JPS63135753A - Heat pump type refrigeration cycle - Google Patents

Heat pump type refrigeration cycle

Info

Publication number
JPS63135753A
JPS63135753A JP28060386A JP28060386A JPS63135753A JP S63135753 A JPS63135753 A JP S63135753A JP 28060386 A JP28060386 A JP 28060386A JP 28060386 A JP28060386 A JP 28060386A JP S63135753 A JPS63135753 A JP S63135753A
Authority
JP
Japan
Prior art keywords
heat storage
heat
storage tank
temperature
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28060386A
Other languages
Japanese (ja)
Inventor
永治 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28060386A priority Critical patent/JPS63135753A/en
Publication of JPS63135753A publication Critical patent/JPS63135753A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、サイクル内の蓄熱槽を設けたヒートポンプ
式冷凍サイクルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a heat pump type refrigeration cycle provided with a heat storage tank within the cycle.

(従来の技術) ヒートポンプ式空気調和機において、冷凍サイクル内に
蓄熱槽を設け、夜間、蓄熱槽に貯えられた熱を利用して
暖房の立上がり時にこの蓄熱槽より熱を得て高暖房能力
を出すことができるようになっている。
(Conventional technology) In a heat pump type air conditioner, a heat storage tank is installed in the refrigeration cycle, and the heat stored in the heat storage tank is used at night to obtain heat from the heat storage tank when heating starts, thereby increasing heating capacity. It is now possible to take it out.

第3図は従来のヒートポンプ式冷凍サイクルを示すもの
で、1はコンプレッサで、2は四方弁である。この四方
弁2は室外側熱交換器3、膨張機構としての膨張弁4、
蓄熱槽5および室内側熱交換器6を介して前記四方弁2
に接続され、基本的ヒートポンプ冷凍サイクルを構成し
ている。ざらに、前記蓄熱槽5と室内側熱交換器6との
間には第1電磁弁7と立上がり用膨張弁8が並列に設け
られている。また、前記膨張弁4には第1と第2のバイ
パス回路9.10が設けられ、第1のバイパス回路9に
は第2電磁弁11と逆止弁12が、第2のバイパス回路
1oには第3電磁弁13と逆止弁14が設けられている
FIG. 3 shows a conventional heat pump type refrigeration cycle, where 1 is a compressor and 2 is a four-way valve. This four-way valve 2 includes an outdoor heat exchanger 3, an expansion valve 4 as an expansion mechanism,
The four-way valve 2 is connected to the four-way valve 2 via the heat storage tank 5 and the indoor heat exchanger 6.
It is connected to a basic heat pump refrigeration cycle. Roughly speaking, a first electromagnetic valve 7 and a rising expansion valve 8 are provided in parallel between the heat storage tank 5 and the indoor heat exchanger 6. Further, the expansion valve 4 is provided with first and second bypass circuits 9,10, the first bypass circuit 9 is provided with a second solenoid valve 11 and a check valve 12, and the second bypass circuit 1o is provided with a second solenoid valve 11 and a check valve 12. A third solenoid valve 13 and a check valve 14 are provided.

このように構成された冷凍サイクルにおいて、蓄熱槽5
の熱を利用して暖房立上がり運転を行なう場合には、第
4図に示すようになる。すなわち、第1電磁弁7が閉、
第2電磁弁11が開、室内側熱交換器6のファン(図示
しない)のみがオンとなり、室内側熱交換器6が凝縮器
として作用し、蓄熱槽5が蒸発器として作用して蓄熱槽
5の熱を汲み上げる。この運転を続けると蓄熱槽5の温
度は低下するが、蒸発温度が外気温度より高い間は外気
より吸熱することにより高暖房能力を出せる。
In the refrigeration cycle configured in this way, the heat storage tank 5
When heating start-up operation is performed using the heat of That is, the first solenoid valve 7 is closed,
The second solenoid valve 11 opens, and only the fan (not shown) of the indoor heat exchanger 6 is turned on, so that the indoor heat exchanger 6 acts as a condenser, and the heat storage tank 5 acts as an evaporator. Pump up the heat of 5. If this operation continues, the temperature of the heat storage tank 5 will drop, but as long as the evaporation temperature is higher than the outside air temperature, high heating capacity can be achieved by absorbing heat from the outside air.

また、蓄熱槽5の温度が低下し、高@房能力を出せなく
なったとき第5図に示す暖房蓄熱運転に入る。これは除
霜のための蓄熱を行なうサイクルで、室内側熱交換器6
および室外側熱交換器3のファン(図示しない)がオン
となり、室内側熱交換器6と蓄熱槽5が凝縮器として作
用し、暖房と蓄熱を同時に行なうものである。ここで貯
えられた熱は、第6図に示すような除霜サイクルで除霜
時間の短縮などの除霜性能改善が使われる。すなわら、
四方弁2が切替わって冷房サイクルとなり、室外側熱交
換器3のファン(図示しない)のみがオンとなり、室外
熱交換器3が凝縮器として作用して除霜し、蓄熱槽5が
蒸発器として作用し、蓄熱槽5の熱を利用して除霜時間
を短縮している。
Further, when the temperature of the heat storage tank 5 decreases and a high heating capacity cannot be achieved, the heating heat storage operation shown in FIG. 5 is started. This is a cycle that stores heat for defrosting, and the indoor heat exchanger 6
Then, the fan (not shown) of the outdoor heat exchanger 3 is turned on, and the indoor heat exchanger 6 and heat storage tank 5 act as a condenser to perform heating and heat storage at the same time. The heat stored here is used to improve defrosting performance, such as shortening defrosting time, in a defrosting cycle as shown in FIG. In other words,
The four-way valve 2 switches to become a cooling cycle, only the fan (not shown) of the outdoor heat exchanger 3 is turned on, the outdoor heat exchanger 3 acts as a condenser and defrosts, and the heat storage tank 5 becomes an evaporator. The defrosting time is shortened by utilizing the heat of the heat storage tank 5.

(発明が解決しようとする問題点) このように暖房起動時の高暖房能力運転の終了直後は蓄
熱槽5の温度は低くなっており暖房能力と蓄熱能力の比
は、蓄熱能力の方が大きくなって暖房能力が小さくなっ
てしまうという欠点がある。このように立上がりの終了
後しばらく暖房能力が低下する欠点がある。このように
蓄熱槽の温度変化に伴い蓄熱能力と暖房能力の比が変化
する。
(Problem to be solved by the invention) In this way, the temperature of the heat storage tank 5 is low immediately after the end of the high heating capacity operation at the time of starting the heating, and the ratio of the heating capacity to the heat storage capacity is larger for the heat storage capacity. The disadvantage is that the heating capacity is reduced. In this way, there is a drawback that the heating capacity decreases for a while after the start-up is finished. In this way, the ratio of heat storage capacity to heating capacity changes as the temperature of the heat storage tank changes.

蓄熱槽の濃度が低いときは蓄熱能力が大きくなり暖房能
力が小さくなってしまうという欠点がある。
There is a drawback that when the concentration of the heat storage tank is low, the heat storage capacity increases and the heating capacity decreases.

この欠点は、室内側熱交換器と蓄熱槽と直列に配管され
た冷凍サイクルで暖房しながら蓄熱を行なう場合には必
ず起こるものである。
This drawback always occurs when heat is stored while heating in a refrigeration cycle that is connected in series with an indoor heat exchanger and a heat storage tank.

この発明は、前記事情に着目してなされたもので、その
目的とするところは、蓄熱槽の蓄熱材の温度変化に拘ら
ず蓄熱槽への放熱能力を一定にコントロールして暖房能
力の一時的な低下を防止することができるヒートポンプ
式冷凍サイクルを提供することにある。
This invention was made with attention to the above-mentioned circumstances, and its purpose is to temporarily control the heating capacity by controlling the heat radiation capacity to the heat storage tank at a constant level regardless of the temperature change of the heat storage material in the heat storage tank. An object of the present invention is to provide a heat pump type refrigeration cycle that can prevent such a decrease in temperature.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段及び作用)この発明は、
室内側熱交換器と蓄熱槽との間に電動膨張弁を設けると
ともに、この蓄熱槽の熱交換器の温度と蓄熱材の温度を
検出する温度センサを設け、この温度センサの温度検出
信号によって前記電動膨張弁を制御して開度を可変する
とともに、前記温度センサの温度差が一定となるように
前記電動膨張弁の開度を制御し、暖房立上がり運転直後
の暖房能力の一時的な低下を防止することにある。
(Means and effects for solving the problem) This invention has the following features:
An electric expansion valve is provided between the indoor heat exchanger and the heat storage tank, and a temperature sensor is provided to detect the temperature of the heat exchanger and the temperature of the heat storage material of the heat storage tank. The electric expansion valve is controlled to vary the opening degree, and the opening degree of the electric expansion valve is controlled so that the temperature difference between the temperature sensors becomes constant, thereby preventing a temporary decrease in the heating capacity immediately after the heating start-up operation. The purpose is to prevent it.

(実施例) 以下、この発明の一実施例を第1図に基づいて説明する
が、第3図に示した従来と同一構成部分は同一符号を付
して説明を省略する。
(Embodiment) Hereinafter, an embodiment of the present invention will be described based on FIG. 1, and the same components as the conventional one shown in FIG. 3 will be given the same reference numerals and the explanation will be omitted.

第1図に示すように、室内側熱交換器6と蓄熱槽5との
間には開度が自由に可変できる電動膨張弁15が設けら
れ、これには駆動部16が設けられ、この駆動部16に
は膨張弁コントローラ17が接続され、この膨張弁コン
トローラ17によって電動膨張弁15の開度を調整でき
るようになっている。さらに、前記蓄熱槽5は蓄熱材1
8と熱交換器19とから構成されていて、この蓄熱槽5
の入口と出口には温度センサ20,21が設けられ、蓄
熱材18の内部にはこの温度を検出する温度センサ22
が設けられている。そして、これら温度センサ20.2
1および22の検出信号は前記膨張弁コントローラ17
に送信されるようになっている。
As shown in FIG. 1, an electric expansion valve 15 whose opening degree can be freely varied is provided between the indoor heat exchanger 6 and the heat storage tank 5. An expansion valve controller 17 is connected to the section 16, and the opening degree of the electric expansion valve 15 can be adjusted by this expansion valve controller 17. Furthermore, the heat storage tank 5 has a heat storage material 1
8 and a heat exchanger 19, and this heat storage tank 5
Temperature sensors 20 and 21 are provided at the inlet and outlet of the heat storage material 18, and a temperature sensor 22 that detects this temperature is provided inside the heat storage material 18.
is provided. And these temperature sensors 20.2
1 and 22 are detected by the expansion valve controller 17.
It is now sent to .

つぎに、前述のように構成された冷凍サイクルの作用に
ついて説明する。暖房しながら蓄熱する場合、コンプレ
ッサ1から吐出された高温高圧のガス冷媒は四方弁2を
介して室内側熱交換器6に導入され室内を暖房する。室
内側熱交換器6を出た冷媒は電動膨張弁15を介して蓄
熱槽5の熱交換器19を経て膨張弁4に導かれ、さらに
中外側熱交換器3を介して前記四方弁2からコンプレッ
サ1に吸込まれる。この暖房運転中に膨張弁コントロー
ラ17には温度センサ20.21および22からの温度
検出信号が入力される。したがって、膨張弁コントロー
ラ17は蓄熱槽5の熱交換器温度と蓄熱材温度との温度
差が一定になるように電動膨張弁15の開度をコントロ
ールする。たとえば、暖房立上がり時は蓄熱材の温度T
tが10°C室内温度がTaが20°Cとする。このと
き従来のように室内側熱交換器6と蓄熱槽5の間に絞り
機構がない場合、凝縮温度Tcが30’Cでバランスす
ると、Tc−Tt−20deQとなり温度差の大きい蓄
熱槽5に多くの放熱をして暖房能力が出ない。しかし、
前記実施例によればTc−Tt−5degと設定すると
、電動膨張弁15が絞られる。したがって、室内側熱交
換器6の凝縮温度TCtは40°Cと高くなり蓄熱槽5
凝縮温度TC2は15°Cと低くなりTe3−Ta−2
0deg%TCt −”rt−5degとなり、蓄熱槽
5の放熱が少なくなり、暖房能力が多く出る。この場合
、蓄熱能力は1/4程度に低下するが、つぎの除霜まで
の間に蓄熱されればよく、この程度でも充分蓄熱される
Next, the operation of the refrigeration cycle configured as described above will be explained. When storing heat while heating, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is introduced into the indoor heat exchanger 6 via the four-way valve 2 to heat the room. The refrigerant exiting the indoor heat exchanger 6 is led to the expansion valve 4 via the electric expansion valve 15, the heat exchanger 19 of the heat storage tank 5, and then the four-way valve 2 via the medio-outside heat exchanger 3. It is sucked into the compressor 1. During this heating operation, temperature detection signals from temperature sensors 20, 21 and 22 are input to the expansion valve controller 17. Therefore, the expansion valve controller 17 controls the opening degree of the electric expansion valve 15 so that the temperature difference between the heat exchanger temperature of the heat storage tank 5 and the heat storage material temperature is constant. For example, when heating starts, the temperature of the heat storage material T
Assume that t is 10°C and the indoor temperature Ta is 20°C. At this time, if there is no throttling mechanism between the indoor heat exchanger 6 and the heat storage tank 5 as in the conventional case, when the condensation temperature Tc is balanced at 30'C, Tc - Tt - 20 deQ, which is the case in the heat storage tank 5 with a large temperature difference. It dissipates a lot of heat and does not have enough heating capacity. but,
According to the embodiment, when Tc-Tt-5deg is set, the electric expansion valve 15 is throttled. Therefore, the condensing temperature TCt of the indoor heat exchanger 6 becomes as high as 40°C, and the heat storage tank 5
The condensation temperature TC2 is as low as 15°C and Te3-Ta-2
0deg%TCt-"rt-5deg, the heat radiation of the heat storage tank 5 decreases, and the heating capacity increases. In this case, the heat storage capacity decreases to about 1/4, but the heat is stored until the next defrosting. Even this amount is enough to store heat.

この状態で運転が続けられると蓄熱槽5内の蓄熱材18
の温度Ttが高くなってくるが、この場合、電動膨張弁
15の開度が徐々に開き、Ttの上昇と同じだけTc2
も上昇し、Te3−Ttを一定に保つ。この状態をモリ
エル線図上に表わすと第2図に示すようになり、蓄熱槽
5への放熱をコントロールして暖房能力の低下を防止す
ることができる。
If operation continues in this state, the heat storage material 18 in the heat storage tank 5
temperature Tt becomes high, but in this case, the electric expansion valve 15 gradually opens and Tc2 increases by the same amount as the rise in Tt.
also increases, keeping Te3-Tt constant. When this state is represented on a Mollier diagram, it becomes as shown in FIG. 2, and it is possible to control the heat radiation to the heat storage tank 5 and prevent a decrease in the heating capacity.

なお、暖房蓄熱運転以外のときの電動膨張弁15は、暖
房立上がり時は温度センサ20.21からの検出信号に
よって蓄熱槽5の熱交換器19の入口と出口の温度差が
一定となるよう、すなわち熱交換器19のスーパヒート
量が一定となるように開度が制御され、その他の運転モ
ードではすべて全開となる。
In addition, the electric expansion valve 15 at times other than the heating heat storage operation is operated so that the temperature difference between the inlet and the outlet of the heat exchanger 19 of the heat storage tank 5 is kept constant according to the detection signal from the temperature sensor 20.21 when the heating starts. That is, the opening degree is controlled so that the amount of super heat of the heat exchanger 19 is constant, and in all other operation modes, it is fully opened.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、室内側熱交換
器と蓄熱槽との間に開度を可変できる電動膨張弁を設け
、蓄熱槽の熱交換器と蓄熱材との温度を検出する温度セ
ンサからの検出信号によって前記電動膨張弁の開度を制
御するようにしたから、蓄熱材の温度変化にかかわりな
く蓄熱能力を一定にコントロールすることができ、暖房
立上がり運転直後の暖房能力の一時的な低下を防止する
ことができるという効果がある。
As explained above, according to the present invention, an electric expansion valve whose opening degree can be varied is provided between the indoor heat exchanger and the heat storage tank, and the temperature of the heat exchanger and the heat storage material of the heat storage tank is detected. Since the opening degree of the electric expansion valve is controlled by the detection signal from the temperature sensor, the heat storage capacity can be controlled at a constant level regardless of temperature changes in the heat storage material, and the heating capacity can be temporarily reduced immediately after the heating start-up operation. This has the effect of being able to prevent a decline in performance.

【図面の簡単な説明】 第1図および第2図はこの発明の一実施例を示すもので
、第1図は冷凍サイクルの構成図、第2図は蓄熱能力コ
ントロール運転時のモリエル線図、第3図は従来の冷凍
サイクルの構成図、第4図は従来の蓄熱利用暖房立上が
り運転中の冷凍サイクル図、第5因は従来の暖房しなが
ら蓄熱運転する場合の冷凍サイクル図、第6図は従来の
蓄熱利用除霜運転中の冷凍サイクル図である。 1・・・コンプレッサ、3・・・室外側熱交換器、4・
・・膨張弁、5・・・蓄熱槽、6・・・室内側熱交換器
、15・・・電動膨張弁、17・・・膨張弁コントロー
ラ、18・・・蓄熱材、19・・・熱交換器、20〜2
1・・・温度センサ。 出願人代理人 弁理士 鈴 江 武 彦第1図 Tt:蓄勲4わユ裏 第2図 Tout涜気」 第3図 第4図
[Brief Description of the Drawings] Figures 1 and 2 show an embodiment of the present invention, in which Figure 1 is a configuration diagram of a refrigeration cycle, Figure 2 is a Mollier diagram during heat storage capacity control operation, Figure 3 is a configuration diagram of a conventional refrigeration cycle, Figure 4 is a diagram of a refrigeration cycle during a conventional heating start-up operation using heat storage, and the fifth factor is a diagram of a refrigeration cycle during a conventional heat storage operation while heating. is a refrigeration cycle diagram during conventional defrosting operation using heat storage. 1... Compressor, 3... Outdoor heat exchanger, 4...
... Expansion valve, 5... Heat storage tank, 6... Indoor heat exchanger, 15... Electric expansion valve, 17... Expansion valve controller, 18... Heat storage material, 19... Heat Exchanger, 20-2
1...Temperature sensor. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Tt: 4 Ways of Honor Figure 2 Tout Sacred Spirit Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)コンプレッサ、室外側熱交換器、膨張機構および
室内側熱交換器を順次接続して構成するとともに、暖房
運転時における室内側熱交換器の下流側に蓄熱槽を設け
、蓄熱槽に貯えられた熱を利用できるようにしたヒート
ポンプ式冷凍サイクルにおいて、前記室内側熱交換器と
蓄熱槽との間に設けた電動膨張弁と、前記蓄熱槽の熱交
換器の温度と蓄熱材の温度を検出する温度センサと、こ
の温度センサの温度検出信号によって前記電動膨張弁を
制御して開度を可変するとともに、前記温度センサの温
度差が一定となるように前記電動膨張弁の開度を制御可
能な膨張弁コントローラとを具備したことを特徴とする
ヒートポンプ式冷凍サイクル。
(1) A compressor, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger are connected in sequence, and a heat storage tank is provided downstream of the indoor heat exchanger during heating operation, and the heat is stored in the heat storage tank. In a heat pump type refrigeration cycle that makes it possible to utilize the heat generated in A temperature sensor to detect and a temperature detection signal of the temperature sensor control the electric expansion valve to vary the opening degree, and control the opening degree of the electric expansion valve so that the temperature difference between the temperature sensors is constant. A heat pump type refrigeration cycle characterized by being equipped with an expansion valve controller.
JP28060386A 1986-11-27 1986-11-27 Heat pump type refrigeration cycle Pending JPS63135753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28060386A JPS63135753A (en) 1986-11-27 1986-11-27 Heat pump type refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28060386A JPS63135753A (en) 1986-11-27 1986-11-27 Heat pump type refrigeration cycle

Publications (1)

Publication Number Publication Date
JPS63135753A true JPS63135753A (en) 1988-06-08

Family

ID=17627331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28060386A Pending JPS63135753A (en) 1986-11-27 1986-11-27 Heat pump type refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS63135753A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165250A (en) * 1990-03-30 1992-11-24 Mitsubishi Denki Kabushiki Kaisha Air conditioning system with thermal storage cycle control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165250A (en) * 1990-03-30 1992-11-24 Mitsubishi Denki Kabushiki Kaisha Air conditioning system with thermal storage cycle control

Similar Documents

Publication Publication Date Title
US7654104B2 (en) Heat pump system with multi-stage compression
US7810353B2 (en) Heat pump system with multi-stage compression
JP2504437B2 (en) air conditioner
CN110709648B (en) Air conditioner
JP2695288B2 (en) Multi-room air conditioner
JPS63135753A (en) Heat pump type refrigeration cycle
JP3021987B2 (en) Refrigeration equipment
JPH07332795A (en) Multiroom type air-conditioning system
JPH062966A (en) Two-stage compression heat pump system
JP2008500509A (en) Two-phase or supercooled reheat system
JP2955401B2 (en) Air conditioner
JP3155645B2 (en) Air conditioner
JPH02223757A (en) Air conditioner
JP3237206B2 (en) Air conditioner
CA2597372A1 (en) Heat pump system with multi-stage compression
JPH06337176A (en) Air-conditioner
US20240093920A1 (en) Hvac dual de-superheating/subcooling heat reclaim system for transcritical refrigeration systems
JPH07243726A (en) Two-stage cooler
JPH01127866A (en) Cold and hot simultaneous type multi-chamber air conditioner
EP0153557B1 (en) Refrigeration cycle apparatus
KR100197684B1 (en) Controlling circuit for cooling material of airconditioner
JPH0718938Y2 (en) air conditioner
EP0247638B1 (en) Refrigeration cycle apparatus
JP3485700B2 (en) Air conditioner
JPS63259353A (en) Refrigerator