JPS6313497A - Underwater wide band frequency transmitter/receiver - Google Patents

Underwater wide band frequency transmitter/receiver

Info

Publication number
JPS6313497A
JPS6313497A JP15643786A JP15643786A JPS6313497A JP S6313497 A JPS6313497 A JP S6313497A JP 15643786 A JP15643786 A JP 15643786A JP 15643786 A JP15643786 A JP 15643786A JP S6313497 A JPS6313497 A JP S6313497A
Authority
JP
Japan
Prior art keywords
acoustic
rubber
matching layer
acoustic matching
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15643786A
Other languages
Japanese (ja)
Other versions
JPH0511710B2 (en
Inventor
Katsumi Sugiuchi
杉内 克己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15643786A priority Critical patent/JPS6313497A/en
Publication of JPS6313497A publication Critical patent/JPS6313497A/en
Publication of JPH0511710B2 publication Critical patent/JPH0511710B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To attain an extremely high efficiency and wide frequency band of acoustic wave by interposing an acoustic matching layer between a sound wave radiating plane and an acoustic rubber, and adhering the outermost layer of the rubber to a case. CONSTITUTION:A vertical resonater 1-a consists of a front mass 11, a ceramic 12, and a back mass 13, to the sound wave radiating plane of which, the acoustic matching layer 2 of a thickness of lambda/4 is adhered. The acoustic matching layer 2 is also adhered to the acoustic rubber 3, and the rubber 3 is adhered to the case 5. The thus formed frequency transmitter/receiver generates oscillation in the oscillation mode generated by respective vertical resonaters and in the oscillation mode generated by the acoustic matching layer, and the overall oscillation characteristic has a wide hand characteristic synthesizing said two modes. Additionally, the back mass 13, etc., does not need to be made in thickness of lambda/4, and accordingly, usable frequency length to the ceramic 12 can be increased within the extend of lambda/2 and further, the applied power can be also made larger.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水中広帯域送受波器に関し、特に高能率化、広
帯域化および小型軽量化の改善を図った水中広帯域送受
波器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an underwater broadband transducer, and more particularly to an underwater broadband transducer that is improved in efficiency, broadband, and size and weight.

〔従来の技術〕[Conventional technology]

通常のセラミック振動子あるいはセラミック振動子を2
つの金属で前後からサンドイッチ状に挟みこんだランシ
ーパン型振動子を利用する縦振動子を、形成せんとする
指向性その他の運用条件を勘案した複数個面配列したう
えこれらの音波放射面を音響窓に接着する形式の送受波
器は各種の運用分野で多用されている。この場合、放射
音波を通過せしめる窓、いわゆる音響窓を構成する部材
は通常水または海水とその音響インピーダンスPCが近
似した音響ゴム(もしくはPCゴム)が通常利用されて
いる。ここでPは密度、Cは音速を表わす。
Ordinary ceramic resonator or two ceramic resonators
Longitudinal transducers, which utilize runsipan-type transducers sandwiched between two pieces of metal from the front and back, are arranged in multiple planes taking into account the desired directivity and other operational conditions, and these sound wave radiation surfaces are arranged as acoustic windows. Transducer/receiver types that are glued to are widely used in various operational fields. In this case, acoustic rubber (or PC rubber) whose acoustic impedance PC is similar to that of water or seawater is usually used as a member constituting the window through which the radiated sound waves pass, the so-called acoustic window. Here, P represents the density and C represents the speed of sound.

また、このような送受波器では運用目的上その広帯域化
を要求されることも多いが、その場合は送受波器を構成
すべき各縦振動子をランジュバン型振動子としたうえバ
ックマス(back mass)を1/4波長として機
械的Q(選択度)を小さくすることが一般的な手法とな
っている。ここで言うバックマスとは、ランジーパン型
振動子において、セラミックの前後に接着した金属質量
のうち後部のものを指し、前部のものはこのバックマス
に対しフロントマス(front mass)と呼ばれ
ていることもよく知られている。さらに、このランジュ
バン型振動子は、その効率的利用を考慮してセラミIり
にプリストレス(pre −5tress )を印加し
うるようにポルト締付構造のものが多用されている。
In addition, such a transducer is often required to have a wide band for operational purposes, but in that case, each longitudinal oscillator that constitutes the transducer is a Langevin type oscillator, and a back mass (back mass) is used. A common method is to reduce the mechanical Q (selectivity) by setting the mass) to 1/4 wavelength. The back mass referred to here refers to the rear part of the metal mass bonded to the front and rear of the ceramic in a lungi pan type vibrator, and the front mass is called the front mass in contrast to this back mass. It is also well known that Further, in consideration of efficient use of the Langevin type vibrator, a ported clamping structure is often used so that prestress (pre -5 stress) can be applied to the ceramic I.

ともかく、このランジ、・パン型振動子は、構造的に広
帯餠化に対応し易い特徴が着目され、広帯域化を行う縦
振動子としてはバックマスを1/4波長とし7たものが
基本的に利用されている。
In any case, this lunge/pan type resonator has been attracting attention because of its structural features that make it easily adaptable to wide-band resonators, and the basic longitudinal resonator for wide-band resonators is one with a backmass of 1/4 wavelength. It is used in many ways.

第2図は従来の水中広帯域送受波器の一例を示す断面図
である。第2図に示す従来の水中広帯域送受波器は、縦
振動子として利用する複数のランジュバン型振動子の一
部を縦振動子5−a、5−b。
FIG. 2 is a sectional view showing an example of a conventional underwater broadband transducer. In the conventional underwater broadband transducer shown in FIG. 2, a portion of a plurality of Langevin type oscillators used as longitudinal oscillators are vertical oscillators 5-a and 5-b.

5−cで表現し、これら縦振動子はたとえば縦振動子5
−aの如く、金属製のフロントマス61とバックマス6
3で2段の円筒形セラミック62をボルト締めしてプリ
ストレスを付与する構造となっている。音波放射面とな
るフロントマス61の端面は音響ゴム3と接着され、ま
たバックマス63からの音波は遮音材4により音波が放
射しないように配慮されて縦振動子5−aは全体が他の
縦振動子とともにケース5に収容された構造となってい
る。
5-c, and these longitudinal oscillators are, for example, longitudinal oscillators 5-c.
- As shown in a, metal front mass 61 and back mass 6
3, the two-stage cylindrical ceramic 62 is bolted together to apply prestress. The end face of the front mass 61, which serves as a sound wave radiation surface, is bonded to the acoustic rubber 3, and the sound waves from the back mass 63 are prevented from being radiated by the sound insulation material 4, so that the entire vertical vibrator 5-a is It has a structure in which it is housed in a case 5 together with the vertical vibrator.

このよう゛な送受波器を広帯域化するには、バックマス
63をλ/4(λは共振周波数における波長)として機
械的Qを小さなものと全体をλ/2で振動させる。従っ
てフロントマス61とセラミック62の合計長もλ/4
となる。フロントマス61は1.撓み振動が発生しない
条件を考慮し、またセラミック62は印加電圧を考慮し
て寸法が設定される。
In order to widen the band of such a transducer, the back mass 63 is set to λ/4 (λ is the wavelength at the resonant frequency), the mechanical Q is made small, and the whole is vibrated at λ/2. Therefore, the total length of the front mass 61 and the ceramic 62 is also λ/4
becomes. The front mass 61 is 1. The dimensions of the ceramic 62 are set in consideration of the conditions under which bending vibration does not occur, and also in consideration of the applied voltage.

さて、上述した広帯域送受波器は通常量も多用されるも
のであるが、このほかに振動子単体の放射面にλ/4厚
みの音響整合層を接着して2つの共振モードを形成して
広帯域化を図る試みが為されておシ、古くは「帯域形磁
歪超音波濾波器」(松木友正、電気通信学会雑誌、第3
5巻12号。
Now, the above-mentioned broadband transducer is commonly used in large quantities, but in addition to this, an acoustic matching layer with a thickness of λ/4 is bonded to the radiation surface of a single vibrator to form two resonance modes. Attempts have been made to widen the band.
Volume 5, No. 12.

P530〜533.昭和27年12月)、最近にあって
はこの文献内容に対する改善提案が、高効率。
P530-533. (December 1952), and recently, suggestions for improving the content of this document have been highly efficient.

広帯域圧電振動子を対象として「広帯域水中超音波トラ
ンスジューサの一検討」(井上武その他。
"A Study of Broadband Underwater Ultrasonic Transducers" targeting broadband piezoelectric transducers (Takeshi Inoue et al.).

電子通信学会資料US85−22.1985年8月27
日)に詳述されている。このλ/4の音響整合層は、振
動子放射面と負荷媒質との間に第2の振動モード発生用
としてエポキシ樹脂等の整合用部材を介在せしめ、振動
子に複数振動モードによる帯域通過特性を付与して広帯
域化を図ることがその目的とてれている。
Institute of Electronics and Communication Engineers material US85-22. August 27, 1985
(Japanese). This λ/4 acoustic matching layer has a matching member such as epoxy resin interposed between the vibrator radiation surface and the load medium for generating a second vibration mode, and the vibrator has bandpass characteristics due to multiple vibration modes. The purpose is to increase bandwidth by adding

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の広帯域送受波器には、しかしながら次の
如き問題点がある。
However, the conventional broadband transducer described above has the following problems.

すなわち、ランジュバン型振動子を必要数配置ケースに
収容しこ送受波器にあっては、その広帯域化をバックマ
スをλ/4とすることによって確保している。この場合
、振動子の音波放射面の音響インピーダンスと、音響窓
に利用する音響ゴムの音響インピーダンスとの差が大き
く、従って能率が高くとれずかつ帯域も狭くならざるを
得々いという基本的な問題があり、しかもこの条件のも
とてバックマスをλ/4長として広帯域化を図ると、そ
の寸法が非常に大きいものとなり、これに伴って重量も
非常に大きいものとなってしまうという問題が重畳する
。このことは、 3000〜3500m/s程度の音速
を有するセラミック部に比し、通常のフロントマスおよ
びバックマスに利用されるアルミニュウム等の金属の音
速が約5000m/Sであり、さらに両者の密度差を考
慮すれば自明の理である。
In other words, in a transducer in which a necessary number of Langevin type vibrators are housed in a case, wide band is ensured by setting the backmass to λ/4. In this case, the basic problem is that there is a large difference between the acoustic impedance of the sound wave emitting surface of the vibrator and the acoustic impedance of the acoustic rubber used for the acoustic window, and therefore efficiency cannot be achieved and the band is inevitably narrow. Under these conditions, if the backmass is set to λ/4 length to achieve a wide band, the dimensions will become very large, and the weight will also become very large. Superimpose. This means that compared to ceramic parts, which have a sound speed of about 3000 to 3500 m/s, the sound speed of metals such as aluminum used for normal front mass and back mass is about 5000 m/s, and furthermore, the density difference between the two This is self-evident if we take this into account.

一方、λ/4の厚みの音響整合層を利用する振動子にあ
っては、振動子自体に対する広帯域特性の付与は勿論可
能であるが、振動子は通常単体として利用されることは
稀で、第2図に示す如くケースに収容して音響窓を介し
て音波を送受波する使われ方が殆んどである。このこと
は、振動子を送受波器として利用する場合の耐運用環境
性いわゆる耐候性や堅牢性、ならびに操作性を配慮して
のことに他ならず、従って従来の音響整合層付振動子の
みではそのまま実用環境での使用には耐え難いという問
題がある。
On the other hand, in the case of a resonator that uses an acoustic matching layer with a thickness of λ/4, it is of course possible to impart broadband characteristics to the resonator itself, but the resonator is usually rarely used as a single unit. In most cases, the device is housed in a case, as shown in FIG. 2, and transmits and receives sound waves through an acoustic window. This is done in consideration of operational environment resistance, so-called weather resistance, robustness, and operability when the transducer is used as a transducer. Therefore, conventional transducers with acoustic matching layers are However, there is a problem in that it cannot withstand use in a practical environment as it is.

本発明の目的は上述した欠点を除去し、縦振動子群の音
波放射面と音響ゴムとの間に少なくとも1個の1/4波
長音響整合層を成層接着状態で介在させ、最外層の音響
ゴム自体をケースに接着した構造の音響窓を備えること
によって、著しく高能率化と広帯域化が改善され、しか
も大幅な小型軽量化が図れる水中広帯域送受波器を提供
することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks, and to interpose at least one quarter-wavelength acoustic matching layer between the sound wave emitting surface of the longitudinal transducer group and the acoustic rubber in a layered adhesive state. An object of the present invention is to provide an underwater wideband transducer that is significantly improved in efficiency and wideband by providing an acoustic window with a structure in which rubber itself is bonded to the case, and which can be significantly reduced in size and weight.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の水中広帯域送受波器は、縦振動子群の音波放射
面を音響窓に接着する形式の水中広帯域送受波器におい
て、少なくとも1個の1/4波長音響整合層を順次前記
音波放射面から最外層の音響ゴムに到るまで成層しつつ
接着したうえ前記音響ゴムを前記縦振動子群収容ケース
に接着して成る音響窓を有して構成される。
The underwater broadband transducer of the present invention is of a type in which a sound wave radiation surface of a group of vertical transducers is bonded to an acoustic window, in which at least one quarter-wavelength acoustic matching layer is sequentially applied to the sound wave radiation surface. The acoustic rubber is laminated and bonded to the outermost layer of acoustic rubber, and the acoustic rubber is bonded to the longitudinal transducer group housing case to form an acoustic window.

〔実施例〕〔Example〕

次に図面を参照して本発明の詳細な説明する。 Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の水中広帯域送受波器の一実施例を示す
断面図である。第1図に示す実施例は、成層接着する1
/4波長の音壜済合層が1 ’+I’iの場合を例とし
て示しているが、これは勿論複数個として形成しても差
支えなく、そのぶん後述するように音響整合効果が増大
するが、この選択は構成すべき送受波器の外形寸法2重
量その他の運用要求諸元とのトレードオフを勘案し任意
に設定できる。
FIG. 1 is a sectional view showing an embodiment of the underwater broadband transducer of the present invention. The embodiment shown in FIG.
An example is shown in which the sound bottle combination layer of /4 wavelengths is 1'+I'i, but it is of course possible to form a plurality of layers, and the acoustic matching effect increases accordingly, as will be described later. However, this selection can be made arbitrarily by taking into account the trade-off with the external dimensions, weight, and other operational requirements of the transducer to be constructed.

第1図に示す実施例は、縦振動子1−a、 l−b。The embodiment shown in FIG. 1 includes longitudinal vibrators 1-a and 1-b.

1−・C2音響整合層2.音響ゴノ・3.遮音材4およ
びケース5等をイ、1ηえて結成される。
1-.C2 acoustic matching layer 2. Acoustic gono・3. It is formed by adding the sound insulating material 4, case 5, etc.

縦振動子1−a、  l−b、  l−cは面配列した
縦振動子の1部を代表して示すものであり、たとえば縦
振動子1−aはフロントマス11.  セラミック12
、バックマス13によって構成され、その音波放射面に
はλ/4厚みの音響整合層2が接着される。この音響整
合層2はエポキシ樹脂を利用し、その音響インピーダン
スPCは縦振動子1−aの音波放射面の音響インピーダ
ンスと、ネオプレン系の合成ゴノ、材を利用する音!a
ゴム3の音響インピーダンスのほぼ中間値をとるように
設定されている。
The longitudinal oscillators 1-a, 1-b, and 1-c are shown as representatives of a part of vertical oscillators arranged in a plane. ceramic 12
, a back mass 13, and an acoustic matching layer 2 having a thickness of λ/4 is adhered to the sound wave emitting surface thereof. This acoustic matching layer 2 uses epoxy resin, and its acoustic impedance PC is the acoustic impedance of the sound wave radiation surface of the vertical vibrator 1-a, and the sound that uses a neoprene-based synthetic material. a
The acoustic impedance of the rubber 3 is set to take approximately an intermediate value.

また、音響整合層2は音響ゴム3と接着され、さらに音
響ゴム3はケース5と接着されており、この音響ゴム3
と音響整合層2によって構成される音響窓構造は、第2
図に示す音響ゴム3単体によって構成される音響窓よシ
もはるかに堅牢なものとなっている。なお、ケース5は
、本実施例の場合は円筒形状の金属製のものを利用して
いる。
Further, the acoustic matching layer 2 is bonded to an acoustic rubber 3, and the acoustic rubber 3 is further bonded to a case 5.
The acoustic window structure composed of the acoustic matching layer 2 and the second
The acoustic window constructed by a single acoustic rubber 3 shown in the figure is also much more robust. Note that the case 5 is made of metal and has a cylindrical shape in this embodiment.

さて、こうして形成される送受波器は、各縦振動子によ
る振動モードと音響整合層による振動モードの2つの振
動モードが発生し、総合的振動特性は2つの振動モード
を合成した広帯域特性をもつようになる。一般には、介
在させるべき音響整合層の数nK1を加えたn+1個の
振動モードが発生する。
Now, in the transducer formed in this way, two vibration modes occur: a vibration mode due to each longitudinal vibrator and a vibration mode due to the acoustic matching layer, and the overall vibration characteristics have broadband characteristics that are a combination of the two vibration modes. It becomes like this. Generally, n+1 vibration modes are generated, which is the number nK1 of acoustic matching layers to be interposed.

第3図は、音響整合層使用時の複合振動モード特性の一
例を示す振動モード特性図である。第3図は音響整合層
が一層の場合の複合振動の特性を示すものであり、これ
をセラミックによる第1振動モードaと、音響整合層に
よる第2娠動モードbで表現している。前述の如く、一
般的にはn個の音響整合層を利用すればn+1個の振動
モードが現れる。a、  bによって示す値Ve/Vx
は、音響整合層の振動速度分布をセラミックの端面すな
わち音波放射面の振動速度で正規化したものである。第
3図の意味するところは、この振動子は互いに位相がπ
(180度)異る2つの共振モードが近接して存在する
2重モード振動子となっているということである。なお
、位相関係について言えば、音響整合層を2重とすると
3つの共振モードが存在し、このうち1次と3次とは同
位相、2次はこれらとπだけが異るというように、奇数
モードの同相と偶数モードの逆相とが交互に発生する。
FIG. 3 is a vibration mode characteristic diagram showing an example of complex vibration mode characteristics when an acoustic matching layer is used. FIG. 3 shows the characteristics of complex vibration when the acoustic matching layer is one layer, and this is expressed by a first vibration mode a caused by the ceramic and a second vibration mode b caused by the acoustic matching layer. As mentioned above, generally, when n acoustic matching layers are used, n+1 vibration modes appear. Value Ve/Vx indicated by a, b
is the vibration velocity distribution of the acoustic matching layer normalized by the vibration velocity of the end face of the ceramic, that is, the sound wave emission surface. What Figure 3 means is that these oscillators have a phase of π with respect to each other.
This means that it is a dual mode oscillator in which two different resonance modes (180 degrees) exist in close proximity. Regarding the phase relationship, if the acoustic matching layer is doubled, there will be three resonance modes, and among these, the first and third modes have the same phase, and the second mode differs only in π. Odd mode in-phase and even mode anti-phase occur alternately.

いずれにせよ、このように多振動モード化し複数の共振
モードで振動することは即帯域幅の拡大につながる。さ
らに付言すれば、このような目的に利用する音響整合層
は、縦振動子の音波放射面から最外層の音θSゴムに到
るまで除徐に逓減する音響インピーダンスを有する複数
のもので形成する方が負荷と、縦振動子とのよりaき音
コがインピーダンス整合が図れることとなる。
In any case, creating multiple vibration modes and vibrating in multiple resonance modes will immediately lead to an expansion of the bandwidth. Additionally, the acoustic matching layer used for this purpose is formed of a plurality of layers having an acoustic impedance that gradually decreases from the sound wave emitting surface of the vertical vibrator to the sound θS rubber of the outermost layer. In this case, impedance matching between the load and the vertical vibrator can be achieved.

こうして、λ/・1の音゛b整合Mの利用を介して広帯
域化を図ることができるので、パックマス13等はλ/
4とする必要が無く、フロントマス11等とほぼ間際の
厚み、すなわち不要な擢み振動の発生が抑止できる程度
とすればよい。かくしてその分、全体のλ/2のうちで
セラごツク12に提供しうる利用可能長も僧太し、印加
電力も大とすることがでさろ。
In this way, it is possible to achieve a wide band through the use of the tone b matching M of λ/・1, so the pack mass 13 etc.
It is not necessary to set the thickness to 4, and it is sufficient to have a thickness that is almost close to the front mass 11 etc., that is, a thickness that can suppress the generation of unnecessary bending vibrations. In this way, the usable length that can be provided to the ceramic block 12 out of the total λ/2 is increased accordingly, and the applied power can also be increased.

数値例を示すと次のとおυである。すなわち、第2図に
示す従来例の縦振動子の−V/1jとして、30KHz
の使用周波数で全長約57ff!!!Iのうちλ/4の
バックマスの長さは約34IrIm、  セラミックは
約11−1従ってフo 7 トマス長は約12印のもの
がある。本実施例ではフロントマスおよびバックマスは
いずれも8nn、  セラミックは約30閉にして全長
約46nnhに縮少している。これに伴ない、λ/4の
エポキシ樹脂の音9(Bz合5層の長さ約17旧nが必
要となるが音響ゴムの厚みも音響整合層との併用窓構成
で13nvn程度に圧縮でき、全体としてはバックマス
の軽小化による重量軽減に加えて全長も10数m短縮し
たうえ、さらにセラミック部分は約3倍の長さを提供し
うる結果となっている。
A numerical example is as follows. That is, as -V/1j of the conventional vertical vibrator shown in Fig. 2, 30KHz
The total length is approximately 57ff at the frequency used! ! ! The back mass length of λ/4 of I is about 34 IrIm, and the ceramic has a length of about 11-1, so the fo 7 photo mass length is about 12 marks. In this embodiment, the front mass and back mass are both 8 nn, and the ceramic is approximately 30 mm, reducing the total length to approximately 46 nnh. Along with this, the length of 5 layers of λ/4 epoxy resin 9 (Bz) is required, but the thickness of the acoustic rubber can be compressed to about 13nvn by using a window configuration in combination with an acoustic matching layer. Overall, in addition to reducing the weight by reducing the back mass, the overall length has been shortened by more than 10 meters, and the ceramic part can now be approximately three times as long.

以上はバックマスをλ/4として広帯域化を図る従来例
との対比であるが、他の従来例、すなわち、縦振動子に
λ/4厚みの音響整合層を接着したものについて言えば
、これはそのまま利用するか、耐候性等を勘案すれば単
純に音響ゴムに接着した形式で利用することとなる。つ
まり第2図に示す従来構造の音響ゴム3が点線で示すよ
うに上下に2分割されて、上部が音響ゴム、下部が音響
整合層となる。このような構造では、通常、エポキシ樹
脂を利用する音響整合層が環境に露出し耐候性もネオプ
レン系の音響ゴムに比し低く、マたケースとの接着も完
全を期し難いという問題を抱えるものとなる。この問題
の解決を併合処理したものが第1図にその一実施例を示
す本発明の要点である。こうして得られる送受波器の比
帯域幅は1層の音響整合層としても優に40〜50%の
ものが得られ、広帯域化も容易に実施できる。このこと
は、具体的にはバックマスをλ/4とする場合に比し2
〜3倍以上の広帯域化可能を意味する。
The above is a comparison with a conventional example in which the back mass is set to λ/4 to achieve a wide band.However, regarding another conventional example, that is, one in which an acoustic matching layer with a thickness of λ/4 is bonded to a longitudinal vibrator, this It can be used as is, or if weather resistance is taken into consideration, it can be simply glued to acoustic rubber. In other words, the acoustic rubber 3 of the conventional structure shown in FIG. 2 is divided into upper and lower halves as shown by dotted lines, with the upper part being the acoustic rubber and the lower part being the acoustic matching layer. Such structures usually have the problem that the acoustic matching layer, which uses epoxy resin, is exposed to the environment, has lower weather resistance than neoprene-based acoustic rubber, and is difficult to ensure perfect adhesion to the main case. becomes. The solution of this problem by merging processing is the gist of the present invention, an embodiment of which is shown in FIG. The fractional bandwidth of the transducer thus obtained can be easily 40 to 50% even as a single acoustic matching layer, and widening the band can be easily achieved. Specifically, this is 2 compared to the case where the back mass is λ/4.
This means that it is possible to increase the bandwidth by ~3 times or more.

なお、このような構造の送受波器における音響インピー
ダンス整合の程度および設計上可能な帯域幅、最適な整
合層の厚みに関しては多重モードフィルタの合成法を導
入し、縦振動子はその電気端子に入力、出力端子に負荷
が接続された多重モードフィルタであると見なしてその
数値を決定している。この合成法の要旨は、特価回路を
利用し4端子回路網で表現できる縦振動子の負荷側から
この縦振動子をみたときの影像インピーダンスZimが
、影像パラメータのフィルタ理論にもとづき実数のとき
には通過域、虚数のときには阻止域となり、通過帯域で
リップルの少ない縦振動子を合成法?Cよって確保しよ
うとする場合には中心周波数でZimが負荷インピダン
スZLに等しくかつZimができるだけ広い帯域にわた
って連続的に実数値をとり得るように音響整合層の固有
音響インピーダンスと層厚を決定し、この条件と運用条
件のトレードオフを介して最終的に音響整合層の数と音
響ゴムの厚みを決定している。
Regarding the degree of acoustic impedance matching, possible design bandwidth, and optimal matching layer thickness in a transducer with such a structure, a multimode filter synthesis method was introduced, and the longitudinal oscillator was connected to its electrical terminal. The numerical value is determined by assuming that it is a multimode filter with loads connected to the input and output terminals. The gist of this synthesis method is that when the image impedance Zim when viewing the longitudinal oscillator from the load side of the longitudinal oscillator, which can be expressed by a 4-terminal network using a special circuit, is a real number based on the filter theory of image parameters, it passes through. A method of synthesizing a longitudinal oscillator with few ripples in the passband, which becomes a stopband when it is an imaginary number. If you are trying to secure it by C, determine the specific acoustic impedance and layer thickness of the acoustic matching layer so that Zim is equal to the load impedance ZL at the center frequency and Zim can take real values continuously over as wide a band as possible, The number of acoustic matching layers and the thickness of the acoustic rubber are ultimately determined through a trade-off between these conditions and operating conditions.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、縦振動子群の音波
放射面を音響窓に接着する形式の水中広帯域送受波器に
おいて、音波放射面と音響ゴムとの間に音響インピーダ
ンスが両者のほぼ中間値を有する材質の少なくとも1個
の音響整合層を成層介在せしめたうえ最外層の音響ゴム
をケースに接着して音響窓を構成することにより、著し
く高能率化ならびに広帯域化が可能となるとともに入力
電力を大幅に増大し得る小型軽量かつ堅牢な水中広帯域
送受波器が実現できるという効果がある。
As explained above, according to the present invention, in an underwater broadband transducer in which the sound wave radiation surface of the vertical transducer group is bonded to the acoustic window, the acoustic impedance between the sound wave radiation surface and the acoustic rubber is approximately equal to that of the two. By interposing at least one acoustic matching layer made of a material having an intermediate value and then adhering the outermost layer of acoustic rubber to the case to form an acoustic window, it is possible to significantly increase efficiency and widen the band. This has the effect of realizing a small, lightweight, and robust underwater wideband transducer that can significantly increase input power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の水中広帯域送受波器の一実施例を示す
断面図、第2図は従来の水中広帯域送受波器の一例を示
す断面図、第3図は音響整合層使用時の複合振動モード
特性の一例を示す振動モード特性図である。 ’−a+ 1  b、 1−c・曲・縦保動子、2・・
・・・・音リム(金層、3・・・・・・音響ゴム、4・
・・・・・遮音材、訃・・°°°ケース、6−a、 5
−b、 5−c−・−縦振動子、11.61・・・・・
・フロントマス、12.62・・印・セラミック、13
.63・・・・・・バックマス。 代理人 弁理士 円 原   2′°゛日 l−へ7’−’、’−C−−−−−−4f’t’t7r
”th手/f −−−−−−フロントマス 、’2   −−−     −−−<どラミ・シフ/
3 −−−    −−−パニック゛1ζ′ン(第1図 乙−a、  乙−4,6−(:  −−−−−−嬰従復
動工ど/  −−−−−−フロシトンに 62 −−− −−一甘うCツク 63 −−− −−−バ、ッ2ンバ 第 2 回 Ve −−−−セラSラフ土偉4訂の十瞥動速度Vχ−
−−−春で整合層(7)速度合部α −−−−e−7s
ソ21:よる牟た1子ヒオカモード各−一一−音igq
番金層(:よる牛2署戴伍〜ト第3 図
Fig. 1 is a sectional view showing an embodiment of the underwater wideband transducer of the present invention, Fig. 2 is a sectional view showing an example of a conventional underwater wideband transducer, and Fig. 3 is a composite diagram when an acoustic matching layer is used. FIG. 3 is a vibration mode characteristic diagram showing an example of vibration mode characteristics. '-a+ 1 b, 1-c・song・vertical holder, 2...
...Sound rim (gold layer, 3...Acoustic rubber, 4.
...Sound insulation material, ...°°° case, 6-a, 5
-b, 5-c-・-Longitudinal vibrator, 11.61...
・Front mass, 12.62... mark ・Ceramic, 13
.. 63... Backmass. Agent Patent Attorney Yen Hara 2'°゛日l-to7'-','-C---4f't't7r
"th hand/f ---------Front mass, '2 --- ---<Dorami Schiff/
3 --- --- Panic ゛1ζ' (Fig. 1 O-a, O-4, 6-(: ---- - - Ichimau C Tsuku 63 - - - - - Ba, Tsu 2 Mba 2nd Ve - - - Sera S Rough Doi 4th edition's Tobeme dynamic speed Vχ -
--- Spring matching layer (7) Velocity meeting α -----e-7s
So21: Yoru Muta 1 child Hioka mode each - 11 - sound igq
Bankin layer (Yorugyu 2 station Daigo~to Figure 3)

Claims (1)

【特許請求の範囲】[Claims]  縦振動子群の音波放射面を音響窓に接着する形式の水
中広帯域送受波器において、少なくとも1個の1/4波
長音響整合層を順次前記音波放射面から最外層の音響ゴ
ムに到るまで成層しつつ接着したうえ前記音響ゴムを前
記縦振動子群収容ケースに接着して成る音響窓を備えて
構成されることを特徴とする水中広帯域送受波器。
In an underwater wideband transducer in which a sound wave emitting surface of a group of vertical transducers is bonded to an acoustic window, at least one quarter-wavelength acoustic matching layer is sequentially formed from the sound wave emitting surface to the outermost layer of acoustic rubber. 1. An underwater broadband transducer comprising an acoustic window formed by laminating and bonding the acoustic rubber to the vertical vibrator group housing case.
JP15643786A 1986-07-02 1986-07-02 Underwater wide band frequency transmitter/receiver Granted JPS6313497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15643786A JPS6313497A (en) 1986-07-02 1986-07-02 Underwater wide band frequency transmitter/receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15643786A JPS6313497A (en) 1986-07-02 1986-07-02 Underwater wide band frequency transmitter/receiver

Publications (2)

Publication Number Publication Date
JPS6313497A true JPS6313497A (en) 1988-01-20
JPH0511710B2 JPH0511710B2 (en) 1993-02-16

Family

ID=15627732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15643786A Granted JPS6313497A (en) 1986-07-02 1986-07-02 Underwater wide band frequency transmitter/receiver

Country Status (1)

Country Link
JP (1) JPS6313497A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002047432A1 (en) * 2000-12-05 2002-06-13 Sigeyasu Isida Wave transmitter/receiver capable of emitting a plurality of frequencies
JP2008077779A (en) * 2006-09-22 2008-04-03 Toshiba Corp Semiconductor memory
JP2009506476A (en) * 2005-08-30 2009-02-12 マイクロン テクノロジー, インク. Self-identifying multilayer die semiconductor components

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113692A (en) * 1981-01-06 1982-07-15 Toshiba Corp Ultrasonic wave probe
JPS5985655A (en) * 1982-11-08 1984-05-17 ティーディーケイ株式会社 Ultrasonic probe
JPS60113600A (en) * 1983-11-24 1985-06-20 Nec Corp Ultrasonic wave probe array
JPS60128795A (en) * 1983-12-16 1985-07-09 Toshiba Corp Ultrasonic probe
JPS60191600A (en) * 1983-11-08 1985-09-30 Tokyo Keiki Co Ltd Method and apparatus for forming sound matching layer
JPS6153899A (en) * 1984-08-16 1986-03-17 シーメンス、アクチエンゲゼルシヤフト Supersonic converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113692A (en) * 1981-01-06 1982-07-15 Toshiba Corp Ultrasonic wave probe
JPS5985655A (en) * 1982-11-08 1984-05-17 ティーディーケイ株式会社 Ultrasonic probe
JPS60191600A (en) * 1983-11-08 1985-09-30 Tokyo Keiki Co Ltd Method and apparatus for forming sound matching layer
JPS60113600A (en) * 1983-11-24 1985-06-20 Nec Corp Ultrasonic wave probe array
JPS60128795A (en) * 1983-12-16 1985-07-09 Toshiba Corp Ultrasonic probe
JPS6153899A (en) * 1984-08-16 1986-03-17 シーメンス、アクチエンゲゼルシヤフト Supersonic converter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002047432A1 (en) * 2000-12-05 2002-06-13 Sigeyasu Isida Wave transmitter/receiver capable of emitting a plurality of frequencies
JP2002174679A (en) * 2000-12-05 2002-06-21 Kiyasu Ishida Underwater sound transmitting/receiving device capable of emitting a plurality of frequencies
JP2009506476A (en) * 2005-08-30 2009-02-12 マイクロン テクノロジー, インク. Self-identifying multilayer die semiconductor components
US8144497B2 (en) 2005-08-30 2012-03-27 Micron Technology, Inc. Self-identifying stacked die semiconductor components
US8472232B2 (en) 2005-08-30 2013-06-25 Micron Technology, Inc. Self-identifying stacked die semiconductor components
JP2008077779A (en) * 2006-09-22 2008-04-03 Toshiba Corp Semiconductor memory

Also Published As

Publication number Publication date
JPH0511710B2 (en) 1993-02-16

Similar Documents

Publication Publication Date Title
US4373143A (en) Parametric dual mode transducer
KR100266242B1 (en) Saw filter
CN107852145A (en) Acoustic wave device, high-frequency front-end circuit and communicator
CN110383686B (en) Elastic wave device, elastic wave device package, multiplexer, high-frequency front-end circuit, and communication device
JPS60236600A (en) Piezoelectric supersonic wave converter
CN102474692A (en) Ultrasonic probe and method of manufacturing thereof
JPH0511718B2 (en)
JPS6313497A (en) Underwater wide band frequency transmitter/receiver
CN110277485A (en) Composite laminated flexural vibration element and preparation method thereof
Plessky et al. 3 rd type of FBARs?
JPS60113599A (en) Ultrasonic wave probe
JP3406986B2 (en) Ultrasonic transducer and its vibration control method
Manh et al. Dual frequency hybrid ultrasonic transducers-design and simulations
JPH07118838B2 (en) Transceiver
JPH04502543A (en) Wide beam emitting ultrasound transducer
JP4678261B2 (en) Piezoelectric thin film vibrator
JPS60109399A (en) Bolted langevin vibrator
US3722619A (en) Acoustic decoupler
JPH0583084A (en) Surface acoustic wave filter
CN211295149U (en) Composite ceramic structure for radial coupling-free high-frequency piezoelectric transducer
JPS6016155Y2 (en) Underwater pressure-resistant transducer
Elliott The design of a high power broadband noise source
El Atlas et al. Finite element modeling of a piezoelectric slender bar transducer equipped with a multilayer backing for medical imaging applications
JPS6313640B2 (en)
JP2003087077A (en) Piezoelectric resonator and piezoelectric component using the piezoelectric resonator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees