JPS60184652A - Manufacture of fiber-reinforced metal - Google Patents

Manufacture of fiber-reinforced metal

Info

Publication number
JPS60184652A
JPS60184652A JP3827084A JP3827084A JPS60184652A JP S60184652 A JPS60184652 A JP S60184652A JP 3827084 A JP3827084 A JP 3827084A JP 3827084 A JP3827084 A JP 3827084A JP S60184652 A JPS60184652 A JP S60184652A
Authority
JP
Japan
Prior art keywords
metal
fiber
fibers
reaction vessel
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3827084A
Other languages
Japanese (ja)
Other versions
JPH0429725B2 (en
Inventor
Takashi Osaki
孝 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP3827084A priority Critical patent/JPS60184652A/en
Publication of JPS60184652A publication Critical patent/JPS60184652A/en
Publication of JPH0429725B2 publication Critical patent/JPH0429725B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture fiber-reinforced metal excellent in adhesive strength between the metal and the fiber by putting the fiber for reinforcement in a vacuum reaction vessel, supplying the vapor of a specified metal compound and attaching the metal to the fiber through decomposing the metal compound with low temp. plasma. CONSTITUTION:Fiber 6 such as single fiber of glass, boron, carbon, silicon carbide, silicon nitride, alumina, boron carbide, steel, tungsten, etc. and whisker or fabric made of those and nonwoven fabric is set in a reaction vessel 3 and the vessel is exhausted and vacuumed. Then, the vapor 7 of a halide such as chlorides of Al, Mg, Ti and those alloys and reactive gas such as H2 or innert gas 8 such as Ar and He are introduced in the reaction vessel 3. Simultaneously, glow discharge is generated in the reaction vessel 3 through electrically conducting a high frequency coil 5 and the metal compound is isolated by the plasma to attach the metal to the fiber 6. The metal tightly adheres on the fiber 6 which is undamaged by the metal and the fiber reinforced metal excellent in strength at high temp. and in elasticity is obtained.

Description

【発明の詳細な説明】 本発明は繊維強化金属(以下FRMと略す)の製造方法
に関する。更に詳しくはプラズマ化学蒸着(以下プラズ
マCVDと略す)によって繊維束に母材金属を付与する
ことに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing fiber reinforced metal (hereinafter abbreviated as FRM). More particularly, the present invention relates to applying a matrix metal to a fiber bundle by plasma chemical vapor deposition (hereinafter abbreviated as plasma CVD).

本発明の目的は、高強度、高弾性で靭性を示し、高温に
おいてもその性能が保持される高温構造材料として、エ
ンジン等への応用が期待され、また導電材料や、摺動材
料としてもすぐれた特性をもつ、繊維強化金属材料を製
造する方法を提供することである。
The purpose of the present invention is to provide a high-temperature structural material that exhibits high strength, high elasticity, and toughness, and maintains its performance even at high temperatures, and is expected to be applied to engines, etc., and is also excellent as a conductive material and a sliding material. It is an object of the present invention to provide a method for manufacturing a fiber reinforced metal material having such characteristics.

繊維強化金属の製造方法として、従来いろいろなプロセ
スが提案されてきている。例えば、繊維を金属溶液の中
に浸漬する方法(溶浸法)、繊維を金属箔や金属板とサ
ンドイッチ状にして加熱加圧して一体化する方法(サン
ドインチ法)、繊維と金属粉を混ぜ合わせた後加熱加圧
して一体化する方法(粉末冶金法)、金属粉をプラズマ
やガス炎で熔かしながら繊維に吹きつけた後、これを加
熱加圧し一体化する方法(溶射法)あるいは電気メッキ
、化学メッキ、真空蒸着、イオン・ブレーティング、ス
パッタリング、化学蒸着等によって繊維を金属皮膜で包
んだ後、これを加熱加圧し、一体化する方法(電気メッ
キ、化学メッキ、真空蒸着、イオン・ブレーティング、
スパッタリング、化学蒸着等によるこれまでの方法を総
称して、ブレーティング法とする。)等が提案されてい
る。しかし、まだ充分な性能を発揮するFRMを製造す
るには到っていない。繊維が金属母材を理想的に補強す
るには、(1)繊維が金属と均一に混合され、(2)繊
維と金属との密着が充分で、(3)製造工程中で繊維が
化学変化や機械的損傷を受けてその性能を低下させない
ようにすることが必要である。
Various processes have been proposed as methods for manufacturing fiber-reinforced metals. For example, methods include immersing fibers in a metal solution (infiltration method), sandwiching fibers with metal foil or metal plate and heating and pressurizing them to integrate them (sandinch method), and mixing fibers and metal powder. A method in which metal powder is melted with plasma or gas flame and then heated and pressurized to integrate it (powder metallurgy method), a method in which metal powder is melted with plasma or gas flame and then blown onto the fibers, and then heated and pressurized to integrate it (thermal spray method). A method in which fibers are wrapped in a metal film by electroplating, chemical plating, vacuum deposition, ion blating, sputtering, chemical vapor deposition, etc., and then heated and pressurized to integrate them (electroplating, chemical plating, vacuum deposition, ion・Brating,
Conventional methods such as sputtering and chemical vapor deposition are collectively referred to as the brating method. ) etc. have been proposed. However, it has not yet been possible to manufacture an FRM that exhibits sufficient performance. In order for the fibers to ideally reinforce the metal matrix, (1) the fibers must be uniformly mixed with the metal, (2) there must be sufficient adhesion between the fibers and the metal, and (3) the fibers must undergo chemical changes during the manufacturing process. It is necessary to prevent deterioration of its performance due to damage or mechanical damage.

しかるに、これまで提案されている方法においては前記
(1)〜(3)の条件が充分に満足されていないため、
高性能のFRMが得られるに到っていない。例えば、溶
浸法においては活性な金属は繊維と反応を起し、不活性
な金属は繊維と濡ないため均一に混合されず、また密着
も良くない。サンドインチ法、粉末冶金法、溶射法では
繊維を金属中に均一に配置することが難かしく、′また
加熱加圧時に繊維が損傷を受けやすい。ブレーティング
法は繊維一本一本を金属で被覆した後、これを加熱加圧
した後一体化するので繊維を金属中に均一に配置でき、
加熱加圧時繊維が受ける損傷も少ないので、最も好まし
い方法といえる。
However, in the methods proposed so far, the conditions (1) to (3) above are not fully satisfied.
A high-performance FRM has not yet been obtained. For example, in the infiltration method, active metals react with fibers, and inert metals do not wet the fibers, so they are not mixed uniformly and do not have good adhesion. In the sand inch method, powder metallurgy, and thermal spraying methods, it is difficult to arrange fibers uniformly in the metal, and the fibers are easily damaged when heated and pressurized. In the brating method, each fiber is coated with metal, then heated and pressed, and then integrated, so the fibers can be uniformly arranged in the metal.
This method can be said to be the most preferable because it causes less damage to the fibers during heating and pressing.

しかしながら、以下に述べるようにブレーティング法に
おいても、まだ欠点が多い。まず電気メッキ、化学メッ
キにおいては、FRMの代表的母材であるアルミニウム
やマグネシウムを付与することが難かしい(これらの金
属は活性が高いため、析出時に水又は酸素と反応して酸
化物となってしまう)。化学蒸着は金属76合物を熱分
解させるため、高温を必要とし、そのために、繊維−金
属間の反応により、繊維が劣化してしまうことが往々に
しである。真空蒸着、スパッタリング、イオンブレーテ
ィングは各々10−’ 〜10−” Pa、I F” 
I O−” Pa、10−”、 −I Pa前後と高真
空で金属を被覆するため、金属蒸気(原子)の平均自由
工程が長いので繊維の片面に金属が多く付着してしまっ
たり繊維束の内側の繊維が被覆されなかったりする。し
たがって、この方法で金属を繊維に被覆し、これを加熱
加圧して得られたFRMは繊維の金属中への分散が部分
的に不均一である場合が多い。
However, as described below, the brating method still has many drawbacks. First, in electroplating and chemical plating, it is difficult to apply aluminum and magnesium, which are typical base materials of FRM (because these metals are highly active, they react with water or oxygen during deposition and become oxides). ). Chemical vapor deposition requires high temperatures to thermally decompose metal 76 compounds, and as a result, fibers often deteriorate due to reactions between fibers and metals. Vacuum evaporation, sputtering, and ion blating are each 10-' to 10-"Pa, IF"
Since the metal is coated in a high vacuum around IO-"Pa, 10-", and -IPa, the mean free path of the metal vapor (atoms) is long, resulting in a large amount of metal adhering to one side of the fiber or fiber bundles. The inner fibers may not be coated. Therefore, in the FRM obtained by coating metal on fibers using this method and heating and pressurizing the fibers, the dispersion of the fibers into the metal is often partially non-uniform.

本発明は、このようなFRM製造上の欠点を除去し、前
記(1)〜(3)の条件を満足し、高性能のFRMの製
造方法を提供する。すなわち、本発明は、プラズマCV
Dによって、金属化合物を低温で分解し、繊維上に母材
となる金属を伺与することによって高性能なFRMを得
るに適したI”RM用プリフォームを提供するものであ
る。
The present invention eliminates such drawbacks in FRM manufacturing, satisfies the conditions (1) to (3) above, and provides a method for manufacturing a high-performance FRM. That is, the present invention provides plasma CV
By D, a preform for I''RM suitable for obtaining a high-performance FRM is provided by decomposing a metal compound at a low temperature and depositing a base metal on the fiber.

本発明における繊維とは、ガラス、硼素、炭素、炭化ケ
イ素、窒化ケイ素、アルミナ、炭化硼素等の無機物ある
いはスチール、タングステン等の金属からなるモノフィ
ラメント、トウ、ウィスカー−あるいはこれらかρ、イ
七へれる織物、不織布、紙等である。
In the present invention, fibers include monofilaments, tows, whiskers, etc. made of inorganic materials such as glass, boron, carbon, silicon carbide, silicon nitride, alumina, and boron carbide, or metals such as steel and tungsten. These include woven fabrics, non-woven fabrics, and paper.

本発明においては、A1、Mg、Ti等の軽金属、Zn
、Sn、Pb等の低融点金属鉄族(Fe、 Ni、 G
o)、Cd、’Mn、Cu等の重金属。
In the present invention, light metals such as A1, Mg, Ti, Zn
, Sn, Pb and other low-melting point metals of the iron group (Fe, Ni, G
o) Heavy metals such as Cd, 'Mn, Cu, etc.

Au、Ag、Pt、Ir、Os、Pd等の貴金属、Ta
、W、Nb、Mo、■、Cr等の高融点金属、Si、G
e等の半導体金属等あらゆる金属およびこれらの合金を
FRMの母材とすることが可能である。特にA1.Mg
、Tiおよびその合金を母材とするものは優れた性能を
有するF RMとなる。これらの金属は有機金属化合物
(アルキル金属、アリル金属、π−コンプレックス、カ
ルボニル金属等)または、無機金属化合物(ハロゲン化
物、水素化物等)の熱分解反応によって繊維表面に沈着
せしめられるが、ハロゲン化物、特に塩化物が、取り扱
い易さ、経済性、FRMの性能の点で好ましい。
Noble metals such as Au, Ag, Pt, Ir, Os, Pd, Ta
, W, Nb, Mo, ■, high melting point metals such as Cr, Si, G
It is possible to use all kinds of metals such as semiconductor metals such as E and alloys thereof as the base material of the FRM. Especially A1. Mg
, Ti, and its alloys as base materials result in FRMs with excellent performance. These metals are deposited on the fiber surface by thermal decomposition reactions of organometallic compounds (alkyl metals, allyl metals, π-complexes, carbonyl metals, etc.) or inorganic metal compounds (halides, hydrides, etc.). In particular, chloride is preferred in terms of ease of handling, economy, and FRM performance.

以下、第1図に従って、本発明の詳細な説明する。反応
槽3内に繊維6を配置し、これを真空排気する。次に反
応槽3内に金属化合物蒸気7と反応性ガス8(または不
活ガス)を導入し、高周波コイル5より高周波を印加す
ることによって、槽内にグロー放電を起し。
Hereinafter, the present invention will be explained in detail with reference to FIG. Fibers 6 are placed in reaction tank 3, and this is evacuated. Next, a metal compound vapor 7 and a reactive gas 8 (or inert gas) are introduced into the reaction tank 3, and a high frequency is applied from the high frequency coil 5 to generate a glow discharge in the tank.

金属化合物をプラズマ解離させ、繊維上に金属を堆積さ
せる。プラズマ発生時の全ガス分圧は1.−10’Pa
好ましくは10〜103Paが良い。反応性ガスとして
は金属化合物の分解を促進するものどして通常II2が
用いられ、不活性ガスとしては析出した金属と反応を起
さないHe、Ar等希ガスが用いられる。
Plasma dissociates the metal compound and deposits the metal onto the fiber. The total gas partial pressure at the time of plasma generation is 1. -10'Pa
The pressure is preferably 10 to 103 Pa. As the reactive gas, II2 is usually used because it accelerates the decomposition of the metal compound, and as the inert gas, a rare gas such as He or Ar that does not react with the deposited metal is used.

高周波電極は反応槽の外でも内でも良いが、電極(また
はコイル)の汚染等の点から外部に配置したものがより
好ましい。高周波の周波数も数1・K11z〜数G11
zまで、通常、高周波として用いられる周波数で良い。
The high-frequency electrode may be placed outside or inside the reaction tank, but it is more preferable to place it outside from the viewpoint of contamination of the electrode (or coil). The frequency of high frequency is also from number 1 K11z to number G11
Up to z, any frequency that is normally used as a high frequency may be used.

金属の堆積速度を高くするには繊維を加熱することが有
効である。繊維の加熱には一般的なヒーターを使用する
が、炭素繊維や金属繊維等、導電性繊維に対しては、繊
維に直接通電して、繊維を昇温させることかできる。透
明な反応槽においては、赤外線やレーザーによる加熱も
可能である。繊維上の金属堆積速度は上記全ガス分圧、
各ガスの分圧(流量)高周波入力、温度によって支配さ
れる。堆積速度をあまり大きくすると繊維束表層部のみ
に金属が堆積し、繊維束内部の繊維が金属被覆されない
ことになる。したがって、ガスの拡散速度と繊維への金
属堆積速度を、コントロールし、最も生産効率が高く、
最も均一被覆できる条件にて金属を被覆することが必要
であるが、これば、個々の金属化合物により条件が異な
る。
Heating the fibers is effective in increasing the metal deposition rate. A general heater is used to heat the fibers, but for conductive fibers such as carbon fibers and metal fibers, the temperature of the fibers can be raised by directly applying electricity to the fibers. In a transparent reaction tank, heating using infrared rays or laser is also possible. The metal deposition rate on the fiber is the total gas partial pressure above,
The partial pressure (flow rate) of each gas is governed by the high frequency input and temperature. If the deposition rate is too high, metal will be deposited only on the surface layer of the fiber bundle, and the fibers inside the fiber bundle will not be coated with metal. Therefore, the gas diffusion rate and the metal deposition rate on the fibers can be controlled to achieve the highest production efficiency.
It is necessary to coat the metal under conditions that allow for the most uniform coating, but the conditions vary depending on the individual metal compound.

プラズマ中における反応については、色々な反応が考え
られるが、金属化合物が金属として析出する反応は例え
は次のようなものである。
Various reactions can be considered as reactions in plasma, and examples of reactions in which a metal compound precipitates as a metal are as follows.

・有機金属 R−M+R−M→R−R+2M(R:アル
キル基)(M:金属) 2R−M+H2→2RH+2M ・無機化合物 M−X十M−X−)X2+2M(X:ハ
ロゲン) 2M−’X+l+、→2 HX + 2 Mこのように
して得られた金属被覆繊維は繊維・本・本が金属で均一
に被覆されているFRM用プリプリフォームるので、こ
4しを積層して、加熱加圧し、一体化すると、優れた機
械的性能をfrするF RMが得られる。
・Organic metal R-M+RM→R-R+2M (R: alkyl group) (M: metal) 2R-M+H2→2RH+2M ・Inorganic compound M-X0M-X-)X2+2M (X: halogen) 2M-'X+l+ , → 2 HX + 2 M The metal-coated fiber thus obtained is a pre-preform for FRM in which the fibers, books, and books are uniformly coated with metal, so the fibers are laminated and heated and pressed. , when integrated, an F RM with excellent mechanical performance is obtained.

合金組成の母材の1”、 R,Mを得るには、二種以上
の金属を同時に析出さ仕るか、あるいは一種(または丁
種以−に)の金属を析出させた後他種の金属を析出させ
、加熱加圧による一体化時に合金化させる。
To obtain an alloy composition of 1'', R, M of the base material, two or more metals are deposited simultaneously, or one metal (or more than one metal) is deposited and then the other metal is deposited. Metals are precipitated and alloyed when integrated by heating and pressurizing.

実施例1゜ 第11シ1の装置i?1において1反応槽中心部に平均
面f¥:12μII+、500本より成る長さ20C1
11の炭化珪素繊維(+−ウ)を配した。この反応槽を
l Paまで真空排気した後Arガスを導入し、103
Paとなるようにした。この反応樽柘外部よ41 ’h
l+執し、繊おト濡度をRO”Cと17た。次に高周波
電極に13.5MHz、0.3KWの電力を与え、反応
槽内にプラズマを発生させた。この雰囲気にA 1. 
(CH3’) 3 を含むArガス(Al(CH3)3
濃度1 、33111g/cc)を100cc/min
、 H2ガスを120cc/minで導入し、全ガス圧
1.5XIO’Paの条件下で15分間保持し、プラズ
マCVDを行った。
Example 1゜11th Si1 device i? In 1, the average surface f¥: 12μII+, length 20C1 consisting of 500 lines is placed at the center of 1 reaction tank.
11 silicon carbide fibers (+-U) were arranged. After evacuating this reaction tank to 1 Pa, Ar gas was introduced, and 103
Pa. This reaction barrel Tsugai 41'h
Then, the fiber wetness was set to RO''C and 17.Next, a power of 13.5 MHz and 0.3 KW was applied to the high frequency electrode to generate plasma in the reaction tank.A1.
(CH3') 3 containing Ar gas (Al(CH3)3
Concentration 1, 33111g/cc) at 100cc/min
, H2 gas was introduced at 120 cc/min, the total gas pressure was maintained for 15 minutes under conditions of 1.5XIO'Pa, and plasma CVD was performed.

得られた炭素繊維は一本当り約3μn+のA1膜で被覆
されていた。このA1被覆炭素繊維を積層して、10”
−1Paの真空下、550℃、500kg/c♂にて約
10分間加熱加圧して17RMを得た。このFRMは、
繊維体積含有率44%で引張強度70 kg/+nn+
2引張弾性率11 、 OOOkg/nwn”の性能を
有していた。
The obtained carbon fibers were each coated with an A1 film of about 3 μn+. This A1 coated carbon fiber is laminated to form a 10"
17RM was obtained by heating and pressurizing at 550° C. and 500 kg/c♂ for about 10 minutes under a vacuum of −1 Pa. This FRM is
Tensile strength 70 kg/+nn+ with fiber volume content 44%
2 tensile modulus of 11, OOOkg/nwn''.

実施例2.゛ 実施例1の方法に準じ、平均直径7μn1.3.000
本より成る長さ20cmの炭素繊維(1−ウ)に繊維温
度350℃、高周波電極13.5MHz、0.5KWの
条件下で全ガス圧3X]、03 Paとなるよう、Al
Cl3.5jC14,112、Arを導入して、約30
分間プラズマCV Dを行った。
Example 2.゛According to the method of Example 1, the average diameter is 7μn1.3.000
Carbon fiber (1-U) with a length of 20 cm was coated with aluminum so that the total gas pressure was 3
By introducing Cl3.5jC14,112 and Ar, about 30
Plasma CVD was performed for 1 minute.

この結果、炭素繊維表面にA190%、5ilO%の組
成の厚さ約2μmのA1合金膜が形成された。このA1
合金被覆炭素繊維を積層し、10−”Pa、450℃、
800 kg/cntで成形して得られたFRMは繊維
体積含有率41%、引張強度105 kg/nun” 
、引張弾性率14 、 O’OOkg/nun2の性能
を有していた。
As a result, an A1 alloy film with a thickness of about 2 μm and having a composition of 90% A1 and 5ilO% was formed on the surface of the carbon fiber. This A1
Alloy-coated carbon fibers were laminated, 10-”Pa, 450°C,
The FRM obtained by molding at 800 kg/cnt has a fiber volume content of 41% and a tensile strength of 105 kg/nun.
, tensile modulus of 14, and O'OOkg/nun2.

実施例3゜ 実施例1の方法に準じ、直径100μm1のボロンフィ
ラメン1〜10本を配した反応槽を加熱し、繊維温度4
00℃として、高周波コイルより400Ktlz、0.
5KWの電力を与えつつ、全ガス圧5.X102Pa、
(TiC14、+−12、Ar)にて、プラズマCVD
を行い、各フィラメントに25μmのT1膜を施した。
Example 3 According to the method of Example 1, a reaction tank containing 1 to 10 boron filaments each having a diameter of 100 μm was heated to a fiber temperature of 4.
00°C, 400Ktlz from the high frequency coil, 0.
While applying 5KW of power, the total gas pressure is 5. X102Pa,
(TiC14, +-12, Ar), plasma CVD
A 25 μm T1 film was applied to each filament.

このTi被覆ボロンフィラメントはB / T i F
 RMにした時、130 kg/nun”の引張強度を
示した。
This Ti coated boron filament is B/TiF
When made into RM, it showed a tensile strength of 130 kg/nun''.

実施例4゜ 直径o、i〜0.5μm11、長さ1〜100μm11
の炭素繊維ウィスカー集合体を0.1g反応槽内に配し
、繊維温度300℃、高周波コイル13.5MHz、1
.OKWの条件下で全ガス圧5 X 103Pa(Al
Cl3 、 Mg(CII3)3、H2、Ar)にてプ
ラズマCVDを行った。
Example 4゜Diameter o, i~0.5μm11, length 1~100μm11
0.1g of carbon fiber whisker aggregate was placed in a reaction tank, the fiber temperature was 300°C, the high frequency coil was 13.5MHz, 1
.. Under OKW conditions, the total gas pressure is 5 x 103 Pa (Al
Plasma CVD was performed using Cl3, Mg(CII3)3, H2, Ar).

この結果、ウィスカー0 、1 g’tt L、0.5
gのAl−Mg合金(Mg4wt%)を被覆することが
できた。このA1合金被覆ウィスカーより引張強度42
 kg/+mu2の等方性F RMを得ることができた
As a result, whiskers 0, 1 g'tt L, 0.5
g of Al-Mg alloy (Mg4wt%) could be coated. This A1 alloy coated whisker has a tensile strength of 42
An isotropic F RM of kg/+mu2 could be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による一実施例を示す工程図である。1
は真空ポンプ、2は真空計、3は反応槽、4はヒーター
、5は高周波電極またはコイル、6は繊維、7は金属化
合物蒸気発生装置、8は反応性または不活性ガスボンベ
。 特許出願人 日機装株式会社
FIG. 1 is a process diagram showing an embodiment according to the present invention. 1
is a vacuum pump, 2 is a vacuum gauge, 3 is a reaction tank, 4 is a heater, 5 is a high frequency electrode or coil, 6 is a fiber, 7 is a metal compound vapor generator, and 8 is a reactive or inert gas cylinder. Patent applicant Nikkiso Co., Ltd.

Claims (1)

【特許請求の範囲】 °(1)低温プラズマ中で金属化合物を分解し、繊維上
に母材となる金属を付与することを特徴とする繊維強化
金属の製造方法。 (2)母材金属が、A1.Mg、Tiのいずれかを主と
する合金であることを特徴とする特許請求範囲第1項に
記載の繊維強化金属の製造方法。 (3)金属化合物がハロゲン化物である特許請求範囲第
1項に記載の繊維強化金属の製造方法。
[Claims] (1) A method for producing a fiber-reinforced metal, characterized in that a metal compound is decomposed in low-temperature plasma and a metal serving as a base material is applied onto the fibers. (2) The base metal is A1. The method for producing a fiber-reinforced metal according to claim 1, wherein the alloy is an alloy mainly containing either Mg or Ti. (3) The method for producing a fiber-reinforced metal according to claim 1, wherein the metal compound is a halide.
JP3827084A 1984-02-29 1984-02-29 Manufacture of fiber-reinforced metal Granted JPS60184652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3827084A JPS60184652A (en) 1984-02-29 1984-02-29 Manufacture of fiber-reinforced metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3827084A JPS60184652A (en) 1984-02-29 1984-02-29 Manufacture of fiber-reinforced metal

Publications (2)

Publication Number Publication Date
JPS60184652A true JPS60184652A (en) 1985-09-20
JPH0429725B2 JPH0429725B2 (en) 1992-05-19

Family

ID=12520620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3827084A Granted JPS60184652A (en) 1984-02-29 1984-02-29 Manufacture of fiber-reinforced metal

Country Status (1)

Country Link
JP (1) JPS60184652A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176662A (en) * 1986-01-30 1987-08-03 Nikkiso Co Ltd Metallic compound coated graphite whisker
US4782884A (en) * 1987-02-04 1988-11-08 General Electric Company Method for continuous fabrication of fiber reinforced titanium-based composites
US4786566A (en) * 1987-02-04 1988-11-22 General Electric Company Silicon-carbide reinforced composites of titanium aluminide
US5211776A (en) * 1989-07-17 1993-05-18 General Dynamics Corp., Air Defense Systems Division Fabrication of metal and ceramic matrix composites
US6136389A (en) * 1997-12-19 2000-10-24 Amt Holdings, Inc. Preparation of metal coatings
US6426126B1 (en) 1997-12-19 2002-07-30 Amt Holdings, Inc. Preparation of metal coatings

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176662A (en) * 1986-01-30 1987-08-03 Nikkiso Co Ltd Metallic compound coated graphite whisker
JPH0556230B2 (en) * 1986-01-30 1993-08-19 Nikkiso Co Ltd
US4782884A (en) * 1987-02-04 1988-11-08 General Electric Company Method for continuous fabrication of fiber reinforced titanium-based composites
US4786566A (en) * 1987-02-04 1988-11-22 General Electric Company Silicon-carbide reinforced composites of titanium aluminide
US5211776A (en) * 1989-07-17 1993-05-18 General Dynamics Corp., Air Defense Systems Division Fabrication of metal and ceramic matrix composites
US6136389A (en) * 1997-12-19 2000-10-24 Amt Holdings, Inc. Preparation of metal coatings
US6426126B1 (en) 1997-12-19 2002-07-30 Amt Holdings, Inc. Preparation of metal coatings

Also Published As

Publication number Publication date
JPH0429725B2 (en) 1992-05-19

Similar Documents

Publication Publication Date Title
US5187021A (en) Coated and whiskered fibers for use in composite materials
JP4230032B2 (en) Method for forming metal matrix fiber composite
US4132828A (en) Assembly of metal-coated carbon fibers, process for production thereof, and method for use thereof
US3860443A (en) Graphite composite
US3622283A (en) Tin-carbon fiber composites
US4859503A (en) Process for coating carbon fibers with a carbide, and carbon fibers thus coated
US4955135A (en) Method of making matrix composites
JPS6169448A (en) Carbon fiber reinforced metal and manufacture thereof
US7384668B2 (en) CCVD method for producing tubular carbon nanofibers
US3368914A (en) Process for adherently depositing a metal carbide on a metal substrate
US4929513A (en) Preform wire for a carbon fiber reinforced aluminum composite material and a method for manufacturing the same
Aggour et al. Thin coatings on carbon fibers as diffusion barriers and wetting agents in Al composites
US4481257A (en) Boron coated silicon carbide filaments
Kieschke et al. Sputter deposited barrier coatings on SiC monofilaments for use in reactive metallic matrices—I. Optimisation of barrier structure
JPH0770668A (en) Metal matrix composite material
US5824367A (en) Method for the deposition of diamond film on an electroless-plated nickel layer
JPS60184652A (en) Manufacture of fiber-reinforced metal
US4737382A (en) Carbide coatings for fabrication of carbon-fiber-reinforced metal matrix composites
US3556837A (en) Composite and method of making same
JP2830051B2 (en) Method for producing preform for carbon fiber reinforced metal composite material
JPH0643248B2 (en) Method for producing transition metal boride fiber
JP4234681B2 (en) Resistance heating boat manufacturing method
JPH04333659A (en) Silicon carbide coating method
EP0586758A1 (en) Hybrid reinforcements for high temperature composites and composites made therefrom
CA1070142A (en) Superalloy composite structure

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term