JPS6313399B2 - - Google Patents

Info

Publication number
JPS6313399B2
JPS6313399B2 JP6449778A JP6449778A JPS6313399B2 JP S6313399 B2 JPS6313399 B2 JP S6313399B2 JP 6449778 A JP6449778 A JP 6449778A JP 6449778 A JP6449778 A JP 6449778A JP S6313399 B2 JPS6313399 B2 JP S6313399B2
Authority
JP
Japan
Prior art keywords
boron
carbon fiber
thin wire
diaphragm
fiber thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6449778A
Other languages
Japanese (ja)
Other versions
JPS54155824A (en
Inventor
Takeshi Isogai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Corp
Original Assignee
Toa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Electric Co Ltd filed Critical Toa Electric Co Ltd
Priority to JP6449778A priority Critical patent/JPS54155824A/en
Publication of JPS54155824A publication Critical patent/JPS54155824A/en
Publication of JPS6313399B2 publication Critical patent/JPS6313399B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Diaphragms For Electromechanical Transducers (AREA)

Description

【発明の詳細な説明】 本発明は、ボロン繊維強化合成樹脂製のスピー
カ振動板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a speaker diaphragm made of boron fiber reinforced synthetic resin.

従来、例えば特開昭52−2427号公報に開示され
ているように、振動板材料としてボロンを振動板
形状の金属基体に物理蒸着(PVD)や、化学蒸
着(CVD)などにより被着せしめたスピーカ振
動板や、特開昭51−104820号公報に開示されてい
るように、非金属繊維材に高弾性金属物質を被着
し、この繊維材を抄造あるいか圧縮して製造され
るスピーカ振動板が知られている。
Conventionally, as disclosed in JP-A-52-2427, for example, boron was deposited as a diaphragm material onto a diaphragm-shaped metal base by physical vapor deposition (PVD) or chemical vapor deposition (CVD). Speaker diaphragms, as disclosed in Japanese Patent Application Laid-Open No. 51-104820, speaker vibrations manufactured by coating a highly elastic metallic substance on a non-metallic fiber material and making or compressing this fiber material. The board is known.

そして、これらのスピーカ振動板では、比弾性
率E/ρ(E:ヤング率、ρ密度)を大きく、し
かも内部損失を適度に大きくし、スピーカの周波
数特性において高域を伸ばし、デイツプを減少さ
せるようにしているが、特性上十分満足できるも
のではなく、ボロン被膜の耐水性が良くないなど
機械的強度の点でも実用上問題が多いものであつ
た。
In these speaker diaphragms, the specific modulus of elasticity E/ρ (E: Young's modulus, ρ density) is increased, and the internal loss is appropriately increased to extend the high range and reduce the dip in the frequency characteristics of the speaker. However, the properties were not fully satisfactory, and there were many practical problems in terms of mechanical strength, such as poor water resistance of the boron coating.

本発明の目的は、上記の欠点を解消したうえ、
さらに、ボロンのもつ優秀な特性を最大限に利用
して、音響的に優れかつ製造あるいは使用上取扱
いが容易なスピーカ振動板の製造方法を提供しよ
うとするものである。
The purpose of the present invention is to eliminate the above-mentioned drawbacks and to
Furthermore, it is an object of the present invention to provide a method of manufacturing a speaker diaphragm that is acoustically excellent and easy to manufacture and handle by making full use of the excellent characteristics of boron.

一般に、金属振動板はヤング率Eは高いが密度
ρも大きいために比弾性率E/ρも余り大きくな
らない。
Generally, a metal diaphragm has a high Young's modulus E, but its density ρ is also large, so the specific elastic modulus E/ρ is not very large.

また、軽量なボロンを単にコーテイングしたり
積層したりすることによつて得られる比弾性率そ
の他の特性の改善にも限界がある。しかも、ボロ
ン皮膜の硬度は高く成形加工その他の二次加工が
しにくい。
Furthermore, there are limits to the improvement in specific elastic modulus and other properties that can be obtained by simply coating or laminating lightweight boron. Moreover, the hardness of the boron film is high and it is difficult to perform molding or other secondary processing.

そこで、本発明のスピーカ振動板の製造方法
は、カーボン繊維の導電性を利用して通電加熱し
ながら表面にボロン被膜を施こしたカーボン繊維
の細線を編成または織成した布にエポキシ樹脂を
含浸して加熱加圧下に成形加工したものである。
Therefore, the method for manufacturing a speaker diaphragm of the present invention involves impregnating an epoxy resin into a cloth made by knitting or weaving thin carbon fiber wires coated with boron on the surface while heating with electricity by utilizing the conductivity of carbon fibers. It is molded under heat and pressure.

すなわち、アクリル樹脂を800℃から1600℃で
加熱し炭素質としたカーボン繊維細線に直接通電
して加熱しながら水素ガスをキヤリアーとしてハ
ロゲン化ホウ素例えばBcl3を流すと、 2Bcl3+3H2→2B+6Hcl の反応によりボロンが遊離して、カーボン繊維細
線の表面にボロンが被着される。このような化学
蒸着のほかにイオンプレーテイング、スパツタリ
ング、真空蒸着により金属ボロンをカーボン繊維
細線上に被着せしめる方法もある。
In other words, when an acrylic resin is heated from 800℃ to 1600℃ and a thin carbon fiber wire made into a carbonaceous substance is heated by directly applying electricity to it while flowing a boron halide such as Bcl3 using hydrogen gas as a carrier, boron is generated by the reaction 2Bcl3 + 3H2 → 2B + 6Hcl. Boron is released and adhered to the surface of the carbon fiber thin wire. In addition to such chemical vapor deposition, there is also a method of depositing metallic boron on the carbon fiber thin wire by ion plating, sputtering, or vacuum deposition.

ボロンを被着せしめたカーボン繊維細線を所望
の形状に編成・織成しておき、これにエポキシ樹
脂を含浸して加熱加圧成形する。
Carbon fiber thin wires coated with boron are knitted and woven into a desired shape, impregnated with epoxy resin, and molded under heat and pressure.

このようにして得られたボロン繊維強化エポキ
シ樹脂振動板はカーボン繊維自体が高弾性材料で
軽量であり、さらに、超高弾性で軽量なボロンを
被覆したものであるかな、カーボン繊維のみの場
合の1.5倍の比弾性率が得られ、ボロンの使用に
より5%の重量増加で50%の剛性の増加が得られ
る優れた特性を示す。また金属振動板、例えばア
ルミ合金(ジエラルミン)振動板と比較すると30
%重量が軽減される。
The boron fiber-reinforced epoxy resin diaphragm obtained in this way is made of carbon fiber itself, which is a highly elastic material and is lightweight, and is coated with ultra-high elasticity and lightweight boron. The specific elastic modulus is 1.5 times higher, and the use of boron shows excellent properties such as a 50% increase in stiffness with a 5% increase in weight. Also, compared to a metal diaphragm, such as an aluminum alloy (dillerumin) diaphragm, the
% weight is reduced.

しかも、ボロンが脆性材料で破断しやすく、硬
度も高いところから、6〜8ミクロンのカーボン
繊維細線に10〜20ミクロンの被膜を施したボロン
のモノフイラメントを編織するものであるから、
振動板の形状に近似する形状にあらかじめ編織す
ることにより、加熱加圧成型によつて折角のボロ
ン被膜に破断を生じヤング率の低下をもたらすよ
うなこともない。
Moreover, since boron is a brittle material that breaks easily and has high hardness, it is made by weaving boron monofilament with a 10-20 micron coating on 6-8 micron carbon fiber thin wire.
By knitting and weaving it in advance into a shape that approximates the shape of the diaphragm, there is no possibility that the boron coating would be broken during heating and pressure molding, resulting in a decrease in Young's modulus.

さらに、全体をエポキシ樹脂で含浸するのでボ
ロン層の層間せん断強度も10〜11Kg/mm2と高くて
剥離するようなこともないし、湿気等に災いされ
ることもない。
Furthermore, since the entire structure is impregnated with epoxy resin, the interlayer shear strength of the boron layer is as high as 10 to 11 Kg/mm 2 , so there is no possibility of peeling or damage caused by moisture.

以上のように本発明によれば、カーボン繊維細
線はその導電性を利用して直接通電されることに
より、内部から加熱された反応し易い状態になる
から、その表面にボロンを極めて強固に被着させ
ることが出来るとともに、軽量で高弾性を有する
カーボン繊維と軽量で超高弾性を有するボロンと
により、極めて大きな比弾性率を得ることが出来
る。
As described above, according to the present invention, the carbon fiber thin wire is directly energized by utilizing its conductivity, so that it becomes heated from the inside and becomes susceptible to reaction, so its surface is coated with boron extremely firmly. It is possible to obtain an extremely high specific modulus of elasticity by using carbon fiber, which is lightweight and has high elasticity, and boron, which is lightweight and has ultra-high elasticity.

そして、極めて高弾性でヤング率の高い材料を
その特性を生かしつつ編織し、合成樹脂の含浸成
形加工を行つているので、内部損失の適度に高
く、従つて、スピーカ振動板としたときは、高域
が著しく伸長し、デイツプの少ない平坦な優れた
周波数特性が得られる。
Since we knit and weave a material with extremely high elasticity and a high Young's modulus while taking advantage of its properties, and impregnated and molded it with synthetic resin, it has a moderately high internal loss, so when used as a speaker diaphragm, The high frequency range is significantly extended, resulting in excellent flat frequency characteristics with little dip.

Claims (1)

【特許請求の範囲】[Claims] 1 カーボン繊維の細線に通電して加熱しなが
ら、物理蒸着または化学蒸着により前記カーボン
繊維細線の表面にボロンを被着せしめ、ボロン被
覆カーボン細線を編成・編織し、これにエポキシ
樹脂を含浸し、加熱下に加圧して成形加工するス
ピーカ振動板の製造方法。
1. Applying electricity to and heating the carbon fiber thin wire, depositing boron on the surface of the carbon fiber thin wire by physical vapor deposition or chemical vapor deposition, knitting and weaving the boron-coated carbon fiber thin wire, and impregnating this with epoxy resin, A method of manufacturing a speaker diaphragm by molding it under heat and pressure.
JP6449778A 1978-05-29 1978-05-29 Speaker vibrating plate and method of fabricating same Granted JPS54155824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6449778A JPS54155824A (en) 1978-05-29 1978-05-29 Speaker vibrating plate and method of fabricating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6449778A JPS54155824A (en) 1978-05-29 1978-05-29 Speaker vibrating plate and method of fabricating same

Publications (2)

Publication Number Publication Date
JPS54155824A JPS54155824A (en) 1979-12-08
JPS6313399B2 true JPS6313399B2 (en) 1988-03-25

Family

ID=13259888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6449778A Granted JPS54155824A (en) 1978-05-29 1978-05-29 Speaker vibrating plate and method of fabricating same

Country Status (1)

Country Link
JP (1) JPS54155824A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050651A (en) * 2015-08-31 2017-03-09 グローブライド株式会社 Flat speaker

Also Published As

Publication number Publication date
JPS54155824A (en) 1979-12-08

Similar Documents

Publication Publication Date Title
US3622283A (en) Tin-carbon fiber composites
JPS6146099A (en) Electromagnetic wave reflector
JPS6153418B2 (en)
DE3880312D1 (en) TITANIUM-ALUMINIDE COMPOSITES REINFORCED WITH SILICON CARBIDE.
CN110372408B (en) Ceramic fiber toughened CVD silicon carbide composite material and preparation method and application thereof
US3894677A (en) Method of preparing graphite reinforced aluminum composite
CN107109666A (en) The excellent coated steel sheet of adhesiveness and its manufacture method
CN110438457B (en) Modified diamond particles, modification method, application of modified diamond particles as reinforcing phase and obtained metal-based composite material
JPS6313399B2 (en)
Suzuki et al. Mechanical properties and metallography of aluminum matrix composites reinforced by the Cu-or Ni-plating carbon multifilament
CN108267812A (en) High-temperature resistant optical fiber with gradient-structure coat
CN110129726A (en) A kind of 3D glass hot-bending die and preparation method thereof with high-temperaure coating
US5221293A (en) Grinding or separating tool and method for producing the same
JPS57164947A (en) Manufacture of prepreg for carbon fiber reinforced metallic composite material
CN115584540A (en) Diamond wire saw with composite coating and preparation process thereof
JP3717235B2 (en) Fishing rod housing and method for manufacturing the same
JPS58107435A (en) Carbon fiber-reinforced metallic composite material
JPS60184652A (en) Manufacture of fiber-reinforced metal
JPS59208032A (en) Fiber reinforced composite aluminum material
JPS62207786A (en) Coating method for graphite material
EP0154814A2 (en) Substrates coated by plasma enhanced chemical vapor deposition, apparatus and process for their production
US3799830A (en) Method of producing boron carbide film laminates
CN112048741A (en) Si3N4Preparation method and application of/Ni titanium alloy blade tip protective coating
JP2019029674A (en) Electromagnetic wave shielding material and manufacturing method thereof
CN115503299B (en) Metal/carbon composite material plate and preparation method thereof