JPS63134649A - Stainless steel excellent in corrosion resistance and hot workability - Google Patents

Stainless steel excellent in corrosion resistance and hot workability

Info

Publication number
JPS63134649A
JPS63134649A JP27996286A JP27996286A JPS63134649A JP S63134649 A JPS63134649 A JP S63134649A JP 27996286 A JP27996286 A JP 27996286A JP 27996286 A JP27996286 A JP 27996286A JP S63134649 A JPS63134649 A JP S63134649A
Authority
JP
Japan
Prior art keywords
less
hot workability
corrosion resistance
content
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27996286A
Other languages
Japanese (ja)
Inventor
Shinji Tsuge
信二 柘植
Hiroyuki Tsuge
柘植 宏之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27996286A priority Critical patent/JPS63134649A/en
Publication of JPS63134649A publication Critical patent/JPS63134649A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve hot workability and corrosion resistance by specifying respective quantities of C, Si, Mn, P, S, Al, Ni, Cr, Cu, Mo, W, N, B, Ti, Nb, and Fe. CONSTITUTION:This stainless steel has a composition consisting of <=0.03% C, <=1% Si, <=2% Mn, <=0.04% P, <=0.005% S, 0.01-0.3% Sol.Al, 27-40% Ni, 18-25% Cr, 0.3-3% Cu, 3-7% Mo, <=5% W, <=0.05% N, 0.0005-0.008% B, <=1% Ti and/or <=1% Nb, and the balance Fe. Moreover, in the above composition, (P%+8XB%) and (N%+C%) are controlled to <0.064% and <0.07%, respectively, and further, in case of (N%+C%)>0.03%, 8(N%+C%-0.03%) is controlled to <Ti%+Nb%.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、湿潤な硫化水素をはじめ、炭酸ガスや塩素イ
オンなどの腐食性成分を含有する腐食環境下において石
油や天然ガスの輸送などに用いられるラインパイプとし
て製造、使用する場合に、優れた熱間加工性および優れ
た耐食性、特に優れた耐孔食性、耐隙間腐食性、耐SC
C性を示すステンレス鋼に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is applicable to transportation of oil and natural gas in a corrosive environment containing humid hydrogen sulfide, as well as corrosive components such as carbon dioxide gas and chlorine ions. When manufactured and used as line pipes, it has excellent hot workability and excellent corrosion resistance, especially excellent pitting corrosion resistance, crevice corrosion resistance, and SC resistance.
This relates to stainless steel exhibiting C properties.

(従来の技術) 従来、そのようなfizs  C(h  CQ−の高腐
食性環境にさらされるラインパイプ用には5US316
.904、インコネル825等のオーステナイト系ステ
ンレス鋼が使用されている。しかし、これらのステンレ
ス鋼は熱間加工性が必ずしも充分でないため、Ca、 
Mg、、’REM添加、B添加等の改良案が考えられて
いる。たとえば、特公昭56−31345号では、B:
O,0O05〜0.20%、Zr:O,OO1〜6゜0
%、Ce:O,OO1〜0.5%を複合添加する方法が
開示されている。この方法はB s Zrs Ceの複
合添加による熱間加工性の改善を図るものであって、不
純物元素であるO、NをZr、 Ceによづて、特にC
eによって固定し、Bの有効利用を図るのであり、併せ
てZrの炭化物の生成を促進し、それにより熱間加工性
をさらに改善しようとするのである。また、特開昭61
−84348号では、熱間加工性を改善すべくBを添加
するに際して、そのを効なりの効果を著しく増大させる
ため酸素含有量を低く抑制すべく、酸素を0.0060
%以下とし、Bを0.001〜0.010%添加する方
法が提案されている。
(Prior Art) Traditionally, 5US316 for line pipes exposed to highly corrosive environments such as fizs C (h CQ-
.. Austenitic stainless steels such as 904 and Inconel 825 are used. However, these stainless steels do not necessarily have sufficient hot workability, so Ca,
Improvement plans such as adding Mg, 'REM, and B are being considered. For example, in Special Publication No. 56-31345, B:
O,0O05~0.20%, Zr:O,OO1~6゜0
%, Ce:O, OO 1 to 0.5% is disclosed. This method aims to improve hot workability through the combined addition of BsZrsCe, and the impurity elements O and N are replaced with Zr and Ce.
The aim is to fix the Zr by e and make effective use of B. At the same time, the aim is to promote the formation of Zr carbide, thereby further improving the hot workability. Also, JP-A-61
In No. 84348, when B is added to improve hot workability, oxygen is added to 0.0060% in order to suppress the oxygen content to a low level in order to significantly increase the effect of B.
% or less, and a method has been proposed in which B is added in an amount of 0.001 to 0.010%.

ところで、これらのステンレス鋼を加工するうえで最も
問題となるのは凝固組織あるいは凝固偏析を有するイン
ゴットまたはCCスラブの分塊工程である。ところがB
は溶融脆化温度を著しく低下させる元素であり、不用意
な添加が逆に分塊工程での問題を発生させることがあっ
た。
By the way, the biggest problem in processing these stainless steels is the blooming process of ingots or CC slabs having a solidification structure or solidification segregation. However, B
is an element that significantly lowers the melt embrittlement temperature, and its careless addition could actually cause problems in the blooming process.

また、H2S −COz  CQ−環境で使用される高
合金ラインパイプでは局部腐食としてはSCCがもっと
も重要な腐食であり、孔食および隙間腐食はこのSCC
の原因となりうろことが判明している。特に、11゜S
、CO□濃度が高い高腐食環境ではインコネル825系
といえども隙間腐食を発生する恐れがありその改良が望
まれている。
In addition, SCC is the most important type of local corrosion in high-alloy line pipes used in H2S -COz CQ- environments, and pitting and crevice corrosion are caused by SCC.
It has been found that this causes swelling. In particular, 11°S
In a highly corrosive environment with a high concentration of , CO□, even Inconel 825 type materials may suffer from crevice corrosion, and improvements are desired.

(発明が解決しようとする問題点) 本発明の目的は、耐食性、熱間加工性、特にラインパイ
プとして製造、使用に耐える、すくれた熱間加工性、耐
食性、特にすぐれた耐孔食性、耐隙間腐食性、耐SCC
性を示すステンレス鋼を提供することである。
(Problems to be Solved by the Invention) The objects of the present invention are to provide excellent corrosion resistance and hot workability, particularly to withstand production and use as a line pipe, to have excellent hot workability, corrosion resistance, and particularly excellent pitting corrosion resistance; Crevice corrosion resistance, SCC resistance
Our objective is to provide stainless steel that exhibits excellent properties.

(問題点を解決するための手段) 本発明者らは、上述のような問題を解決ずべく、まずB
添加の影響をみるため種々実験をくり返したところ、B
添加は熱間圧延をおこなう温度域での加工性を向上させ
るが、過剰撚5Juは、むしろ1200℃以上での加工
性を害することを知った。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present inventors first proposed B.
After repeating various experiments to see the effects of addition, B
It was found that although the addition of 5Ju improves workability in the temperature range where hot rolling is performed, excessive twisting of 5Ju actually impairs workability at temperatures above 1200°C.

ところが、B添加レベルが比較的低い場合でも、B添加
により分塊圧延割れが発生することがあったため、適量
のB添加の下での種々の微量元素の影響を調査したとこ
ろ、次のような知見を得た。
However, even when the B addition level was relatively low, blooming rolling cracks could occur due to the addition of B, so when we investigated the effects of various trace elements under the addition of an appropriate amount of B, we found the following. I gained knowledge.

(1) 20Cr−3ONi系にBを添加したところ、
1200℃という高温での熱間加工性(分塊、熱間圧延
)が必ずしも向上しない。そこで、B、P、N、 C,
Ti、 Nb量の影1を調査したところ、B、P量の規
制とN、Ciの規制により熱間加工性が向上することが
判明した。
(1) When B was added to the 20Cr-3ONi system,
Hot workability (blushing, hot rolling) at a high temperature of 1200° C. does not necessarily improve. Therefore, B, P, N, C,
When we investigated the effects of Ti and Nb contents 1, it was found that hot workability was improved by regulating the amounts of B and P and regulating the amounts of N and Ci.

ツマリ、B、Piが高いと、このステンレス鋼の溶融点
が低下し、特に分塊圧延時に加工性が問題となるのであ
る。
If the contents of stainless steel, B, and Pi are high, the melting point of this stainless steel will be lowered, and workability will become a problem, especially during blooming rolling.

(2)さらに鋼中N、Clが高いと窒化はう素あるいは
炭はう化物を形成することにより、本来、900〜10
00℃での加工性に有効なりjlを減することになるた
め、N、CをTiおよびNbで固定したところBの過剰
添加を防止でき、少量のB添加でもその有効化を増進さ
せることができるため、熱間加工性を向上させることが
できた。
(2) Furthermore, if the N and Cl contents in the steel are high, nitridation forms boron or carbide, which naturally leads to
Since it is effective for workability at 00°C and reduces jl, fixing N and C with Ti and Nb can prevent excessive addition of B, and even a small amount of B addition can increase its effectiveness. As a result, hot workability could be improved.

(3)P%+8xB%<0.064 %、N%+C%く
0.07%、N%+C%が0.03%以上のとき、8(
C%+N%−0.03%) <Ti%+Nb%を満足す
る場合、900〜1000℃ではもちろん、1200℃
以上でも良好な熱間加工性を有することが分かった。
(3) When P%+8xB%<0.064%, N%+C%<0.07%, N%+C% is 0.03% or more, 8(
(C%+N%-0.03%)<Ti%+Nb%, not only at 900 to 1000℃ but also at 1200℃
It was found that even the above conditions had good hot workability.

すなわち、これらの知見から、 (i) 18〜25Cr−27〜4ONiを含むステン
レス鋼においてPがBと同様に1200℃以上での加工
性を低下させること、 (ii)従って1200℃以上で行う分塊工程での加工
性を維持するにはP<0.040%、P%+8XB%<
0.064%の関係にPSBiiを制限することが必要
となること、 (iii )また、Bは粒界に偏析し900〜1000
℃の加工性を向上させると考えられるが、NあるいはC
の存在は鋼中にBとの化合物を作り、Bの有効性を損な
うため、強力な炭窒化物生成元素であるNbあるいはT
iを添加することにより、Bを粒界に偏析せしめること (1v)耐食性をさらに改善するために、011% M
O%Wの各元素を共存させること、 が、本発明の目的達成に有効であることを知り、本発明
を完成した。
That is, from these findings, (i) P reduces workability at temperatures above 1200°C in the same way as B in stainless steel containing 18-25Cr-27-4ONi, and (ii) Therefore, workability at temperatures above 1200°C is reduced. To maintain workability in the lump process, P<0.040%, P%+8XB%<
It is necessary to limit PSBii to a relationship of 0.064%; (iii) B also segregates at grain boundaries and
It is thought that it improves the workability at ℃, but N or C
The presence of Nb or T, which is a strong carbonitride-forming element, forms a compound with B in steel and impairs the effectiveness of B.
By adding i, B is segregated at grain boundaries (1v) In order to further improve corrosion resistance, 011% M
The present invention was completed based on the knowledge that the coexistence of O%W of each element is effective in achieving the object of the present invention.

ここに、本発明の要旨とするところは、C:0.03%
以下、  Si:1.0%以下、Mn:2.0%以下、
   I’ :0.04%以下、S :0.005%以
下、sol.Al:0.01〜0.3%、Ni:27〜
40%、   Cr: 18〜25%、Cu:0.3〜
3.0%、  Mo:3〜7%、W:5%以下、   
 N :0.05%以下、B :O,0O05〜0.0
08%を含有し、さらにTi11%以下およびNb:1
%以下のうら1種または2種を含有し、 所望によりREM:0.001〜0.1%、Y:0.0
01〜0.05%、Mg:0.001〜0.05%、お
よびCa:0.001〜0.05%より成る群から選ん
だ1種または2種以上を含み、 なお、Pχ+8 XBχ< 0.064%、N%+Cχ
<0.07%、 8(NZ+C$0.03%)<TiX+NbX(ただし
、N%+C%が0.03%以上の場合)残部Feおよび
付随不純物 から成る組成を備えたことを特徴とする耐食性、熱間加
工性に優れたステンレス鋼である。
Here, the gist of the present invention is that C: 0.03%
Below, Si: 1.0% or less, Mn: 2.0% or less,
I': 0.04% or less, S: 0.005% or less, sol. Al: 0.01~0.3%, Ni: 27~
40%, Cr: 18-25%, Cu: 0.3-
3.0%, Mo: 3 to 7%, W: 5% or less,
N: 0.05% or less, B: O, 0O05 to 0.0
08%, furthermore Ti11% or less and Nb:1
% or less, if desired, REM: 0.001-0.1%, Y: 0.0
01 to 0.05%, Mg: 0.001 to 0.05%, and Ca: 0.001 to 0.05%. .064%, N%+Cχ
<0.07%, 8(NZ+C$0.03%)<TiX+NbX (however, when N%+C% is 0.03% or more) Corrosion resistance characterized by having a composition consisting of the balance Fe and accompanying impurities It is a stainless steel with excellent hot workability.

このように、本発明の1つの特徴は、900〜1000
゛Cでの熱間加工性ばかりでなく 1200℃以上での
熱間加工性をも改善すべく、B添加を少量とし、今度は
その少量のBの有効利用を図るべくB、P、N、 C,
Nb、 Tiの成分範囲をそれぞれ前述の成分に限定し
たことにある。
Thus, one feature of the present invention is that 900-1000
In order to improve not only the hot workability at ゛C but also the hot workability at temperatures above 1200℃, we added a small amount of B, and in order to make effective use of that small amount of B, we added B, P, N, C,
This is because the component ranges of Nb and Ti are limited to the aforementioned components.

一方、本発明にあって隙間腐食、孔食を防止するために
はMoiの上界およびNb添加により、これらの腐食を
防止し、この効果によってSCCを防止する。
On the other hand, in the present invention, in order to prevent crevice corrosion and pitting corrosion, these corrosions are prevented by the upper limit of Moi and the addition of Nb, and this effect prevents SCC.

(作用) 次に、本発明において合金組成成分を上述のように限定
した理由を以下に詳述する。なお、本明細書において特
にことわりがない限り、「%」は「重量%」である。
(Function) Next, the reason why the alloy composition components are limited as described above in the present invention will be explained in detail below. In this specification, "%" means "% by weight" unless otherwise specified.

C: C成分の含有量が0.03%を超えると炭化物が
粒界析出するようになり、粒界に応力腐食割れが生じや
すくなることからその含有量を0.03%以下に定めた
C: If the content of the C component exceeds 0.03%, carbides will precipitate at the grain boundaries, making stress corrosion cracking more likely to occur at the grain boundaries, so the content was set at 0.03% or less.

Si: Si成分は脱酸成分として不可欠の成分である
が、その含有量が1.0%を超えると熱間加工性が劣化
するようになることから、その含有量を1.0%以下と
定めた。
Si: The Si component is an essential component as a deoxidizing component, but if its content exceeds 1.0%, hot workability will deteriorate, so the content should be kept at 1.0% or less. Established.

Mn: Mn成分にはSi成分と同様に脱酸作用があり
、2.0%まで含有させても調性性に悪影舌を及ぼさな
いことから2.0%までの含有が許容される。
Mn: Like the Si component, the Mn component has a deoxidizing effect, and even if it is contained up to 2.0%, it will not have an adverse effect on the tonality, so its content up to 2.0% is allowed.

P:P成分は本発明における重要元素であり、0゜04
%を超えると熱間加工性を損なうことから、その含有量
を0.04%以下と定めた。好ましくは、0.020%
以下である。
P: The P component is an important element in the present invention, and has a content of 0°04
If it exceeds 0.04%, hot workability will be impaired, so the content was set at 0.04% or less. Preferably 0.020%
It is as follows.

SO3成分には熱間加工性を劣化させる作用があり、こ
の作用はo、oos%を超えると著しく現われるように
なることからその含有量を0.005%以下と定めた。
The SO3 component has the effect of deteriorating hot workability, and this effect becomes noticeable when it exceeds o, oos%, so its content was determined to be 0.005% or less.

sol.Al: AQ酸成分SiおよびMn成分と同様
に脱酸作用を有し、そのために必要な成分であるが、そ
の含有量がsol、八Q 0.01%未満では脱酸効果
が少なく、0.3%を超えると靭性を害することからそ
の含有量をsol、AQで0.01%以上、0.3%以
下と定めた。
sol. Al: AQ acid component Like the Si and Mn components, it has a deoxidizing effect and is a necessary component for that purpose, but if its content is less than 0.01% of sol, 8Q, the deoxidizing effect is small; If it exceeds 3%, toughness will be impaired, so its content was set at 0.01% or more and 0.3% or less in terms of sol and AQ.

Ni: Ni成分には耐食性、特に耐応力腐食割れ性を
向上させる作用があるが、その含有量が27%未満では
所望に優れた耐応力腐食割れ性を確保することができず
、一方、40%を超えて含有させても耐応力腐食割れ性
にさらに一段の向上効果が現れず、したがって、経済性
を考慮して、その含有量を27〜40%と定めた。好ま
しくは、27〜35%である。
Ni: The Ni component has the effect of improving corrosion resistance, especially stress corrosion cracking resistance, but if its content is less than 27%, desired excellent stress corrosion cracking resistance cannot be secured; Even if the content exceeds 20%, no further improvement effect on stress corrosion cracking resistance appears. Therefore, in consideration of economic efficiency, the content was set at 27% to 40%. Preferably it is 27-35%.

Cr: Cr成分には、N1、並びに後述の)′IOお
よびW成分との共存において、耐食性を著しく向上させ
る作用があるが、その含を量が18%未満では所望の優
れた耐食性を確保することができないので、18%以上
の含有が必要であるが、25%を越えて含有させてもよ
り一層の向上効果は現れず、したがって経済性をも考慮
して、その含有量を18〜25%と定めた。
Cr: The Cr component has the effect of significantly improving corrosion resistance when coexisting with N1 and the IO and W components (described later), but if its content is less than 18%, the desired excellent corrosion resistance cannot be achieved. Therefore, it is necessary to contain 18% or more, but even if the content exceeds 25%, no further improvement effect will be obtained. %.

!IloおよびW:上記のように、これらの成分にはN
iおよびCrとの共存において耐食性を向上させる作用
がある。Moは本発明における重要成分であり、その含
有量が3%に満たないと11□S −co2−CQ−環
境下で隙間腐食、孔食を防止することができない、一方
、Moを7%超、Wを5%超金含有せることは経済性の
うえから問題となるためMoの含有量として3%以上、
7%以下、Wの含有量として5%以下と定めた。
! Ilo and W: As mentioned above, these components contain N
Coexistence with i and Cr has the effect of improving corrosion resistance. Mo is an important component in the present invention, and if its content is less than 3%, crevice corrosion and pitting corrosion cannot be prevented in an 11□S-co2-CQ- environment.On the other hand, if Mo content exceeds 7% , since adding more than 5% gold to W poses a problem from an economic point of view, the Mo content should be 3% or more.
The content of W was set at 7% or less, and the W content was set at 5% or less.

Cu: Cu成分は耐食性を向上させる作用があるが、
その含有量が0.3%未満では所望の耐食性を確保する
ことができず、一方3%を越えて含有させると、熱間加
工性が劣化するようになることから、その含有量を0.
3〜3%と定めた。
Cu: Cu component has the effect of improving corrosion resistance,
If the content is less than 0.3%, the desired corrosion resistance cannot be ensured, while if the content exceeds 3%, hot workability will deteriorate, so the content should be reduced to 0.3%.
It was set at 3-3%.

TiおよびNb: これらの成分は炭窒化物を生成し、
B成分がほう化窒素、炭はう化物となることを防止し、
間接的に熱間加工性を向上させる効果を持つ。またNb
は鋼中に固溶して、耐食性を向上させる効果を持つので
添加が望ましい。その含有量がそれぞれTi:1%およ
びNb:1%を越えてもより一層の向上効果が現れない
ことから、経済性を考慮してその含有量をそれぞれTi
11%以下、Nb:1%以下と定めた。
Ti and Nb: These components form carbonitrides,
Prevents component B from turning into nitrogen boride and carbon oxides,
It has the effect of indirectly improving hot workability. Also Nb
It is desirable to add Ni because it forms a solid solution in the steel and has the effect of improving corrosion resistance. Even if the content exceeds Ti: 1% and Nb: 1%, a further improvement effect does not appear, so in consideration of economic efficiency, the content of Ti
Nb: 1% or less, Nb: 1% or less.

N:N成分はB成分と化合してほう化窒素を形成し、間
接的に熱間加工性を劣化させる効果を持つ。その含有量
が0.05%を越えるとTiおよびNb成分を添加して
もN成分の悪影響が現われることからその含有量を0.
05%以下と定めた。
N: The N component combines with the B component to form nitrogen boride, which indirectly has the effect of deteriorating hot workability. If the content exceeds 0.05%, the adverse effects of the N component will appear even if Ti and Nb components are added, so the content should be reduced to 0.05%.
It was set at 0.05% or less.

N%+C%<0.07% N%+C%>0.03%の場合、8(N%+C%−0.
03) <Ti%+Nb% 実施例の項で後述するようにB成分を16〜24ppm
含有するNb −Cr −Mo系の鋼を溶製し、分塊、
圧延を行い、圧延工程での耳割れの程度を観察し、後述
する第2図に示すように、Ti%+Nb%を縦軸にとり
、N%+C%を横軸にとリプロットしたところ、N%+
C%<0.07.8×(N%+C%−0.03) <T
i%+Nb%を満たず成分範囲で所望の優れた熱間加工
性を示したのである。これらの結果にもとづき、N、 
C,Ti、 Nb成分の含有量をN%+C%<0.07
%、8×(N%+C%−0.03%) <Ti%+Nb
%を満たすように定めた。
If N%+C%<0.07% N%+C%>0.03%, 8(N%+C%-0.
03) <Ti%+Nb% As described later in the Examples section, the B component is 16 to 24 ppm.
The Nb-Cr-Mo steel containing Nb-Cr-Mo is melted and bloomed,
Rolling was carried out, and the degree of edge cracking during the rolling process was observed. As shown in Figure 2, which will be described later, when Ti% + Nb% was plotted on the vertical axis and N% + C% was plotted on the horizontal axis, it was found that N% +
C%<0.07.8×(N%+C%-0.03)<T
It showed the desired excellent hot workability within the composition range of less than i%+Nb%. Based on these results, N,
The content of C, Ti, and Nb components is N%+C%<0.07
%, 8×(N%+C%-0.03%) <Ti%+Nb
%.

なお、N%+C%≦0.03%の場合は、(NiC)量
が十分少ないことから、これによって(Ti←Nb) 
Iを制限する必要はない。
In addition, in the case of N%+C%≦0.03%, the amount of (NiC) is sufficiently small, so (Ti←Nb)
There is no need to limit I.

B:B成分は熱間圧延時の耳割れを軽減する効果を有す
る。含有量が0.0005%より少ないとその効果が発
揮されず、0.008%を越えると1200°C以上で
の加工性の劣化をきたすことから8、その含有量を0.
0005%以上、0.008%以下と定めた。
B: Component B has the effect of reducing edge cracking during hot rolling. If the content is less than 0.0005%, the effect will not be exhibited, and if it exceeds 0.008%, the processability will deteriorate at temperatures above 1200°C.
It was set at 0.0005% or more and 0.008% or less.

好ましくは、0.001〜0.005%である。Preferably it is 0.001 to 0.005%.

P%+8xB%<0.064: 実施例の項で後述するようにP、B成分を変化させたN
b−Cr−Mo系の鋼を溶製し分塊圧延を行い、分塊工
程での割れ、圧延工程での耳割れの程度を観察し、後述
する第1図に示すように、縦軸にP%、横軸にB%をと
リプロットしたところ、P%+8XB%<0.064を
満たす成分範囲で所望の優れた熱間加工性を示したので
ある。
P%+8xB%<0.064: N with P and B components changed as described later in the Examples section
b-Cr-Mo steel was melted and bloomed, and the degree of cracking in the blooming process and edge cracking in the rolling process was observed. When P% and B% were replotted on the horizontal axis, the desired excellent hot workability was exhibited within the component range satisfying P%+8XB%<0.064.

これらの結果にもとづきP成分とB成分の含有星をP%
+8XB%<0.064を満たずように定めた。
Based on these results, stars containing P and B components are set to P%.
+8XB%<0.064.

次に、本発明を実施例に関連させてさらに具体的に説明
する。
Next, the present invention will be described in more detail with reference to examples.

実施例 50Kg真空誘導炉により第1表に示す鋼を溶製した。Example Steels shown in Table 1 were melted in a 50Kg vacuum induction furnace.

鋼番号1から15まではP、B成分の影習を調査したも
の、鋼番号16から27までは、P、B成分を適正とし
て、C,N、 Ti、 Nb成分の影響を調べたもの、
鋼番号28以降は、これまでに得られた知見を確かめる
ために、種々の成分を変化させ調べたものである。
For steel numbers 1 to 15, the influence of P and B components was investigated, and for steel numbers 16 to 27, the influence of C, N, Ti, and Nb components was investigated with the P and B components being appropriate.
Steel No. 28 and later were investigated by changing various components in order to confirm the knowledge obtained so far.

得られたインゴットを1250℃に加熱して鍛造、分塊
を行い60t X100wX150 II (糟11)
のブロックを作成し、このブロックを外削してキズの深
さで熱間加1性を評価した。次いで、キズを取り除いた
ブロックを1200℃に加熱し9バスにて6t(nIl
l)の板に圧延し耳割れを調査した。
The obtained ingot was heated to 1250°C, forged and bloomed into a 60t x 100w x 150 II (kasu 11).
A block was prepared, this block was externally machined, and hot workability was evaluated based on the depth of scratches. Next, the block from which scratches were removed was heated to 1200°C and heated to 6t (nIl) in 9 baths.
1) was rolled and edge cracking was investigated.

耐食性の倹討は5 t (n++a)の板より2tXI
QwX75 j! (mm)の試験片を切り出し、2枚
を重ねてダブルUヘンド試験片を作成し、5%NaCQ
+0.5%CIl:+C00Il 、10気圧H2S 
、 10気圧cot 、100°Cのオートクレーブ中
で720時間の試験を実施し、その隙間腐食をSCCの
有無で測定した。
Corrosion resistance is 2tXI from 5t (n++a) plate.
QwX75 j! (mm) test piece was cut out, two pieces were stacked to create a double U-hand test piece, and 5% NaCQ
+0.5% CIl: +C00Il, 10 atm H2S
A test was conducted for 720 hours in an autoclave at 10 atm cot and 100°C, and the crevice corrosion was measured with and without SCC.

なお、試験片は切り出しまま材と、650℃/1時間の
鋭敏化処理を施した熱処理材とを使用し、それぞれ試験
に供した。
In addition, the test pieces used were the as-cut material and the heat-treated material that had been subjected to sensitization treatment at 650° C. for 1 hour, and were used for the test.

熱間加工性、耐食性の評価は第2表にまとめて示す。Evaluations of hot workability and corrosion resistance are summarized in Table 2.

なお、各特性の評価は以下の基準によって行っ1こ。In addition, each characteristic was evaluated based on the following criteria.

分塊割れ評価二   〇 最大割れ深さ1mm以下× 
   “  11超 圧延工程での耳割れ二〇 最大耳側れ(片側Hn+m以
下x        1mm超 隙間腐食二     〇 発生せず × 発生 SCC:      ○ 発生せず × 発生 第1図は、これらのうち熱間力U工性をP%とB%とに
関連させてまとめたグラフであり、これよりP≦0.0
4%、B :0.0005〜0.008%、そしてP%
+8×B%<O,064%のとき分塊圧延、熱間圧延の
いずれにおいても熱間加工性が改善されることが分かる
Blossom crack evaluation 2 〇 Maximum crack depth 1mm or less ×
“ 11 Edge cracking in ultra-rolling process 20 Maximum edge side deviation (less than Hn+m on one side This is a graph that summarizes U workability in relation to P% and B%, and from this, P≦0.0
4%, B: 0.0005-0.008%, and P%
It can be seen that when +8×B%<O, 064%, hot workability is improved in both blooming and hot rolling.

第2図は、同しく B :O,Q016〜0.0024
%の範囲のケースについて熱間加工性を(Ti  +N
b)%と(N+C)%との関係においてまとめて示すグ
ラフである。これより、(N+C)%<0.07%、8
(N%+Cχ−0゜03%) <Ti%+Nb%のとき
に熱間圧延時の熱間加工性が改害されることが分かる。
Figure 2 also shows B:O,Q016~0.0024
The hot workability for cases in the range of (Ti + N
b) It is a graph collectively showing the relationship between % and (N+C)%. From this, (N+C)%<0.07%, 8
It can be seen that when (N%+Cχ-0°03%)<Ti%+Nb%, the hot workability during hot rolling is impaired.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の実施例のデータをまと
めて示すグラフである。
FIG. 1 and FIG. 2 are graphs collectively showing data of an example of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)C:0.03%以下、Si:1.0%以下、Mn
:2.0%以下、P:0.04%以下、S:0.005
%以下、sol.Al:0.01〜0.3%、Ni:2
7〜40%、Cr:18〜25%、Cu:0.3〜3.
0%、Mo:3〜7%、W:5%以下、N:0.05%
以下、 R:0.0005〜0.008%を含有し、さらにTi
:1%以下およびNb:1%以下のうち1種または2種
を含有し、 なお、P%+8×B%<0.064%、 N%+C%<0.07%、 8(N%+C%−0.03%)<Ti%+Nb%、(た
だし、N%+C%が0.03%以上の場合)残部Feお
よび付随不純物 から成る組成を備えたことを特徴とする耐食性、熱間加
工性に優れたステンレス鋼。
(1) C: 0.03% or less, Si: 1.0% or less, Mn
: 2.0% or less, P: 0.04% or less, S: 0.005
% or less, sol. Al: 0.01-0.3%, Ni: 2
7-40%, Cr: 18-25%, Cu: 0.3-3.
0%, Mo: 3-7%, W: 5% or less, N: 0.05%
Hereinafter, R: 0.0005 to 0.008% is contained, and Ti
Contains one or two of: 1% or less and Nb: 1% or less, P%+8×B%<0.064%, N%+C%<0.07%, 8(N%+C %-0.03%)<Ti%+Nb%, (however, if N%+C% is 0.03% or more) Corrosion resistance, hot processing characterized by having a composition consisting of the balance Fe and incidental impurities Stainless steel with excellent durability.
(2)C:0.03%以下、Si:1.0%以下、Mn
:2.0%以下、P:0.04%以下、S:0.005
%以下、sol.Al:0.01〜0.3%、Ni:2
7〜40%、Cr:18〜25%、Cu:0.3〜3.
0%、Mo:3〜7%、W:5%以下、N:0.05%
以下、 B:0.0005〜0.008%を含有し、さらにTi
:1%以下およびNb:1%以下のうち1種または2種
を含有し、 REM:0.001〜0.1%、Y:0.001〜0.
05%、Mg:0.001〜0.05%、Ca:0.0
01〜0.05%より成る群から選んだ1種または2種
以上を含み、なお、P%+8×B%<0.064%、 N%+C%<0.07%、 8(N%+C%−0.03%)<Ti%+Nb%(ただ
し、N%+C%が0.03%以上の場合)残部Feおよ
び付随不純物 から成る組成を備えたことを特徴とする耐食性、熱間加
工性に優れたステンレス鋼。
(2) C: 0.03% or less, Si: 1.0% or less, Mn
: 2.0% or less, P: 0.04% or less, S: 0.005
% or less, sol. Al: 0.01-0.3%, Ni: 2
7-40%, Cr: 18-25%, Cu: 0.3-3.
0%, Mo: 3-7%, W: 5% or less, N: 0.05%
Below, B: 0.0005 to 0.008% is contained, and Ti
: 1% or less and Nb: 1% or less, REM: 0.001-0.1%, Y: 0.001-0.
05%, Mg: 0.001-0.05%, Ca: 0.0
Contains one or more types selected from the group consisting of 01 to 0.05%, and P% + 8 × B% < 0.064%, N% + C% < 0.07%, 8 (N% + C %-0.03%)<Ti%+Nb% (however, when N%+C% is 0.03% or more) Corrosion resistance and hot workability characterized by having a composition consisting of the balance Fe and incidental impurities Made of superior stainless steel.
JP27996286A 1986-11-25 1986-11-25 Stainless steel excellent in corrosion resistance and hot workability Pending JPS63134649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27996286A JPS63134649A (en) 1986-11-25 1986-11-25 Stainless steel excellent in corrosion resistance and hot workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27996286A JPS63134649A (en) 1986-11-25 1986-11-25 Stainless steel excellent in corrosion resistance and hot workability

Publications (1)

Publication Number Publication Date
JPS63134649A true JPS63134649A (en) 1988-06-07

Family

ID=17618356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27996286A Pending JPS63134649A (en) 1986-11-25 1986-11-25 Stainless steel excellent in corrosion resistance and hot workability

Country Status (1)

Country Link
JP (1) JPS63134649A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120335A (en) * 1989-09-30 1991-05-22 Kubota Corp High nickel iron-base alloy for casting
JP2018031028A (en) * 2016-08-22 2018-03-01 日本冶金工業株式会社 Fe-Ni-Cr-Mo ALLOY AND METHOD FOR PRODUCING THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120335A (en) * 1989-09-30 1991-05-22 Kubota Corp High nickel iron-base alloy for casting
JP2018031028A (en) * 2016-08-22 2018-03-01 日本冶金工業株式会社 Fe-Ni-Cr-Mo ALLOY AND METHOD FOR PRODUCING THE SAME

Similar Documents

Publication Publication Date Title
EP2199420B1 (en) Austenitic stainless steel
EP2048255B1 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
AU650799B2 (en) Duplex stainless steel having improved strength and corrosion resistance
EP2725112B1 (en) Carburization-resistant metal material and uses of the carburization-resistant metal material
US7416618B2 (en) High strength corrosion resistant alloy for oil patch applications
EP0381121A1 (en) High-strength heat-resistant steel with improved workability
WO1996001334A1 (en) Process for producing ferritic iron-base alloy and ferritic heat-resistant steel
CN105723009A (en) Ni-cr alloy material and oil well seamless pipe using same
JP5838933B2 (en) Austenitic heat resistant steel
JP3106674B2 (en) Martensitic stainless steel for oil wells
JP5846076B2 (en) Austenitic heat-resistant alloy
JPH02217439A (en) High strength low alloy steel having excellent corrosion resistance and oxidation resistance
KR100766251B1 (en) Ni saving heat resistant austenitic stainless steel with excellent high temperature properties
JP2000328198A (en) Austenitic stainless steel excellent in hot workability
JP3746877B2 (en) Stainless steel wire for springs with excellent corrosion resistance and spring characteristics
JPS63134649A (en) Stainless steel excellent in corrosion resistance and hot workability
US20150010425A1 (en) Austenitic stainless steel
JPH1161342A (en) High chromium ferritic steel
JPH01165752A (en) Ferritic stainless steel having superior corrosion resistance in highly concentrated halide solution
KR100268708B1 (en) Method of manufacturing high cr ferritic heat resisting steel for high temperature,high pressure parts
EP4023785A1 (en) Highly corrosion-resistant austenitic stainless steel having excellent impact toughness and hot workability
JPH09308989A (en) Welding material for high cr ferritic heat resistant steel
KR102113824B1 (en) Heat resistance austenitic stainless steel with high temperature fatigue life
JPS647127B2 (en)
JP2002173720A (en) Ni BASED ALLOY EXCELLENT IN HOT WORKABILITY