるコモン電極基板12に積層され
た偏光板17bの外面には、例えば印刷手段により遮光
部材23が設けられる。この遮光部材23は、シャッタ
部S1・・・、S2・・・の配列エリアAに対向する部
分を除いてシール材13を覆うように偏光板17bの外
面に設けられる。上記のようにしてコモン電極21aと
信号電極18aS18as・・・からなるシャッタ部S
t SS+ 、・・・と、コモン電極21bと信号電極
18b、 18b、・・・からなるシャッタ部S2、S
2、・・・が構成される。
Furthermore, a light shielding member 23 is provided on the outer surface of the polarizing plate 17b laminated on the common electrode substrate 12 on the light output side by, for example, printing means. This light shielding member 23 is provided on the outer surface of the polarizing plate 17b so as to cover the sealing material 13 except for the portion facing the array area A of the shutter portions S1..., S2.... As described above, the shutter section S consists of the common electrode 21a and the signal electrodes 18aS18as...
t SS+ , . . . and shutter parts S2, S consisting of the common electrode 21b and the signal electrodes 18b, 18b, .
2,... are constructed.

第3図は、上記のように構成された液晶シャッタの液晶
分子配向方向(ラビング方向)と偏光板17a、 17
bの配置の関係を示したものである。第3図において3
1は液晶分子配向方向、32は上側偏光板17aの透過
軸(もしくは吸収軸)、33は下側偏光板L7bの透過
軸(もしくは吸収軸)である。
FIG. 3 shows the liquid crystal molecule orientation direction (rubbing direction) of the liquid crystal shutter configured as described above and the polarizing plates 17a, 17.
This figure shows the relationship between the locations of b. In Figure 3, 3
1 is the liquid crystal molecule orientation direction, 32 is the transmission axis (or absorption axis) of the upper polarizing plate 17a, and 33 is the transmission axis (or absorption axis) of the lower polarizing plate L7b.

すなわち、水平配向処理した液晶セルに2周波駆動用液
晶1Bを封入し、液晶分子配向方向(ラビング方向)に
対し、一方の偏光板17aあるいは17bの偏光軸(透
過軸もしくは吸収軸)を45°傾けると共に上下の偏光
板17a、 17bの偏光軸を直交させたものである。
That is, the liquid crystal 1B for two-frequency driving is sealed in a horizontally aligned liquid crystal cell, and the polarization axis (transmission axis or absorption axis) of one polarizing plate 17a or 17b is set at 45 degrees with respect to the liquid crystal molecule alignment direction (rubbing direction). The polarizing axes of the upper and lower polarizing plates 17a and 17b are made perpendicular to each other while being tilted.

この配置の方法は、電界制御複屈折率モードと同様であ
る。
This arrangement method is similar to the electric field controlled birefringence mode.

しかして、上記液晶シャッタにおける透過光強度Iは、
次式(1)により求められる。
Therefore, the transmitted light intensity I in the liquid crystal shutter is
It is determined by the following formula (1).

!−1o5in22θΦ 5in2(r・Δnd/λ) ・・・・・・(1)但し
 Io :平行な偏光板の透過率で決まる光の強度 θ:初期配向時の光軸と偏光板のなす角Δn:基板面の
法線方向と液晶光軸の なす角φに依存する複屈折率 λ:入射光の波長 d:セル厚 上記複屈折率へ〇の値は、φにより変化するが、これは
液晶の屈折率n11とn工が既知であれば、φを次式(
2)により計算できる。
! -1o5in22θΦ 5in2(r・Δnd/λ) ・・・・・・(1) However, Io: Light intensity determined by the transmittance of the parallel polarizing plate θ: Angle Δn between the optical axis and the polarizing plate at initial orientation: Birefringence that depends on the angle φ between the normal direction of the substrate surface and the optical axis of the liquid crystal λ: Wavelength of incident light d: Cell thickness If the refractive index n11 and n are known, φ can be calculated using the following formula (
2) can be calculated.

n o″″n工 Δ n ■ n    −n O また、第4図は、2周波駆動用液晶IBとして次表1に
示す特性を仔するものを用いた場合の誘電異方性Δεの
周波数依存性を23℃、35℃、40℃、45℃、50
°0155℃の各温度について示したものである。
In addition, Figure 4 shows the frequency dependence of dielectric anisotropy Δε when using a liquid crystal IB for dual-frequency driving that has the characteristics shown in Table 1 below. 23℃, 35℃, 40℃, 45℃, 50℃
The figures are shown for each temperature of 0155°C.

表  1 上記2周波駆動用液晶1Bは、誘電異方性Δεが「0」
となる交差周波数feより低い周波数の電場fLに対し
て正の誘電異方性を示すと共に、上記交差周波数fcよ
り高い周波数の電場fHに対しては負の誘電異方性を示
すものである。この場合、交差周波数は、温度が上昇す
るに従って順次高い方に移動する。
Table 1 The above two-frequency driving liquid crystal 1B has a dielectric anisotropy Δε of “0”.
It exhibits positive dielectric anisotropy with respect to an electric field fL with a frequency lower than the crossover frequency fe, and negative dielectric anisotropy with respect to an electric field fH with a frequency higher than the crossover frequency fc. In this case, the crossing frequency sequentially moves higher as the temperature increases.

しかして、上記のように構成した液晶シャックは、オン
動作時に選択期間量」ニシャッタが開くような信号波形
により駆動するもので、例えば第5図に示すコモン信号
CI及びセグメント信号81〜S4により駆動する。上
記コモン信号C1は、シャッタ部S1に対するもので、
シャッタ部S2に対するコモン信号は第5図の場合より
一書込み期間の1/2だけ遅れて発生する。この場合、
シャッタ部S1に対してセグメント信号Sl、S2はオ
ン信号、S3.S4はオフ信号であり、また、シャッタ
部S2に対してセグメント信号SL。
The liquid crystal shack configured as described above is driven by a signal waveform such that the shutter is opened by a selected period of time when turned on, and is driven by, for example, the common signal CI and segment signals 81 to S4 shown in FIG. do. The common signal C1 is for the shutter section S1,
The common signal for the shutter section S2 is generated with a delay of 1/2 of one write period compared to the case of FIG. in this case,
Segment signals Sl and S2 are on signals for the shutter section S1, S3 . S4 is an off signal, and also a segment signal SL for the shutter section S2.

S3はオン信号、S2.S4はオフ信号である。S3 is an on signal, S2. S4 is an off signal.

上記第5図において、T1は選択期間(1msec)T
2は非選択期間(1ms e c) 、T3は第1のf
、印加期間、T4は第2のfH印加時間、T5は無電界
印加期間、T8は選択期間T1における残りの期間に設
定される保持電圧印加期間、T7はシャッタオフさせる
ために一書込み期間の最後に設けられるf)印加期間、
T8は非選択期間T2における残りの期間である。この
場合、選択期間Tl内のT6期間及び非選択期間T2内
のT8期間は、その時のシャッタオンあるいはシャッタ
オフの状態をそのまま保持するための保持電圧が与えら
れる期間で、T8期間は非選択期間T2内のT7期間と
等しい時間幅に設定される。
In FIG. 5 above, T1 is the selection period (1 msec)
2 is the non-selection period (1ms e c), T3 is the first f
, application period, T4 is the second fH application time, T5 is the no-field application period, T8 is the holding voltage application period set for the remaining period in the selection period T1, and T7 is the end of one writing period to turn off the shutter. f) an application period provided in
T8 is the remaining period in the non-selection period T2. In this case, the T6 period within the selection period Tl and the T8 period within the non-selection period T2 are periods in which a holding voltage is applied to maintain the current shutter-on or shutter-off state, and the T8 period is the non-selection period. The time width is set to be equal to the T7 period within T2.

しかして、コモン信号CIは、選択期間TIにおいては
高周波電圧fHを与えるが、T5期間ではその位相を反
転し、また、非選択期間T2においてはT8期間に重畳
波電圧fH/fLを与え、T7期間に低周波電圧fLを
与える。この場合、重畳波電圧fo/fr、は、例えば
T8期間を8等分して高周波電圧fHを交互に与えてい
る。そして、シャッタ部sl、s2をオン動作させるた
めのセグメント信号S1は、T6 、T7の期間に低周
波電圧fLを与え、その他の期間に高周波電圧fHを与
える。シャッタ部S1をオン、S2をオフ動作させるた
めのセグメント信号S2は、選択期間T1におけるT6
期間及び非選択期間T2における全期間に低周波電圧f
Lを与え、選択期間TI中のその他の期間に高周波電圧
f、を与えている。また、シャッタ部S1をオフ、S2
をオン動作させるためのセグメント信号S3は、選択期
間Tlの全期間に低周波電圧fL、非選択期間T2にお
いてはT8期間に高周波電圧fHを与え、T7期間に低
周波電圧fLを与える。また、シャッタ部St、S2を
オフ動作させるためのセグメント信号S4は、選択期間
T1及び非選択期間T2の全期間に低周波電圧fLを与
えている。
Thus, the common signal CI gives the high frequency voltage fH in the selection period TI, but inverts its phase in the T5 period, and gives the superimposed wave voltage fH/fL in the T8 period in the non-selection period T2, and gives the high frequency voltage fH in the T7 period. A low frequency voltage fL is applied during the period. In this case, the superimposed wave voltage fo/fr is such that, for example, the T8 period is divided into eight equal parts and the high frequency voltage fH is alternately applied. The segment signal S1 for turning on the shutter sections sl and s2 provides a low frequency voltage fL during the periods T6 and T7, and provides a high frequency voltage fH during the other periods. The segment signal S2 for turning on the shutter section S1 and turning off the shutter section S2 is transmitted at T6 in the selection period T1.
The low frequency voltage f is applied throughout the period and the non-selection period T2.
L is applied, and a high frequency voltage f is applied during the other periods of the selection period TI. In addition, the shutter section S1 is turned off, and the shutter section S2 is turned off.
The segment signal S3 for turning on provides a low frequency voltage fL during the entire selection period Tl, a high frequency voltage fH during the T8 period in the non-selection period T2, and a low frequency voltage fL during the T7 period. Furthermore, the segment signal S4 for turning off the shutter sections St and S2 provides a low frequency voltage fL throughout the selection period T1 and the non-selection period T2.

また、第5図において、C1−SL 、C1−52、C
1−S3 、C1−54は、コモン信号CLとセグメン
ト信号81〜S4との合成波形を示したものである。こ
の合成波形に示されるように、非選択期間T2内のT8
期間では、低周波電界fLに高周波電界f、が重畳した
重畳電界と無電界が一定間隔で繰返される保持電界が2
周波駆動用液晶セル16に与えられる。
In addition, in FIG. 5, C1-SL, C1-52, C
1-S3 and C1-54 indicate a composite waveform of the common signal CL and the segment signals 81 to S4. As shown in this composite waveform, T8 within the non-selection period T2
In the period, the holding electric field in which the superimposed electric field in which the high-frequency electric field f is superimposed on the low-frequency electric field fL and the no electric field are repeated at regular intervals is 2.
It is applied to the frequency driving liquid crystal cell 16.

第6図は、第1図及び第2図に示すように構成された液
晶シャッタにおいて、上記表1に示した2周波駆動用液
晶を厚さ4,36μmのセルに封入し、第5図に示す信
号波形を連続して与えた時の55℃、50℃、45℃、
40℃の各温度におけるシャッタ特性を、横軸に時間(
msec)、縦軸に透過光強度(任意単位)をとって示
したものである。なお、このシャッタ特性は、T3期間
に連続させてT4期間を設け、高周波電界f、を連続し
て0.6m5ec与えた場合であり、光源として543
nmに発光ピークを持つ蛍光灯を使用すると共に、高周
波電界f、を200KHz、T7期間をro、4m5e
cJに設定して測定したものである。上記第5図に示し
た液晶駆動信号波形では、T6期間及びそれに続<78
期間に重畳電界又は重畳電界と無電界の繰返しからなる
保持電界を与えているので、選択期間TIにおけるオン
状態が非選択期間T2内のT8期間にまで広がっている
。そして、−書込み期間の最後のT7期間に低周波電界
fLが与えられてシャッタオフとなり、1回のシャッタ
動作を終了するが、そのシャッタ特性は、その時の温度
によって変化する。
FIG. 6 shows a liquid crystal shutter configured as shown in FIGS. 1 and 2 in which the two-frequency drive liquid crystal shown in Table 1 is sealed in a cell with a thickness of 4.36 μm. 55 degrees Celsius, 50 degrees Celsius, 45 degrees Celsius when the signal waveform shown is applied continuously,
The shutter characteristics at each temperature of 40°C are plotted with time (
msec), and the transmitted light intensity (arbitrary unit) is plotted on the vertical axis. Note that this shutter characteristic is obtained when a T4 period is provided consecutively to the T3 period, and a high frequency electric field f of 0.6 m5ec is continuously applied, and the light source is 543 m5.
In addition to using a fluorescent lamp with an emission peak in nm, the high frequency electric field f is 200KHz, the T7 period is ro, and 4m5e.
Measurements were taken with the setting at cJ. In the liquid crystal drive signal waveform shown in FIG. 5 above, the T6 period and the subsequent <78
Since a superimposed electric field or a holding electric field consisting of repetitions of a superimposed electric field and no electric field is applied during the period, the on state in the selection period TI extends to period T8 within the non-selection period T2. Then, during the final T7 period of the -write period, the low frequency electric field fL is applied to turn off the shutter, completing one shutter operation, but the shutter characteristics change depending on the temperature at that time.

すなわち、第6図(a)に示す55°Cの温度の場合に
は、最初高周波電界f、が与えられた液晶分子は、透過
光が最大になる第1のピークに対応する傾斜角を通り過
ぎ、ここで透過強度の第1の極大値が現われる。次に重
畳電界fH/fLが印加されると、55℃の温度の場合
には1ΔεH1により液晶分子を傾斜させる力がIΔε
L1により液晶分子を立たせる力より小さいので、低周
波電界fLの影響が強く現われ、液晶分子はゆっくり立
ち始め、前記の傾斜角を通り過ぎる。ここで透過光強度
の第2の極大値が現われる。その後、液晶分子はゆっく
りと立上がって行き、最後に低周波電界fLが印加され
ると液晶分子が急激に立ち、透過光強度も急激に低下す
る。
That is, at a temperature of 55°C as shown in FIG. 6(a), the liquid crystal molecules to which the high-frequency electric field f is initially applied pass through the tilt angle corresponding to the first peak where the transmitted light is maximum. , where the first maximum value of the transmitted intensity appears. Next, when a superimposed electric field fH/fL is applied, at a temperature of 55°C, the force that tilts the liquid crystal molecules by 1ΔεH1 becomes IΔε
Since it is smaller than the force that causes the liquid crystal molecules to stand up due to L1, the influence of the low frequency electric field fL appears strongly, and the liquid crystal molecules slowly begin to stand up and pass through the above-mentioned tilt angle. Here, a second maximum value of transmitted light intensity appears. Thereafter, the liquid crystal molecules slowly rise, and finally, when the low frequency electric field fL is applied, the liquid crystal molecules suddenly rise, and the transmitted light intensity also drops rapidly.

第6図(b)に示す50℃の温度の場合には、同図(a
)の場合と略同じであるが、1ΔεH1による力と1Δ
εL1による力との差が小さくなるので、低周波電界f
Lの影響が少なくなり、重畳電界fH/fLの印加によ
る液晶分子の動きか一層緩やかになっている。従って、
低周波電界fLが印加されるまで、透過光強度の低下は
僅かであり、良好なシャッタ特性が得られる。
In the case of a temperature of 50°C shown in Figure 6(b),
), but the force due to 1ΔεH1 and 1Δ
Since the difference with the force due to εL1 becomes smaller, the low frequency electric field f
The influence of L is reduced, and the movement of liquid crystal molecules due to the application of the superimposed electric field fH/fL becomes even more gradual. Therefore,
Until the low frequency electric field fL is applied, the transmitted light intensity decreases only slightly, and good shutter characteristics can be obtained.

第6図(c)に示す45℃の温度の場合には、温度の低
下により応答速度が遅くなり、このため高周波電界fH
の終了間際に前記傾斜角に達する。
In the case of a temperature of 45°C as shown in Fig. 6(c), the response speed becomes slow due to the decrease in temperature, and therefore the high frequency electric field fH
The inclination angle is reached just before the end of .

この温度では1ΔεH1による力と1ΔεL1による力
が略等しいので、液晶分子の傾く速度が極めて緩やかに
なるので、透過光強度の山は平坦になる。しかし、この
場合、透過光強度が時間の経過と共にゆらぐという不安
定状態が現われることがある。
At this temperature, the force due to 1ΔεH1 and the force due to 1ΔεL1 are approximately equal, so the tilting speed of the liquid crystal molecules becomes extremely slow, so that the peak of the transmitted light intensity becomes flat. However, in this case, an unstable state may appear in which the transmitted light intensity fluctuates over time.

第6図(d)に示す40℃の温度の場合には、1ΔεH
1による力が1ΔεL1による力より大きくなり、平均
的な高周波電界rHの印加時間が長くなるので、高周波
履歴効果が大きくなる。このため低周波を印加した時の
液晶分子の立ち方が異なったものとなり、液晶分子の挙
動自体が上記(a)〜(c)のようには動作しない。ま
た、電界の印加によって正常に動作しない部分、すなわ
ち、ドメインが発生し、透過光強度が低下する。
In the case of a temperature of 40°C shown in Figure 6(d), 1ΔεH
Since the force due to 1 becomes larger than the force due to 1ΔεL1, and the application time of the average high frequency electric field rH becomes longer, the high frequency hysteresis effect becomes larger. For this reason, the way the liquid crystal molecules stand when a low frequency is applied is different, and the behavior of the liquid crystal molecules itself does not behave as in (a) to (c) above. Furthermore, application of an electric field generates a portion that does not operate normally, that is, a domain, and the intensity of transmitted light decreases.

従って、高周波電界f、を連続して与える場合には、使
用温度を50℃程度に設定するのが望ましい。
Therefore, when applying the high frequency electric field f continuously, it is desirable to set the operating temperature to about 50°C.

第7図は、第5図に示した液晶駆動信号波形において、
T3 mT4 =0.25rns e C,T5−0.
1m5ec、TB 踵T7−0.4m5ecとした場合
に、連続してオン信号(C1−st倍信号を与えた時の
55℃、50℃、45℃、40℃の各温度におけるシャ
ッタ特性を示したものである。
FIG. 7 shows the liquid crystal drive signal waveform shown in FIG.
T3 mT4 =0.25rns e C, T5-0.
1m5ec, TB heel T7-0.4m5ec, the shutter characteristics at each temperature of 55℃, 50℃, 45℃, 40℃ when continuously on signal (C1-st times signal is applied) are shown. It is something.

この時の例では、40℃のfA度でも透過光強度の落込
みは少なく、時間でゆらぐような不安定な状態は見られ
なかった。この時の高周波電界f、の合計印加時間は0
.5m5ecで、逮択時間の半分であるのが望ましい。
In this example, even at an fA degree of 40° C., there was little drop in the transmitted light intensity, and no unstable state that fluctuated over time was observed. At this time, the total application time of the high frequency electric field f is 0
.. It is desirable that it be 5m5ec, which is half the arrest time.

従って、この様にT3゜T4期間に無電界となるT5期
間を介在させると、液晶分子の配向方向が均一になり、
温度特性が向上し、安定したシャツタ開閉動作が行なえ
る。
Therefore, by interposing the T5 period in which there is no electric field between the T3° and T4 periods, the alignment direction of the liquid crystal molecules becomes uniform,
Improved temperature characteristics and stable shirt opening/closing operation.

次にTB 、77期間の長さに対する応答性を検討して
みる。T3 mT4−0.25m5 e cに固定し、
TB−T7をrO,IJ、rO,2J。
Next, let's examine the responsiveness of TB to the length of the 77 period. T3 mT4-0.25m5 e c fixed,
TB-T7 rO, IJ, rO, 2J.

ro、3J、ro、4Jmsec  (この時、T5 
−  rO,4J、  rO,3J、  ro、  2
J。
ro, 3J, ro, 4Jmsec (At this time, T5
- rO,4J, rO,3J, ro, 2
J.

ro、IJmsec)としてシャッタ特性を測定する。The shutter characteristics are measured as ro, IJmsec).

上記第7図はT6−77−0.4m5ecとした時のシ
ャッタ特性を示したものである。
FIG. 7 above shows the shutter characteristics when T6-77-0.4m5ec is used.

そして、TO−T7−0.2m5ecでは、連続してオ
ン状態の時、55℃、50℃、45℃の各温度において
第8図(a)〜(c)に示すような特性が得られる。第
8図(C)に示す45℃では、液晶は殆んど応答してお
らず、一定レベルの明るさとなってしまっている。 T
8−T7−0.1m5ecでは、図示しないが50℃で
すでに第8図(C)と同様の状態になってしまう。但し
、オフが連続している時の1発のオン信号に対しては、
第8図(d)に示すように45℃でも応答する。
When the TO-T7-0.2m5ec is continuously turned on, the characteristics shown in FIGS. 8(a) to 8(c) are obtained at temperatures of 55°C, 50°C, and 45°C. At 45° C. as shown in FIG. 8(C), the liquid crystal hardly responds and the brightness remains at a constant level. T
8-T7-0.1m5ec, although not shown, already reaches a state similar to that shown in FIG. 8(C) at 50°C. However, for one ON signal when OFF is continuous,
As shown in FIG. 8(d), it responds even at 45°C.

また、T8=T7m0.3m5ecでは、第7図と同様
の応答性を示した。
Moreover, at T8=T7m0.3m5ec, the same responsiveness as in FIG. 7 was shown.

上記のように、T8,77期間の長さは、温度特性の安
定性に寄与しており、温度調節しながら使用するとして
も、その長さはTI、72期間の2割以上の長さは必要
である。但し、余りに長すぎると必然的に高周波電界f
Hの印加時間が短くなり、透過光量が小さくなってしま
うので、Tl。
As mentioned above, the length of the T8 and 77 periods contributes to the stability of the temperature characteristics. is necessary. However, if it is too long, the high frequency electric field f
Since the H application time becomes shorter and the amount of transmitted light becomes smaller, Tl.

T2期間の半分までとするのが望ましい。It is desirable to set it to half of the T2 period.

オン動作を行なわせる場合に高周波電界fHを印加する
が、この時のT3期間の長さについて検討した所、次の
ような結果を得た。T3 +74期間のf、合計印加時
間をQ、5m5ecとし、T5−0.1m5ec、  
TO−77−0,4m5ecで、次表2に示すようにT
3とTAwI間の比率を変化させた。
A high frequency electric field fH is applied to perform the on operation, and the length of the T3 period at this time was studied and the following results were obtained. T3 +74 period f, total application time Q, 5m5ec, T5-0.1m5ec,
TO-77-0,4m5ec, T
The ratio between 3 and TAwI was varied.

表  2 第9図は上記表2における「1」の場合の応答特性を示
したものである。この場合には、最大の透過光強度を得
るまでに肩が出てきてしまい、見掛は上の応答性が悪く
なる。この時T5−0.1m5ecであり、その後に再
度高周波電界f、が印加されるため、透過光強度は強く
なる。但し、T5 mm0.2m5ec、  T3−0
.1m5ec。
Table 2 FIG. 9 shows the response characteristics in the case of "1" in Table 2 above. In this case, a shoulder appears before the maximum intensity of transmitted light is obtained, and the apparent responsiveness deteriorates. At this time, it is T5-0.1 m5ec, and since the high frequency electric field f is applied again after that, the transmitted light intensity becomes strong. However, T5 mm0.2m5ec, T3-0
.. 1m5ec.

T4=0.4m5ecS T1mT?−0,4m5ec
と、2度目の高周波電界fHが印加されるまで、T5期
間が長くてT3期間が短いと、第10図に示すように明
るさが確保されなくなるため、T3期間は液晶の応答時
間より短い時には注意を要する。 因みに50℃での応
答時間は約0.15m5ecである。つまり、T3期間
が液晶の応答時間より短い時には、更に高周波電界fH
を印加する必要があり、その2度目の印加までの時間を
短くする必要がある。f、印加時間の合計は、透過光量
に関係してくる。透過光量を大きくするには、fH印加
時間を長くするのが良いが、第6図で示したように温度
特性が悪くなる。
T4=0.4m5ecS T1mT? -0.4m5ec
If the T5 period is long and the T3 period is short until the second high-frequency electric field fH is applied, the brightness will not be ensured as shown in Figure 10, so if the T3 period is shorter than the response time of the liquid crystal, Caution is required. Incidentally, the response time at 50° C. is approximately 0.15 m5ec. In other words, when the T3 period is shorter than the response time of the liquid crystal, the high frequency electric field fH
It is necessary to apply the voltage for the second time, and it is necessary to shorten the time until the second application. f, the total application time is related to the amount of transmitted light. In order to increase the amount of transmitted light, it is better to lengthen the fH application time, but as shown in FIG. 6, the temperature characteristics deteriorate.

この場合、特に低温側において特性が悪化する。In this case, the characteristics deteriorate particularly on the low temperature side.

選択期間TIでのオン状態を非選択期間T2にまで長く
するには、T4期間のfH印加時間を長くするのが良い
。透過光量が少なくとも、温度特性の良いシャッタを望
む時にはfH印加時間を短くし、Te、77期間が長い
方がよい。以上述べた如く第5図に示した信号波形にお
けるT3.T4゜T5.Te、T7.Tit期間は、液
晶シャッタの使用条件に合わせて、前述した範囲内で任
意に設定することができる。
In order to extend the on state in the selection period TI to the non-selection period T2, it is preferable to lengthen the fH application time in the T4 period. When a shutter with at least the amount of transmitted light and good temperature characteristics is desired, it is better to shorten the fH application time and make the Te,77 period longer. As mentioned above, T3 in the signal waveform shown in FIG. T4゜T5. Te, T7. The Tit period can be arbitrarily set within the above-mentioned range according to the usage conditions of the liquid crystal shutter.

fH印加時間の合計を変化させた時の応答性は、第11
図、第12図のようになる。第11図は、T3−0.2
5m5 e c、T4 =0.15m5ec 。
The response when changing the total fH application time is the 11th
It becomes as shown in Fig. 12. Figure 11 shows T3-0.2
5m5ec, T4 =0.15m5ec.

T5=0.2m5ec、  TO−77−0,4m5e
cに設定した場合であり、第12図は、T3−0.25
m5 e c、T4−0.05m5ec %75 mo
、3ms e c、  T8−77−0.4m5ecに
設定した場合である。つまり、T3+T4期間がQ、4
m5ecと0.3m5ecに設定した場合である。上記
第11図及び第12図から明らかなように、1/2デユ
ーテイの時に比較して透過光量は大きい。T3 +T4
期間が小さくなるにつれて、1/2デユーテイに近付い
ていくので、T3+T4期間を調整することにより、光
量調整も可能である。何れにせよT3 +74期間の長
さは、液晶の応答時間より短いと、透過光が充分な強度
まで達しないので、それ以上必要とされる。
T5=0.2m5ec, TO-77-0,4m5e
Figure 12 shows the case where T3-0.25 is set.
m5 ec, T4-0.05m5ec %75 mo
, 3ms ec, and T8-77-0.4m 5ec. In other words, the T3+T4 period is Q,4
This is the case where it is set to m5ec and 0.3m5ec. As is clear from FIGS. 11 and 12 above, the amount of transmitted light is larger than when the duty is 1/2. T3 +T4
As the period becomes smaller, the duty approaches 1/2, so by adjusting the T3+T4 period, it is possible to adjust the light amount. In any case, if the length of the T3+74 period is shorter than the response time of the liquid crystal, the transmitted light will not reach a sufficient intensity, so a longer period is required.

なお、本発明は上記実施例に限定されるものでなく、開
動作電圧、保持電圧、閉動作電圧は、高周波電圧、低周
波電圧、無電圧を任意に組合わせて作成し得るものであ
る。
Note that the present invention is not limited to the above embodiments, and the opening operation voltage, holding voltage, and closing operation voltage can be created by arbitrarily combining high frequency voltage, low frequency voltage, and no voltage.

[発明の効果] 以上詳記したように本発明によれば、虚数の光シャッタ
の光透過状態を制御する液晶光学素子の駆動方法におい
て、光シャッタの光透過状態を順次制御する1繰返し期
間のうち、1つの光シャッタを制御するために割当てら
れた選択期間よりも長い時間、前記1つの光シャッタを
光が透過する状態に持続する開動作電圧を液晶素子の電
極に印加することにより、選択期間のオン状態を非選択
期間の一部まで広げるようにしたので、シャッタオン状
態において充分な透過光量が得られ、高速シャッタ動作
が可能である。また、液晶駆動信号波形の組合わせによ
り、透過光量を制御でき、且つ、温度特性を向上し得る
ものである。
[Effects of the Invention] As detailed above, according to the present invention, in the method for driving a liquid crystal optical element for controlling the light transmission state of an imaginary light shutter, one repetition period for sequentially controlling the light transmission state of the light shutter is provided. The selection is made by applying to the electrodes of the liquid crystal element an opening voltage that maintains the one optical shutter in a state where light passes through it for a longer time than the selection period allotted for controlling one of the optical shutters. Since the ON state of the period is extended to a part of the non-selected period, a sufficient amount of transmitted light can be obtained in the shutter ON state, and high-speed shutter operation is possible. Furthermore, by combining the liquid crystal drive signal waveforms, the amount of transmitted light can be controlled and the temperature characteristics can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第12図は本発明の一実施例を示すもので
、第1図は液晶光学素子の要部を示す平面図、第2図は
断面図、第3図は第2図における液晶配向方向と偏光板
の配置の関係を示す図、第4図は2周波駆動用液晶にお
ける誘電異方性の周波数依存性を示す図、第5図は液晶
光学素子を駆動する駆動信号波形例を示す図、第6図な
いし第12図は各種駆動信号に対する光学応答特性を示
す図、第13図(a)、(b)は従来における液晶光学
素子の駆動方法及びその光学応答特性を示す図である。 11、l 2−・・基板、l 2−・・シール材、14
a 、 14b ・・・電極、1ト・・液晶、17・・
・偏光板、18a、18b・・・イ;号電極、l 9−
・・端子、20.22−・・金属膜、21a 、 21
b−・・コモン電極、23・・・遮光部材、31・・・
液晶分子配向方向、32・・・上基板偏光板の透過軸(
もしくは吸収軸)、33・・・上基板偏光板の透過軸(
もしくは吸収軸)。 出願人代理人 弁理士 鈴江武彦 第 2(!i 第3図 第6図    第7図 第8図  第9図 第10図 第11図     第12図
1 to 12 show an embodiment of the present invention, in which FIG. 1 is a plan view showing the main parts of a liquid crystal optical element, FIG. 2 is a sectional view, and FIG. 3 is a liquid crystal optical element shown in FIG. 2. FIG. 4 is a diagram showing the relationship between the orientation direction and the arrangement of polarizing plates. FIG. 4 is a diagram showing the frequency dependence of dielectric anisotropy in a liquid crystal for dual-frequency driving. FIG. 5 is a diagram showing an example of the drive signal waveform for driving a liquid crystal optical element. 6 to 12 are diagrams showing optical response characteristics to various drive signals, and FIGS. 13(a) and 13(b) are diagrams showing a conventional driving method of a liquid crystal optical element and its optical response characteristics. be. 11, l2-...Substrate, l2-...Sealing material, 14
a, 14b...electrode, 1t...liquid crystal, 17...
・Polarizing plate, 18a, 18b... No. electrode, l 9-
...Terminal, 20.22-...Metal film, 21a, 21
b-... Common electrode, 23... Light shielding member, 31...
Liquid crystal molecule alignment direction, 32... Transmission axis of upper substrate polarizing plate (
or absorption axis), 33...transmission axis of the upper substrate polarizing plate (
or absorption axis). Applicant's representative Patent attorney Takehiko Suzue No. 2 (!i Figure 3 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12

Claims (16)

【特許請求の範囲】[Claims] (1)対向する一対の基板と、 この一対の基板の対向する一方の内面に複数配列形成さ
れた一方の電極と、 この一方の電極の複数と対向して一対の基板の他方の内
面に複数配列形成された他方の電極と、周波数に応じて
誘電異方性の正負が反転する液晶材からなり、前記一対
の基板間に介在してホモジニアス配向させた液晶層と、 この液晶層の配向方向に対して偏光軸を略 45°傾けて配置した偏光板とを備え、 前記一方の電極と、他方の電極の間に電圧を印加するこ
とにより、前記一方の電極と他方の電極が互いに対向す
る複数の部分の光透過状態を制御する液晶光学装置の駆
動方法において、 前記一方の電極の1つに他方の電極の複数が対向する部
分で形成された複数の光シャッタの光透過状態を順次制
御する1繰返し期間のうち、1つの光シャッタを制御す
るために割当てられた選択期間より長い時間だけ前記1
つの光シャッタを光が透過する状態に持続する開動作電
圧を前記一方の電極と他方の電極間に印加することを特
徴とする液晶光学素子の駆動方法。
(1) A pair of opposing substrates, a plurality of electrodes formed in a plurality of arrays on the inner surface of one of the opposing substrates, and a plurality of electrodes on the other inner surface of the pair of substrates facing the plurality of electrodes. the other electrode formed in an array; a liquid crystal layer made of a liquid crystal material whose dielectric anisotropy is reversed in polarity depending on frequency; and a liquid crystal layer interposed between the pair of substrates and homogeneously aligned; and an alignment direction of the liquid crystal layer. a polarizing plate disposed with a polarization axis tilted at approximately 45 degrees with respect to the polarizing plate, and by applying a voltage between the one electrode and the other electrode, the one electrode and the other electrode are opposed to each other. A method for driving a liquid crystal optical device that controls light transmission states of a plurality of parts, comprising sequentially controlling light transmission states of a plurality of light shutters formed at a part where one of the one electrodes faces a plurality of the other electrodes. The above-mentioned 1 repeating period is longer than the selection period allocated for controlling one optical shutter.
1. A method for driving a liquid crystal optical element, comprising applying an opening voltage that maintains two optical shutters in a state in which light passes between the one electrode and the other electrode.
(2)開動作電圧は、選択期間に印加される開動作電圧
と、残りの選択期間及び非選択期間の一部に印加される
保持電圧とを含んでいる特許請求の範囲第1項記載の液
晶光学素子の駆動方法。
(2) The open operation voltage includes the open operation voltage applied during the selection period and the holding voltage applied during the remaining selection period and a part of the non-selection period. Driving method for liquid crystal optical elements.
(3)開動作電圧は、更に、繰返し期間の最後にシャッ
タを閉成する電圧からなっている特許請求の範囲第2項
記載の液晶光学素子の駆動方法。
(3) The method for driving a liquid crystal optical element according to claim 2, wherein the opening operation voltage further comprises a voltage for closing the shutter at the end of the repetition period.
(4)開動作電圧は、選択期間の1/2の期間、もしく
は1/2より短い期間だけ印加される特許請求の範囲第
2項記載の液晶光学素子の駆動方法。
(4) The method of driving a liquid crystal optical element according to claim 2, wherein the opening operation voltage is applied for a period of 1/2 of the selection period or a period shorter than 1/2.
(5)開動作電圧は、液晶層の液晶分子が斜めに配向し
て透過光の強度が最大値に達するまでの期間よりも長い
期間印加される特許請求の範囲第2項記載の液晶光学素
子の駆動方法。
(5) The liquid crystal optical element according to claim 2, wherein the opening operation voltage is applied for a period longer than the period until the liquid crystal molecules of the liquid crystal layer are oriented obliquely and the intensity of the transmitted light reaches its maximum value. driving method.
(6)開動作電圧は、液晶材料の誘電異方性の正負が反
転する交差周波数より高い周波数の高周波電圧である特
許請求の範囲第2項、又は第4項、又は第5項記載の液
晶光学素子の駆動方法。
(6) The liquid crystal according to claim 2, 4, or 5, wherein the opening operation voltage is a high frequency voltage higher than the crossing frequency at which the polarity of the dielectric anisotropy of the liquid crystal material is reversed. How to drive optical elements.
(7)開動作電圧は、高周波電圧と無電圧との組合わせ
である特許請求の範囲第2項、又は第4項、又は第5項
記載の液晶光学素子の駆動方法。
(7) The method for driving a liquid crystal optical element according to claim 2, 4, or 5, wherein the opening operation voltage is a combination of a high frequency voltage and a non-voltage.
(8)開動作電圧は、高周波電圧の合計が選択期間の1
/2以下の期間だけ印加される特許請求の範囲第7項記
載の液晶光学素子の駆動方法。
(8) The open operating voltage is such that the total high frequency voltage is 1 in the selected period.
8. The method of driving a liquid crystal optical element according to claim 7, wherein the voltage is applied only for a period of /2 or less.
(9)保持電圧は、交差周波数より低い周波数の低周波
と高周波の重畳電圧である特許請求の範囲第2項記載の
液晶光学素子の駆動方法。
(9) The method for driving a liquid crystal optical element according to claim 2, wherein the holding voltage is a superimposed voltage of a low frequency and a high frequency that are lower than the crossover frequency.
(10)保持電圧は、重畳電圧と無電圧との繰返しであ
る特許請求の範囲第2項記載の液晶光学素子の駆動方法
(10) The method for driving a liquid crystal optical element according to claim 2, wherein the holding voltage is a repetition of a superimposed voltage and no voltage.
(11)保持電圧は、重畳電圧、無電圧、高周波電圧、
及び光シャッタが閉成しない低周波電圧との組合わせで
ある特許請求の範囲第2項記載の液晶光学素子の駆動方
法。
(11) Holding voltage is superimposed voltage, no voltage, high frequency voltage,
and a low frequency voltage that does not close the optical shutter.
(12)閉動作電圧は、選択期間の1/5より長く、且
つ1/2以下の期間だけ印加される特許請求の範囲第3
項記載の液晶光学素子の駆動方法。
(12) The closing operation voltage is applied for a period longer than 1/5 and less than 1/2 of the selection period.
A method for driving a liquid crystal optical element as described in Section 1.
(13)閉動作電圧は、低周波電圧と無電圧との繰返し
である特許請求の範囲第3項又は第12項記載の液晶光
学素子の駆動方法。
(13) The method for driving a liquid crystal optical element according to claim 3 or 12, wherein the closing operation voltage is a repetition of a low frequency voltage and no voltage.
(14)閉動作電圧は、高周波電圧と低周波電圧との重
畳電圧である特許請求の範囲第3項又は第12項記載の
液晶光学素子の駆動方法。
(14) The method for driving a liquid crystal optical element according to claim 3 or 12, wherein the closing operation voltage is a superimposed voltage of a high frequency voltage and a low frequency voltage.
(15)閉動作電圧は、重畳電圧と無電界との繰返しで
ある特許請求の範囲第3項又は第12項記載の液晶光学
素子の駆動方法。
(15) The method for driving a liquid crystal optical element according to claim 3 or 12, wherein the closing operation voltage is a repetition of a superimposed voltage and no electric field.
(16)閉動作電圧は、高周波電圧又は無電圧の状態を
含んでおり、それぞれの電圧の印加時間は、光シャッタ
が開放状態における光強度の最大値の1/2の光強度に
なるまでの時間だけ印加する特許請求の範囲第3項記載
の液晶光学素子の駆動方法。
(16) The closing operating voltage includes a high frequency voltage or no voltage state, and the application time of each voltage is until the light intensity reaches 1/2 of the maximum light intensity when the optical shutter is in the open state. 4. A method for driving a liquid crystal optical element according to claim 3, wherein the voltage is applied for only a certain amount of time.
JP61282471A 1986-06-30 1986-11-27 Driving method for liquid crystal optical element Expired - Lifetime JPH0833533B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61282471A JPH0833533B2 (en) 1986-11-27 1986-11-27 Driving method for liquid crystal optical element
US07/066,720 US4836654A (en) 1986-06-30 1987-06-24 Drive method for a dual-frequency, dielectric anisotropy liquid crystal optical device
EP87109190A EP0251230B1 (en) 1986-06-30 1987-06-26 Drive method for liquid crystal optical device
DE3789168T DE3789168T2 (en) 1986-06-30 1987-06-26 Method for controlling an optical device with a liquid crystal.
KR1019870006656A KR900007726B1 (en) 1986-06-30 1987-06-29 Driving method of lcd optical elements
US07/316,221 US4946260A (en) 1986-06-30 1989-02-24 Dual-frequency, dielectric anisotropy liquid crystal optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61282471A JPH0833533B2 (en) 1986-11-27 1986-11-27 Driving method for liquid crystal optical element

Publications (2)

Publication Number Publication Date
JPS63135920A true JPS63135920A (en) 1988-06-08
JPH0833533B2 JPH0833533B2 (en) 1996-03-29

Family

ID=17652857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61282471A Expired - Lifetime JPH0833533B2 (en) 1986-06-30 1986-11-27 Driving method for liquid crystal optical element

Country Status (1)

Country Link
JP (1) JPH0833533B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176620A (en) * 1982-04-09 1983-10-17 Seiko Epson Corp Optical imaging device
JPS5993424A (en) * 1982-11-18 1984-05-29 Seiko Epson Corp Liquid crystal light valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176620A (en) * 1982-04-09 1983-10-17 Seiko Epson Corp Optical imaging device
JPS5993424A (en) * 1982-11-18 1984-05-29 Seiko Epson Corp Liquid crystal light valve

Also Published As

Publication number Publication date
JPH0833533B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
US4367924A (en) Chiral smectic C or H liquid crystal electro-optical device
EP0032362B1 (en) Chiral smectic liquid crystal electro-optical device and process of making the same
KR100352052B1 (en) Bistable nematic liquid crystal device
EP0125841A2 (en) Rapid starting, high-speed liquid crystal variable retarder
JPS597927A (en) Liquid crystal display
JP2001526408A (en) Phase-separated composite organic film and method for producing the same
JPH0228125B2 (en)
GB2255193A (en) Electrically controllable waveplate.
JPH07500931A (en) Twisted ferroelectric liquid crystal optical device and gray scale modulation method
JPH04299311A (en) Liquid crystal cell
JPH07505236A (en) lcd device
EP1180714A1 (en) Liquid crystal shutter
JPS63135920A (en) Driving method for liquid crystal optical device
JP3013260B2 (en) Liquid crystal device
JP2503464B2 (en) Driving method for liquid crystal optical element
JPS63163429A (en) Driving method for liquid crystal optical element
JPH0836196A (en) Optical switch
JPS6256933A (en) Driving method for liquid crystal matrix display panel
JP3083016B2 (en) Liquid crystal alignment treatment method and liquid crystal element manufacturing method
JP2607491B2 (en) LCD driving method
JPH06242419A (en) Method for driving liquid crystal device
JPS6349733A (en) Liquid crystal optical element
JPS63103212A (en) Driving device for liquid crystal optical device
JPH01161221A (en) Liquid crystal element and its driving method
JPS63103211A (en) Driving method for liquid crystal optical element