JPS63134557A - Mn-zn base oxide magnetic material and manufacture - Google Patents

Mn-zn base oxide magnetic material and manufacture

Info

Publication number
JPS63134557A
JPS63134557A JP61279644A JP27964486A JPS63134557A JP S63134557 A JPS63134557 A JP S63134557A JP 61279644 A JP61279644 A JP 61279644A JP 27964486 A JP27964486 A JP 27964486A JP S63134557 A JPS63134557 A JP S63134557A
Authority
JP
Japan
Prior art keywords
mno
oxide magnetic
magnetic material
starting material
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61279644A
Other languages
Japanese (ja)
Inventor
文博 加藤
健一 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP61279644A priority Critical patent/JPS63134557A/en
Publication of JPS63134557A publication Critical patent/JPS63134557A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、 Mn−Zn系酸化物磁性材料とその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a Mn--Zn-based oxide magnetic material and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来、電源トランスホーマの磁芯用材料としてMn−Z
n系フェライト磁性材料か用いられている。
Conventionally, Mn-Z was used as a material for the magnetic core of power transformers.
An n-type ferrite magnetic material is used.

斯かるフェライト磁性材料には、主成分として。Such ferrite magnetic materials include as the main component.

50〜55モルチのFe2O3,30〜38モルのMn
O(実際には、 Mn3O4等の多価のマンガン酸化物
を含マンガン出発材料としている。)9〜15モルチの
ZnO、および、微量添加物として0〜0.1重量%の
Ca0 、0〜0,1重量%のS iO2を含有する材
料が使用されている。
50-55 moles of Fe2O3, 30-38 moles of Mn
O (Actually, polyvalent manganese oxide such as Mn3O4 is used as the manganese-containing starting material.) 9 to 15 mol of ZnO, and 0 to 0.1% by weight of Ca0, 0 to 0 as trace additives. , 1% by weight of SiO2 is used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、主原材料のうち、 MnOにおいては、
従来、四三酸化マンガンMn3O4を含マンカy出発材
料として使用しているため、焼結時に、内部クラックが
発生する欠点があった。
However, among the main raw materials, in MnO,
Conventionally, trimanganese tetroxide Mn3O4 has been used as a mankay-containing starting material, which has had the disadvantage of generating internal cracks during sintering.

そこで9本発明の目的は、上記欠点に鑑み。Therefore, the object of the present invention is to solve the above drawbacks.

Mn3O4のかわりにMnO・OHを使用することばよ
り。
From the words that use MnO・OH instead of Mn3O4.

焼成時の内部クラックの発生のないMn−Zn系酸化物
磁性材料とその製造方法を提供するものである。
The present invention provides an Mn--Zn-based oxide magnetic material that does not generate internal cracks during firing, and a method for producing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、含マンガン出発材料を必須の原材料と
するMn−Zn系酸化物磁性材料において。
According to the present invention, there is provided an Mn--Zn-based oxide magnetic material that uses a manganese-containing starting material as an essential raw material.

前記含マンガン出発材料は、 MnO(OH)であると
とを特徴とするMn−Zn系酸化物磁性材料が得られる
A Mn--Zn-based oxide magnetic material is obtained, characterized in that the manganese-containing starting material is MnO(OH).

さらに9本発明によれば、 MnO(OH)を含マンガ
ン出発材料として含む原材料を混合、造粒、成形後、焼
結することを特徴とするMn−Zn系酸化物磁性材料の
製造方法が得られる。
Furthermore, according to the present invention, there is provided a method for producing an Mn-Zn-based oxide magnetic material, which comprises mixing, granulating, molding, and then sintering raw materials containing MnO(OH) as a manganese-containing starting material. It will be done.

即ち2本発明は@ MnO,Fe 205 * ZnO
を主構成成分とするMn−Zn系酸化物磁性材料の原材
料のうち。
That is, the two present inventions are @MnO, Fe 205 * ZnO
Among the raw materials for Mn-Zn-based oxide magnetic materials whose main constituents are:

MnOの出発原料について、従来より、Mn純度の高い
四三酸化マンガンMn3O4を使用しているが、これに
代えてMnOのmailが変わらないように水酸化マン
ガンMnO・OHを出発材料として使用し、その他にF
e 203T Z nOを含む主原材料に、微量のS 
s O2e Ca。
Conventionally, trimanganese tetroxide Mn3O4 with high Mn purity has been used as a starting material for MnO, but instead of this, manganese hydroxide MnO.OH is used as a starting material so that the mail of MnO does not change. Other F
e 203T A trace amount of S is added to the main raw material containing Z nO.
s O2e Ca.

等を添加してなる原材料を混合造粒し、プレス成形後焼
結するMn−Zn系フェライト磁性材料の製造に関する
ものである。
The present invention relates to the production of an Mn-Zn-based ferrite magnetic material by mixing and granulating raw materials with the addition of the following materials, press-molding and sintering the raw materials.

〔実施例〕〔Example〕

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

含マンガン出発材料であるMnO(OH)を必須の原材
料とし、他にFe2O3,ZnOを含む原材料を、得ら
れる磁性材料の組成成分がFe2O,52,5molチ
MnO(OH), which is a manganese-containing starting material, is an essential raw material, and other raw materials containing Fe2O3 and ZnO are used, and the composition of the resulting magnetic material is Fe2O, 52.5 mol.

MnO34,0moil、ZnO13,5mo1%とな
るように秤量し、これに、微量のS i02 * Ca
Oを添加して、ケールミルで混合しスプレードライヤー
にて造粒後。
Weigh out 4.0 moil% of MnO and 1% of ZnO, and add a trace amount of S i02 *Ca to this.
Add O, mix in a kale mill, and granulate in a spray dryer.

fvス成形しサンプルを得る。このサンプルを。FVS molding to obtain a sample. This sample.

1310℃、1.3アトミツク係の微量酸素雰囲気の焼
結炉で、2時間保持で焼結した。
Sintering was carried out at 1310° C. in a sintering furnace with a trace oxygen atmosphere of 1.3 atomic concentration for 2 hours.

この焼結したサンプルを切断し、内部クラックの発生率
で評価を行った。その結果を第2図に示す。その結果、
酸化度は1.5であるMnO・OHをMnOの出発材料
に用いることにより、内部クラックがゼロとなったこと
がわかる。これは、 MnO・OHは第1図に示すごと
く、示差熱分析では吸熱反応を示すのに対し、他のMn
 304では発熱反応を示すことによる。よって、結合
剤などの添加有機物か焼結時の昇温過程で飛散する場合
1発熱反応をとるため9発熱量が大きくなってしまい、
内部クラックを発生させる。ところが1本発明に係わる
MnO・OHを使用すると、吸熱反応が生じ、内部クラ
ックが発生しないことになる。
This sintered sample was cut and evaluated based on the rate of occurrence of internal cracks. The results are shown in FIG. the result,
It can be seen that by using MnO.OH, which has an oxidation degree of 1.5, as the starting material for MnO, the internal cracks became zero. This is because, as shown in Figure 1, MnO・OH shows an endothermic reaction in differential thermal analysis, whereas other MnO
304 by exhibiting an exothermic reaction. Therefore, when additive organic matter such as a binder scatters during the temperature rising process during sintering, an exothermic reaction occurs, resulting in a large calorific value.
Causes internal cracks. However, when MnO.OH according to the present invention is used, an endothermic reaction occurs and no internal cracks occur.

即ち、 MnO・OHは酸化度が高い原材料である。こ
こで、酸化度とは、マンがン(Mn)に対する酸素〔0
〕の比を表わす。従来より、 Mnは価数の変化がおこ
りやすく、酸化マンガンでは、多くの酸化度をもつこと
になるが、化学的に安定させるために、理論値よシ過剰
の酸素をもつ。たとえば、 MnOの出発材料には、従
来Mn 504が用いられているが、酸化度の理論値は
1.33であり2分析値は1.35あるいは1.38の
値をとる。これに対して、 MnOの出発材料である本
発明のMnO・OHは、酸化度1.50と高い。従って
過剰酸素が多い場合にも、 MnOG(を用いることに
より、示差熱分析において1発熱量は少ないことになる
That is, MnO.OH is a raw material with a high degree of oxidation. Here, the degree of oxidation refers to oxygen [0
] represents the ratio of Traditionally, Mn has been prone to changes in valence, and manganese oxide has many degrees of oxidation, but in order to be chemically stable, it contains oxygen in excess of the theoretical value. For example, Mn 504 is conventionally used as a starting material for MnO, but the theoretical value of the degree of oxidation is 1.33, and the analytical value is 1.35 or 1.38. On the other hand, the MnO.OH of the present invention, which is the starting material for MnO, has a high oxidation degree of 1.50. Therefore, even when there is a large amount of excess oxygen, the use of MnOG results in a smaller calorific value in differential thermal analysis.

第2図に酸化度と内部クラック発生率との関係を示す。Figure 2 shows the relationship between the degree of oxidation and the rate of internal crack occurrence.

上述したように、酸化度が高いほど内部クラック発生率
は少なくなり、酸化度1.40以上でゼロとなった。
As mentioned above, the higher the oxidation degree, the lower the internal crack occurrence rate, and it became zero at an oxidation degree of 1.40 or higher.

第3図(a) 、(b) 、 (c)には、酸化度と磁
気特性との関係を示す。これは、 Mn3O4とMnO
・OHを一定の比その結果、酸化度が高くなるにしたが
って、初透磁率(μ)(a)は大きくなり、相対損失係
数(tanδ/μ)(b)は小さくなる傾向にある。さ
らに、電力損失(コアロス) (c)は大きく改良され
、 MnO−OH単独(酸化度1.50)では20%小
さくなることが判明した。
Figures 3(a), (b), and (c) show the relationship between the degree of oxidation and magnetic properties. This is Mn3O4 and MnO
- Constant ratio of OH As a result, as the degree of oxidation increases, the initial magnetic permeability (μ) (a) tends to increase and the relative loss coefficient (tan δ/μ) (b) tends to decrease. Furthermore, it was found that the power loss (core loss) (c) was greatly improved and was reduced by 20% when using MnO-OH alone (oxidation degree 1.50).

〔発明の効果〕〔Effect of the invention〕

以上、述べたごとく本発明によれば、 MnOの出発材
料として、 MnO・OHを原材料に含めて使用するこ
とによって、焼結時の内部クラックをゼロとすると同時
に、コアロス特性を20チ改良することができた。
As described above, according to the present invention, by using MnO.OH as a starting material for MnO in the raw materials, it is possible to eliminate internal cracks during sintering and at the same time improve core loss characteristics by 20 degrees. was completed.

本発明は、電源トランスホーマ用Mn−Znフェライト
材料の焼結能力向上およびコアロス改良に対して極めて
有意義であると考える。
The present invention is considered to be extremely significant for improving the sintering ability and core loss of Mn-Zn ferrite materials for power transformers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は示差熱分析計を用いて、温度と各試料の発熱及
び吸熱量を常温をO〔μV〕としたときの電位差をもっ
て示した相関図、第2図は、 ’MnOとクク発生率の
関係を示す相関図、第3図(、)はMnOの酸化度と透
磁率の関係を示し、(b)はMnOの酸化度と相対損失
係数の関係を示し、(C)はMnOの酸化度とコアロス
の関係を示す相関図である。 (’1llTh”[:”i鄭貝豊 メ 酸化度 酸化度 酸化度
Figure 1 is a correlation diagram using a differential thermal analyzer to show the temperature and the amount of heat generated and absorbed by each sample using the potential difference when room temperature is O [μV]. Figure 2 shows the 'MnO and Kuku generation rate Figure 3 (,) shows the relationship between the oxidation degree of MnO and magnetic permeability, (b) shows the relationship between the oxidation degree of MnO and the relative loss coefficient, and (C) shows the relationship between the oxidation degree of MnO and the relative loss coefficient. FIG. 2 is a correlation diagram showing the relationship between core loss and core loss. ('1llTh” [:”iZheng Beifeng Me oxidation degree Oxidation degree

Claims (1)

【特許請求の範囲】 1、含マンガン出発材料を必須の原材料とするMn−Z
n系酸化物磁性材料において、前記含マンガン出発材料
は、MnO(OH)であることを特徴とするMn−Zn
系酸化物磁性材料。 2、MnO(OH)を含マンガン出発材料として含む原
材料を混合、造粒、成形後、焼結することを特徴とする
Mn−Zn系酸化物磁性材料の製造方法。
[Claims] 1. Mn-Z using a manganese-containing starting material as an essential raw material
In the n-based oxide magnetic material, the manganese-containing starting material is MnO(OH).
based oxide magnetic materials. 2. A method for producing an Mn--Zn-based oxide magnetic material, which comprises mixing, granulating, molding, and then sintering raw materials containing MnO(OH) as a manganese-containing starting material.
JP61279644A 1986-11-26 1986-11-26 Mn-zn base oxide magnetic material and manufacture Pending JPS63134557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61279644A JPS63134557A (en) 1986-11-26 1986-11-26 Mn-zn base oxide magnetic material and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61279644A JPS63134557A (en) 1986-11-26 1986-11-26 Mn-zn base oxide magnetic material and manufacture

Publications (1)

Publication Number Publication Date
JPS63134557A true JPS63134557A (en) 1988-06-07

Family

ID=17613853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61279644A Pending JPS63134557A (en) 1986-11-26 1986-11-26 Mn-zn base oxide magnetic material and manufacture

Country Status (1)

Country Link
JP (1) JPS63134557A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498649B2 (en) 2006-03-01 2009-03-03 Epson Imaging Devices Corporation Electro-optical device and electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498649B2 (en) 2006-03-01 2009-03-03 Epson Imaging Devices Corporation Electro-optical device and electronic apparatus
US7759757B2 (en) 2006-03-01 2010-07-20 Sony Corporation Electro-optical device and electronic apparatus

Similar Documents

Publication Publication Date Title
EP0105375B1 (en) Oxide-containing magnetic material capable of being sintered at low temperatures
US2744873A (en) Mixed nickel, zinc, vanadium ferrite
JPS61256967A (en) Manufacture of mn-zn ferrite
JPS60262405A (en) Manufacture of mn-zn ferrite
JPS63134557A (en) Mn-zn base oxide magnetic material and manufacture
US3038860A (en) Lithium nickel ferrites
US2961407A (en) Mixed ferrite composition
GB823971A (en) Improvements in or relating to ferromagnetic ferrite materials
GB839860A (en) Improvements in or relating to ferromagnetic ferrite materials
JPS6111892B2 (en)
JPS60262404A (en) Manufacture of mn-zn ferrite
US2714580A (en) Magnetic materials and methods of making the same
US3671435A (en) Cobalt doped gamma ferric oxide
US3226328A (en) Method for making lithium nickel ferrite having a substantially rectangular hysteresis loop
US2562705A (en) Lithium manganite and method of producing same
GB1390279A (en) Manganese-zinc ferrites
US2987481A (en) Manganese-zinc ferrite
JPH03141611A (en) Fineparticle organization mn-zn ferrite material and its manufacture
US3146205A (en) Lithium-manganese ferromagnetic ferrite core
JP3467329B2 (en) Manufacturing method of sintered core and sintered core
JPS63134556A (en) Mn-zn base oxide magnetic material and manufacture
JPS6341852B2 (en)
JPS6177304A (en) Manufacture of mn-zn ferrite
GB875600A (en) Improvements relating to magnetic cores for use as memory elements
JPS6317775B2 (en)