JPS63134934A - Method and device for diagnosing deterioration - Google Patents

Method and device for diagnosing deterioration

Info

Publication number
JPS63134934A
JPS63134934A JP28086986A JP28086986A JPS63134934A JP S63134934 A JPS63134934 A JP S63134934A JP 28086986 A JP28086986 A JP 28086986A JP 28086986 A JP28086986 A JP 28086986A JP S63134934 A JPS63134934 A JP S63134934A
Authority
JP
Japan
Prior art keywords
hardness
measured
hole
change
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28086986A
Other languages
Japanese (ja)
Inventor
Yasuhiko Suesada
末定 泰彦
Noriaki Nishioka
西岡 憲章
Toru Goto
徹 後藤
Yoshikuni Kadoya
好邦 角屋
Takeo Kamimura
神村 武男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP28086986A priority Critical patent/JPS63134934A/en
Publication of JPS63134934A publication Critical patent/JPS63134934A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To execute the non-destructive inspection of a member such as a stud, etc., by comparing the variation quantity of hardness after use against hardness before use of a member to be measured, with a variation quantity characteristic curve derived in advance with regard to the standard sample of the same member. CONSTITUTION:A probe 6 is inserted into the hole 2 of a stud 1 consisting of a first tooth 4 to be engaged to a screw and a screw part, being a member to be measured, and a constant-current power source 30 is applied. In the probe 6, contacts 8-1, 8-2, 8-3 and 8-4 which can be protruded and moved backward to both right and left sides by springs 7-1, 7-2, 7-3 and 7-4, respectively are arranged in the upper and lower directions, and the constant-current power source 30, and a voltmeter 9 are connected to the contacts 8-1, 8-4, and the contacts 8-2, 8-3, respectively. In this state, by comparing the measured value of the voltmenter 9 with the characteristic value of a hardness us electric characteristic of a standard sample derived in advance, by a hardness conversion device 10, the hardness of the inside surface of the hole 2 is measured.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 ° この発明は蒸気タービン、タービンロータ等におい
て高温状態で引張り応力を受けて長時rR使用される部
材、又は一定荷重を受けて長時間使用される部材の劣化
診断方法および装置に関する。
Detailed Description of the Invention <Industrial Application Field> ° This invention is applicable to steam turbines, turbine rotors, etc., which are used for long periods of time under tensile stress at high temperatures, or used for long periods of time under constant load. The present invention relates to a method and apparatus for diagnosing deterioration of members.

く技術的背景〉 たとえば蒸気タービン、タービンロータ等において使用
する植込み部材は、高温で引張り応力を受けながら使用
される故、長時間使用ととも゛に“クリープひずみ°゛
が進行しついには折損するようになる。
Technical background: For example, implanted parts used in steam turbines, turbine rotors, etc. are used at high temperatures and under tensile stress, so they develop creep strain and eventually break when used for a long time. It becomes like this.

折損する場所は、たとえば植込みボルトの場合は、第6
図(a)に示す“″ネジかみ合い第1歯″4であり、こ
の植込みボルトは定期点検開放時においても、植込まれ
たままの状態にある゛′ネジ部’3(第6図(b))が
危険個所である。
For example, in the case of a stud bolt, the place where it breaks is the 6th point.
This is the "first threaded tooth" 4 shown in Figure (a), and this stud bolt remains in the implanted state even when it is opened for regular inspection (Figure 6 (b). )) are dangerous areas.

このような折損危険個所をもつ植込みボルト等の植込み
部材の劣化状態を診断する場合、従来は非破壊探傷法に
より、き裂発生の有無を調べるのが唯一の方法であった
。しかし、部材特に植込みボルトの場合は、非破壊探傷
法の探傷精度が悪く実用的に十分でなかった。
When diagnosing the deterioration state of implanted members such as stud bolts that have such breakage-prone areas, conventionally the only method has been to use non-destructive flaw detection to check for the presence or absence of cracks. However, in the case of members, especially stud bolts, the accuracy of non-destructive flaw detection is poor and is not practical enough.

また、一般に一定荷重の下で長時間開用する部材は脆化
する傾向があるから、き裂発生前に取替えないと安全管
珊上不洲の事態を招く。したがって、できる限りき裂発
生直前に非破壊的にき裂発生個所を発見することが必要
である。
In addition, generally, members that are used for long periods of time under a constant load tend to become brittle, so if they are not replaced before cracks occur, safety problems may occur. Therefore, it is necessary to non-destructively discover the crack occurrence site immediately before the crack occurrence as much as possible.

しかし従来、このような口約に合致した被測定部材を非
破壊的に劣化状態を診断する方法がなかった。
However, conventionally, there has been no method for non-destructively diagnosing the deterioration state of a member to be measured that meets such requirements.

〈発明が解決しようとする問題点〉 ソコで、この発明は、蒸気タービン、タービンロータ等
高温で長時間引張り応力を受けて使用される部材、又は
一定荷重を受けて長時間使用される部材の劣化状態を測
定する劣化診断方法を提供しようとするものである。
<Problems to be Solved by the Invention> The present invention solves the problem of parts such as steam turbines and turbine rotors that are used at high temperatures and subjected to long-term tensile stress, or members that are used for long periods of time under constant load. The present invention aims to provide a deterioration diagnosis method for measuring the state of deterioration.

また、この発明は、上記劣化診断方法を実施できる装置
を提供しようとするものである。
Further, the present invention aims to provide an apparatus capable of carrying out the above-mentioned deterioration diagnosis method.

く問題点を解決するための手段〉 上述の口約を達成すべく本発明者等は種々実験を重ねた
結果、 材料は高温で長時間使用されると材質が変化する。その
変化の度合は、応力が高いと大きくなる。たとえばCr
 −M o−V材を長時間加熱したときの硬さは第7図
の曲線Cに示すごとく変化する(ただし第7図の特性曲
線は加熱温度Tと加熱時間tの両者を組み合せたパラメ
ータで整理すると、初期硬さとの比で表した変化はほぼ
一本の曲線で近似できる。
Means for Solving the Problems In order to achieve the above-mentioned problem, the inventors of the present invention have conducted various experiments and found that the quality of the material changes when it is used at high temperatures for a long period of time. The degree of the change increases as the stress increases. For example, Cr
-Mo When the o-V material is heated for a long time, its hardness changes as shown in curve C in Figure 7 (However, the characteristic curve in Figure 7 is a parameter that combines both heating temperature T and heating time t. To summarize, the change expressed as a ratio to the initial hardness can be approximately approximated by a single curve.

また、クリープ(高温で応力を付与)を与えた場合の硬
さの変化も温度・時間そして応力の三ファクタを組み合
せたパラメータで整理すると、第8図に示す特性曲MD
のようになる。
In addition, the change in hardness when creep (applying stress at high temperature) is organized using parameters that combine the three factors of temperature, time, and stress, resulting in the characteristic curve MD shown in Figure 8.
become that way.

このような結果から、クリープき裂の発生時期を硬さの
変化を測定することにより推定出来る。たとえば、使用
時の温度と使用時間が既知であるが、初期硬さと応力が
不明な場合を第9図(at (b) (cl (diに
示す。
From these results, the timing of creep crack generation can be estimated by measuring changes in hardness. For example, a case where the temperature and time of use are known, but the initial hardness and stress are unknown is shown in FIG. 9 (at (b) (cl (di)).

このように、材質の変化を硬さ等の非破壊測定が可能な
量で表示して、その変化量で保守管理することが考えら
れる。
In this way, it is conceivable to display changes in material quality as amounts that can be measured non-destructively, such as hardness, and perform maintenance management based on the amount of change.

しかし、高温部材の場合には、温度・応力等の使用履歴
の推定が極めて困難であって、第9図に示すような特性
曲線から部材の劣化状態を推定する方法は適用できない
However, in the case of high-temperature members, it is extremely difficult to estimate usage history such as temperature and stress, and the method of estimating the deterioration state of the member from the characteristic curve shown in FIG. 9 cannot be applied.

そこで、長時間使用したボルトを数多くサンプリングし
て切断分析し、割れ発生ないしは該当位置の硬さを調査
した。調査結果の例を第10図に示す。同図は、割れ発
生位置における推定使用温度Tと使用時間tから温度・
時間パラメータを求めて、それに対して同上位置の硬さ
をプロットしたもので、実使用ボルトにおいても長時間
使用で軟化すると共にき裂発生ボルトは軟化しているこ
とが曲線のようになる。
Therefore, a large number of bolts that had been used for a long period of time were sampled and analyzed by cutting to investigate the occurrence of cracks or the hardness of the corresponding locations. An example of the survey results is shown in Figure 10. The figure shows the temperature and
The time parameter is determined and the hardness at the same position is plotted against it, and the curve shows that bolts in actual use soften with long-term use, and bolts with cracks soften.

このような結果から、使用部材にクリープき裂が発生す
る時期を、部材の硬さの変化量から推測できる可能性が
ある。たとえば部材使用時の温度、使用時間は既知であ
るが使用開始前硬さく初期硬さ)と応力が不明の場合の
関係を第9図(al (bl (cl (diに示す。
From these results, it is possible to estimate when creep cracks will occur in a used member from the amount of change in the hardness of the member. For example, the relationship between the temperature and time of use of the member are known, but the initial hardness before use and stress is unknown is shown in Figure 9 (al (bl (cl (di)).

第9図fa)は部材使用時の温度、使用時間パラメータ
Gと高温低応力位置における初期硬さHv0対使用時硬
さHVの比(HV/HV0)、つまり軟化程度を表わす
特性図であり、第9図(blは同一部材の高温高応力位
置におけろ余寿命評価位置における軟化程度を示す特性
図、第9図(clは同一部材の余寿命評価位置におけろ
推定応力とΔG(余寿命)の関係を示す特性図、第9図
(d)はラルソン〜ミラ・パラメータ(Larson 
−MillerParameter) T (C+Io
g tr)対部材中の発生応力σの関係を表わすクリー
プ破断特性図である。これらの特性図から部材中に生ず
るクリープ折損と余寿命を推測できるとの考の下に研究
を進めて、この発明を完成することができた。
FIG. 9fa) is a characteristic diagram showing the temperature during use of the member, the use time parameter G, and the ratio of initial hardness Hv0 to hardness HV during use (HV/HV0) at a high temperature and low stress position, that is, the degree of softening. Figure 9 (bl is a characteristic diagram showing the degree of softening at the remaining life evaluation position of the same member at a high temperature and high stress position, and Figure 9 (cl is a characteristic diagram showing the softening degree of the same member at the remaining life evaluation position) and ΔG (extra). Figure 9(d) is a characteristic diagram showing the relationship between the Larson and Mira parameters (Larson
-MillerParameter) T (C+Io
g tr) is a creep rupture characteristic diagram showing the relationship between stress σ generated in a member and stress σ. Based on the idea that the creep breakage occurring in the member and the remaining life can be estimated from these characteristic diagrams, we conducted research and were able to complete this invention.

しかも、部材における硬さの変化は材質変化を表わす代
表的な物性変化値であって、硬ざの代わりに電気抵抗値
の変化等地の物性も変化するから、これらの変化値から
も部材の劣化度を診断することができる。
Moreover, the change in hardness of a member is a typical physical property change value that represents a change in material quality, and instead of hardness, the physical properties of the base, such as changes in electrical resistance, also change, so these change values can also be used to determine the change in material properties. The degree of deterioration can be diagnosed.

すなわち、この発明の部材に関する劣化診断方法は被測
定部材に形成された穴内面における使用開始前硬さに対
する使用後の硬さの変化量を、当該被測定部材と同一の
標準サンプルについて予め求めた使用開始前硬さ対使用
後硬さの特性曲線値との比較により被測定部材の劣化度
を求めることを特徴とするものである。
That is, in the deterioration diagnosis method for a member of the present invention, the amount of change in hardness after use from the hardness before use on the inner surface of a hole formed in the member to be measured is determined in advance for a standard sample that is the same as the member to be measured. This method is characterized in that the degree of deterioration of the member to be measured is determined by comparing the characteristic curve values of the hardness before use and the hardness after use.

被測定部材に形成した穴は、被測定部材が、たとえば蒸
気タービン、タービンロータ等における植込みボルト1
等の場合は、通常、締付用に中心軸(長手)方向に第1
1図(a)に示すように穴2が通じているから、劣化折
損危険部に対応する長さ位置での穴内壁面における硬さ
の変化から、劣化折損危険部のそれを推定できる。劣化
折損危険部の硬さと、植込みボルト穴内壁の硬さは、同
一長手位置で測定すると大差ないことが実験的に確かめ
られている。言うまでもなく、測定部材の長手方向の硬
さ変化がより大きい。
The hole formed in the member to be measured is a hole formed in the member to be measured, for example, when the member to be measured is a stud bolt 1 in a steam turbine, a turbine rotor, etc.
etc., the first
As shown in FIG. 1(a), since the hole 2 is in communication, it is possible to estimate the hardness of the deteriorated and breakage-prone part from the change in the hardness of the inner wall surface of the hole at the length position corresponding to the deteriorated and breakage-prone part. It has been experimentally confirmed that there is not much difference between the hardness of the deteriorated and breakage-prone area and the hardness of the inner wall of the stud bolt hole when measured at the same longitudinal position. Needless to say, the change in hardness in the longitudinal direction of the measuring member is greater.

測定例を示すと第11図(a) (b)のごとくなる。Measurement examples are shown in FIGS. 11(a) and 11(b).

第11図fa)において、ビッカース硬さの高い位置は
使用温度の低いところであり、大半の植込みボルトでは
初期値Hv0を保持したままであると考えられる。
In FIG. 11 fa), the position where the Vickers hardness is high is at a low operating temperature, and it is considered that most stud bolts maintain their initial value Hv0.

以上のことから第12図に示すようにボルト中心穴壁で
ボルトの長方向に硬さ分布を測定して、硬さの最少値H
Vと最大値町。から軟化度α a == Hv/ HVo を定めればよい。硬さ以外の、たとえば電気抵抗の場合
も同様に求めることができろ。
Based on the above, as shown in Fig. 12, the hardness distribution was measured in the longitudinal direction of the bolt at the wall of the bolt center hole, and the minimum hardness value H
V and maximum value town. The softening degree α a == Hv/HVo can be determined from . Other than hardness, for example, electrical resistance can be found in the same way.

しかしながら、ボルトの中心孔径は10〜30mm程度
で、市販の硬さ計では測定は出来ない。すなわち、超小
型硬さ計あるいはそれに代わる装置方法が必要である。
However, the center hole diameter of the bolt is approximately 10 to 30 mm, and cannot be measured with a commercially available hardness meter. That is, an ultra-small hardness meter or an alternative device method is required.

この発明において、上述した部材の劣化診断方法を実施
するための装置は、穴内面に押込可能のパー先端に取り
付けられ穴内面を抑圧可能に配設した接触子と、接触子
によって検出される穴内面の硬さの大小を接触子を押し
出すクサビの押込量の変化又は接触子によって検出され
る穴内面の硬さに応じた電気抵抗値の変化として取り出
すと共に、予め被測定部材と同一の標準サンプルによっ
て求めた硬さの大小対クサビの押込量の変化又は硬さ対
Ti電気抵抗値大小の特性値との比較により被測定部材
の劣化度を測定することを特徴とするものである。
In this invention, an apparatus for carrying out the above-described method for diagnosing deterioration of a member includes a contact element that is attached to the tip of a par that can be pushed into the inner surface of a hole and is disposed so as to be able to suppress the inner surface of the hole, and a hole that is detected by the contact element. The hardness of the inner surface is determined as a change in the amount of push of the wedge that pushes out the contact, or as a change in the electrical resistance value according to the hardness of the inner surface of the hole detected by the contact. The method is characterized in that the degree of deterioration of the member to be measured is measured by comparing the hardness determined by the change in the amount of wedge indentation or the characteristic value of the hardness versus the Ti electrical resistance value.

く作   用〉 以上のように、被測定部内に形成された大円に接触子を
押し込み、穴内面に検出する穴内面の硬さ又は電気抵抗
値の変化と、予め被測定部材と同一の材質からなる標準
サンプルについて測定した硬さ対電気抵抗値、又は硬さ
対クサビ押込量の特性値と比較するから、求める穴内面
の劣化度を直ちに診断することができる。
As described above, the contact is pushed into the large circle formed inside the part to be measured, and the change in the hardness or electrical resistance value of the inner surface of the hole to be detected and the change in the material of the same material as the part to be measured are detected in advance. The desired degree of deterioration of the inner surface of the hole can be immediately diagnosed by comparing the hardness vs. electrical resistance value or the hardness vs. wedge penetration amount characteristic value measured for a standard sample consisting of:

く実 施 例〉 つぎに、この発明の劣化診断方法を実施するために使用
する装置の代表的な実施例について説明する。
Embodiments Next, typical embodiments of an apparatus used to carry out the deterioration diagnosis method of the present invention will be described.

実施例−1 第1図は標点A−B間の電気抵抗値の変化により被測定
部材の劣化度を測定する劣化診断装置の使用状態を示す
要部断面図である。
Embodiment 1 FIG. 1 is a cross-sectional view of a main part showing the state of use of a deterioration diagnostic device that measures the degree of deterioration of a member to be measured based on a change in electrical resistance value between gauge points A and B.

図中、6は被測定部材1aの穴2内に押入可能に形成さ
れたプローブであって、プローブ6にはスプリング7−
1. ?−2,7−3,7−4によって左右両側にそれ
ぞれ突出後退可能の接触子8−1.8−2.8−3.8
−4に上下方向に配列されており、接触子8−1と8−
4は定電流電源と接続し、接触子8−2と8−3は電圧
計9と接続している。そして、電圧計9による電圧値は
予め、被測定部材2ζついて硬さHV対電圧特性の関係
について求めた特性値とを硬さ換算M10により比較し
、穴内面の硬さを直結できる構造になっている。
In the figure, 6 is a probe formed to be able to be pushed into the hole 2 of the member to be measured 1a, and the probe 6 has a spring 7-
1. ? -2, 7-3, 7-4 contacts 8-1.8-2.8-3.8 that can be protruded and retracted on both the left and right sides respectively
-4 are arranged in the vertical direction, and the contacts 8-1 and 8-
4 is connected to a constant current power source, and contacts 8-2 and 8-3 are connected to a voltmeter 9. Then, the voltage value measured by the voltmeter 9 is compared in advance with the characteristic value obtained for the relationship between the hardness HV and the voltage characteristic of the member to be measured 2ζ using the hardness conversion M10, and the structure is such that the hardness of the inner surface of the hole can be directly connected. ing.

実験結果の示すところによれば穴内面の電気抵抗は、部
材を長期使用したときの硬さの変化と類似した変化の様
相を呈することが確認されている。
According to experimental results, it has been confirmed that the electrical resistance of the inner surface of the hole changes in a manner similar to the change in hardness when the member is used for a long period of time.

実施例−2 第2図は診断装置の第2の実施例を示す。Example-2 FIG. 2 shows a second embodiment of the diagnostic device.

この装置は、油圧発生槽11内油圧によってクサビ12
を昇降自在に収納し、かつクサビ12の昇降に対応して
接触子13を外周方向に拡張収縮可能に構成し、接触子
13先端のダイヤモンド14を穴内面に押しつけ硬さを
測定する構造になっている。接触子13先端のダイヤモ
ンF14を押し付ける力は、クサビ13の押し込み量に
よって定まる。クサビの押し込み量はクサビ位置センサ
を構成する差動変圧器15内を移動するクサビ先端に固
設した可動鉄板16の上下移動により、差動変圧器15
内に発生する電圧を硬さ換算器17に送り、予め被測定
部材の標準サンプルについて求めた押込みクサビ移動量
対硬さ特性値と比較することにより、被測定部材の劣化
度を求めることができる。
This device generates a wedge 12 using hydraulic pressure in a hydraulic pressure generating tank 11.
The contactor 13 is configured to be able to expand and contract in the outer circumferential direction in response to the raising and lowering of the wedge 12, and the diamond 14 at the tip of the contactor 13 is pressed against the inner surface of the hole to measure hardness. ing. The force with which the diamond F14 at the tip of the contactor 13 is pressed is determined by the amount by which the wedge 13 is pushed. The pushing amount of the wedge is determined by the vertical movement of a movable iron plate 16 fixed to the tip of the wedge that moves inside the differential transformer 15 constituting the wedge position sensor.
The degree of deterioration of the part to be measured can be determined by sending the voltage generated in the inside to the hardness converter 17 and comparing it with the indentation wedge movement amount versus hardness characteristic value determined in advance for a standard sample of the part to be measured. .

この診断装置で大円の硬さを診断するときは、第3図に
示す研磐具20で穴内面を磨く。
When diagnosing the hardness of a great circle using this diagnostic device, the inner surface of the hole is polished with a polishing tool 20 shown in FIG.

研磨^ばモータ19の先端にグラインダおよびパフを取
付は可能にしたもので、まずグラインダ18にて荒仕上
げを行い、後パフ仕上げする。
A grinder and a puff can be attached to the tip of the polishing motor 19. First, rough finishing is performed using the grinder 18, and then a puff finishing is performed.

その後硬さ分布を測定し、判定器21に記録される。第
4図にその状態を示す。
Thereafter, the hardness distribution is measured and recorded in the determiner 21. FIG. 4 shows the state.

第4図の診断装置を使用すると、被測定部材の最小硬さ
くたとえば使用後)HVと最高硬さHVo(使用前)が
読み取られ、変化−!jkHV/Hv0が求められ、そ
の値が限界値を越えた場合は取替えの指示が出されろ。
When the diagnostic device shown in FIG. 4 is used, the minimum hardness (for example, after use) HV and maximum hardness HVo (before use) of the member to be measured are read, and the change -! jkHV/Hv0 is determined, and if the value exceeds the limit value, a replacement instruction is issued.

これら判定は簡単なコンピュータをそなえた判定器14
で行う。
These judgments are made by a judge 14 equipped with a simple computer.
Do it with

このとき使用する診断プログラムは第5rI!Jに示す
通りである。
The diagnostic program used at this time is the 5th rI! As shown in J.

〈発明の効果〉 この発明の劣化診断方法によれば、従来不可能であった
植込ボルトなどの部材を非破壊検査により保守管理が可
能となる。
<Effects of the Invention> According to the deterioration diagnosis method of the present invention, maintenance management of members such as stud bolts, which was previously impossible, becomes possible through non-destructive testing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の劣化診断方法の実施に使用する第1
の実施例の装置の、使用状態を示す要部断面図、第2図
はこの発明の劣化診断方法の大鳩に使用する第2の実施
例の装置の使用状態を示す要部断面図、第3図は穴内面
TiF磨真の概略図、第4図は劣化診断の判定器、第5
図は判定器の診断プログラム、第6図(,1(b)はそ
れぞれ植込みボルトにおける折損および危険個所を示す
側面図、第7図は植込み部材用Cr −M o−V材の
加熱温度・時間対初期硬さ比の関係を示す特性図、第8
図は植込み部材用Cr −Mo−V材の加熱温度・時間
および応力対初期硬さ比の関係を示す特性図、第9図f
a) (blはそれぞれ高温低応力位置および高温高応
力位置(余寿命評価位置)における加熱温度・時間対初
期硬さ比の関係を示す特性図、第9図IC)は評価位置
における使用応力(m定)と余寿命の関係を示す特性図
、第9図(dlはラルソンーミラ・パラメータT(c+
Iogtr)対植込み部材中の発生応力σの関係を示す
クリープ破断特性図、第10図は長時間(温度T、時間
t)使用によるボルトの割れ発生ないし該当位置におけ
る硬さくビッカース硬さ)の程度を示す特性図、第11
図体)(b)はそれぞれ植込み図はボルトの中心穴壁面
におけるボルトの長手方向の硬さ変化の状態を示す特性
図である。 図面中、1・・植込みボルト、 2・・・穴、 ?−1,7−2,7−3,7−4・・スプリング、8−
1.8−2.8−3.8’−4,13・接触子、9・・
・電圧計、 10.17・・・硬さ換算器、 1工・・油圧槽、 12 ・クサビ、 15・・差動変圧器、 16・・・可動鉄板、 21・・・判定語、 30 定電流電源。 特  許  出  願  人 関西電力株式会社 三菱重工業株式会社 復   代   理   人
FIG.
FIG. 2 is a cross-sectional view of the essential parts of the device according to the second embodiment of the present invention, showing how it is used; FIG. Figure 3 is a schematic diagram of the TiF grinder inside the hole, Figure 4 is the deterioration diagnosis judger, and Figure 5 is the
The figure shows the diagnostic program of the determiner, Figure 6 (, 1(b) is a side view showing breakage and dangerous parts of the stud bolt, respectively, and Figure 7 shows the heating temperature and time of Cr-Mo-V material for the stud member. Characteristic diagram showing the relationship between initial hardness and initial hardness ratio, No. 8
The figure is a characteristic diagram showing the relationship between heating temperature and time and stress versus initial hardness ratio of Cr-Mo-V material for implantable parts, Fig. 9f
a) (bl is a characteristic diagram showing the relationship between the heating temperature and time versus the initial hardness ratio at the high temperature, low stress position and the high temperature, high stress position (remaining life evaluation position), respectively; Figure 9 IC) is the characteristic diagram showing the relationship between the heating temperature and time versus the initial hardness ratio at the high temperature, low stress position and the high temperature, high stress position (remaining life evaluation position), respectively; Fig. 9 is a characteristic diagram showing the relationship between the remaining life (dl is the Larson-Mira parameter T(c+
Figure 10 shows the degree of cracking of the bolt due to long-term use (temperature T, time t) or the degree of hardness (Vickers hardness) at the relevant location. Characteristic diagram showing, No. 11
Figures (b) and (b) are characteristic diagrams showing changes in hardness in the longitudinal direction of the bolt on the wall surface of the center hole of the bolt. In the drawing, 1... stud bolt, 2... hole, ? -1, 7-2, 7-3, 7-4...Spring, 8-
1.8-2.8-3.8'-4,13・Contactor, 9・・
・Voltmeter, 10.17...Hardness converter, 1..Hydraulic tank, 12..Wedge, 15..Differential transformer, 16..Movable iron plate, 21..Judgment word, 30. Constant current power supply. Patent application person: Kansai Electric Power Co., Ltd. Mitsubishi Heavy Industries, Ltd. (substitute agent)

Claims (3)

【特許請求の範囲】[Claims] (1)被測定部材に形成された穴内面における使用開始
前硬さに対する使用後の硬さの変化量を、当該被測定部
材と同一の標準サンプルについて予め求めた使用開始前
硬さ対使用後硬さの特性曲線値との比較により被測定部
材の劣化度を求めることを特徴とする劣化診断方法。
(1) The amount of change in hardness after use compared to the hardness before use on the inner surface of the hole formed in the member to be measured is determined in advance for the same standard sample as the member to be measured. A deterioration diagnosis method characterized by determining the degree of deterioration of a member to be measured by comparison with a characteristic curve value of hardness.
(2)被測定部材に形成された穴内面の硬さの変化量を
、当該穴内面のビッカス硬さ変化又は電気抵抗値の変化
から求めることを特徴とする特許請求の範囲第(1)項
記載の劣化診断方法。
(2) Claim (1) characterized in that the amount of change in hardness of the inner surface of a hole formed in the member to be measured is determined from a change in Vickers hardness or a change in electrical resistance value of the inner surface of the hole. Deterioration diagnosis method described.
(3)穴内面に押込可能のバー先端に取り付けられ穴内
面を押圧可能に配設した接触子と、接触子によって検出
される穴内面の硬さの大小を接触子を押し出すクサビの
押込量の変化又は接触子によって検出される穴内面の硬
さに応じた電気抵抗値の変化として取り出すと共に、予
め被測定部材と同一の標準サンプルによって求めた硬さ
の大小対クサビの押込量の変化又は硬さ対電気抵抗値の
大小の特性値との比較により被測定部材の劣化度を測定
することを特徴とする劣化診断装置。
(3) A contact is attached to the tip of a bar that can be pushed into the inner surface of the hole and is arranged to be able to press the inner surface of the hole, and the amount of push of the wedge that pushes out the contact is determined by the hardness of the inner surface of the hole detected by the contact. In addition to the change in electrical resistance value that corresponds to the hardness of the inner surface of the hole detected by the contactor, the change in the wedge indentation amount or the hardness is determined in advance using a standard sample that is the same as the part to be measured. A deterioration diagnosing device characterized by measuring the degree of deterioration of a member to be measured by comparing the electric resistance value with a characteristic value of magnitude.
JP28086986A 1986-11-27 1986-11-27 Method and device for diagnosing deterioration Pending JPS63134934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28086986A JPS63134934A (en) 1986-11-27 1986-11-27 Method and device for diagnosing deterioration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28086986A JPS63134934A (en) 1986-11-27 1986-11-27 Method and device for diagnosing deterioration

Publications (1)

Publication Number Publication Date
JPS63134934A true JPS63134934A (en) 1988-06-07

Family

ID=17631091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28086986A Pending JPS63134934A (en) 1986-11-27 1986-11-27 Method and device for diagnosing deterioration

Country Status (1)

Country Link
JP (1) JPS63134934A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000075629A1 (en) * 1999-06-02 2000-12-14 The Tokyo Electric Power Company Incorporated Thermal proof strength determination method of power-transmission line
JP2000346789A (en) * 1999-06-02 2000-12-15 Tokyo Electric Power Co Inc:The Heat yield strength determining method of transmission line
GB2550878A (en) * 2016-05-26 2017-12-06 Excelsior Tech Ltd A multi-pocket pouch

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171243A (en) * 1981-04-15 1982-10-21 Toshiba Corp Internal hardness gauge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171243A (en) * 1981-04-15 1982-10-21 Toshiba Corp Internal hardness gauge

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000075629A1 (en) * 1999-06-02 2000-12-14 The Tokyo Electric Power Company Incorporated Thermal proof strength determination method of power-transmission line
JP2000346789A (en) * 1999-06-02 2000-12-15 Tokyo Electric Power Co Inc:The Heat yield strength determining method of transmission line
JP2000346788A (en) * 1999-06-02 2000-12-15 Tokyo Electric Power Co Inc:The Heat yield strength determining method of transmission line
GB2550878A (en) * 2016-05-26 2017-12-06 Excelsior Tech Ltd A multi-pocket pouch

Similar Documents

Publication Publication Date Title
US6280603B1 (en) Electrochemical noise technique for corrosion
US4924708A (en) Method for calculating crack lengths of conductive sensors
Rudland et al. Experimental investigation of CTOA in linepipe steels
CN103884603A (en) Creep deformation-fatigue crack growth testing device and corresponding testing method
CN203811481U (en) Constant-stress creep testing machine
JPH08285747A (en) Method and apparatus for shearing test in boring hole of soft rock bed
Hyde et al. Some considerations on specimen types for small sample creep tests
JP3728286B2 (en) Nondestructive high temperature creep damage evaluation method
JPS63134934A (en) Method and device for diagnosing deterioration
JPH03267736A (en) Method and device for dynamic brakage fatigue test of brittle material
Schwalbe et al. Measurement of stable crack growth including detection of initiation of growth using the DC potential drop and the partial unloading methods
JP2015163840A (en) Estimation method of corrosion, fatigue and operating life of steel material
JP3631946B2 (en) Fatigue crack measuring method and displacement crack measuring instrument
JPS5892952A (en) Estimating method for service life of high temperature member
Smith et al. Measuring fatigue cracks in fillet welded joints
CN212459125U (en) High-temperature compression test tool for metal material
Davies et al. Continuous creep damage monitoring using a novel potential drop technique
RU2204817C1 (en) Procedure establishing technical state of materials of structural members
JPS5860248A (en) Life forecast for high temperature apparatus
JP6126962B2 (en) Welding member life evaluation method
JPS6327731A (en) Method for forecasting life of metallic material
CN218098607U (en) Measure anchor clamps device of anti bearing capacity of cutting of stud
Priest Experimental methods for fracture toughness measurement
JPH01311268A (en) Method of evaluating remaining life of metallic material
Clark et al. Fatigue precracking of spin-burst toughness specimens: Paper describes a hydrostatic pressure-cycling technique developed to permit controlled fatigue precracking of large spin-burst fracture-toughness specimens