JPS6313316A - Compound for semiconductor porcelain capacitor - Google Patents

Compound for semiconductor porcelain capacitor

Info

Publication number
JPS6313316A
JPS6313316A JP61156239A JP15623986A JPS6313316A JP S6313316 A JPS6313316 A JP S6313316A JP 61156239 A JP61156239 A JP 61156239A JP 15623986 A JP15623986 A JP 15623986A JP S6313316 A JPS6313316 A JP S6313316A
Authority
JP
Japan
Prior art keywords
mol
dielectric constant
moles
composition
strontium titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61156239A
Other languages
Japanese (ja)
Inventor
原田 芳次
寛 田中
石黒 武朗
若林 俊克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP61156239A priority Critical patent/JPS6313316A/en
Publication of JPS6313316A publication Critical patent/JPS6313316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体磁器コンデンサー用組成物に関し、特に
チタン酸ストロンチウムを主成分とし、これに特定の添
加剤を加えた、誘電率、絶縁抵抗等に優れた粒界絶縁型
の半導体磁器コンデンサー用組成物に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a composition for semiconductor ceramic capacitors, in particular, compositions containing strontium titanate as a main component and specific additives added thereto, which have dielectric constant, insulation resistance, etc. The present invention relates to a grain boundary insulated semiconductor ceramic capacitor composition with excellent properties.

[発明が解決しようとする問題点コ チタン酸ストロンチウム(Sr Ti 03 )系半導
体磁器コンデンサーは見掛は比誘電率が大きく、誘電体
損失も比較的小さく、またチタン酸バリウム(Ba T
i 03 )系半導体磁器コンデンサーと比べ温度特性
が良好なため、半導体磁器コンデンサーとして広く使用
されている。かかる見地から、チタン酸ストロンチウム
にチタン酸カルシウムを固溶させた半導体磁器組成物に
関する研究は種々なされており、例えば特開昭54−1
4665号公報、特開昭57−39520号公報、特開
昭58−21312号公報等に記載の発明が提案されて
いる。これらはチタン酸ストロンチウムとチタン酸カル
シウムの固溶体に、半導体化剤としての五酸化ニオブ、
酸化ランタン等を用いるもの、更には二酸化マンガン、
酸化第二銅等を添加するものであるが、いずれも誘電率
の温度特性、耐電圧の向上を主目的としており、誘電率
を見た場合、充分に満足するものではなかった。
[Problems to be Solved by the Invention Strontium cotitanate (Sr Ti 03 )-based semiconductor ceramic capacitors have an apparent large dielectric constant and relatively small dielectric loss;
It is widely used as a semiconductor ceramic capacitor because it has better temperature characteristics than the i 03 ) type semiconductor ceramic capacitor. From this point of view, various studies have been conducted on semiconductor ceramic compositions in which calcium titanate is dissolved in strontium titanate.
Inventions described in JP-A-4665, JP-A-57-39520, JP-A-58-21312, etc. have been proposed. These are solid solutions of strontium titanate and calcium titanate, niobium pentoxide as a semiconducting agent,
Those using lanthanum oxide, etc., as well as manganese dioxide,
Although cupric oxide and the like are added, the main purpose of all of them is to improve the temperature characteristics of the dielectric constant and the withstand voltage, and when looking at the dielectric constant, they are not fully satisfactory.

ところで、近年、機器の小形化に伴°い、さらに大容量
のコンデンサーが望まれる状況にある。粒界絶縁型コン
デンサーの容量を大きくするには結晶粒を大きくする必
要があり、通常50μm以上に成長させるのが望ましい
とされている。
Incidentally, in recent years, as devices have become smaller, capacitors with even larger capacities are desired. In order to increase the capacity of a grain boundary insulated capacitor, it is necessary to increase the size of the crystal grains, and it is generally desirable to grow them to a size of 50 μm or more.

しかし、結晶粒が大きくなると、単位面積当りの粒界層
が占める割合が小さくなり、絶縁層の形成が十分でない
ため、見掛は誘電率は大きくなるが絶縁抵抗が低い等の
問題があり、絶縁処理に工夫を要する。
However, as the crystal grains become larger, the proportion of the grain boundary layer per unit area decreases, and the formation of an insulating layer is insufficient, resulting in problems such as a low insulation resistance, although the apparent dielectric constant increases. Requires some ingenuity in insulation treatment.

本発明は、かかる従来問題点に鑑み、誘電率を一段と向
上させると共に、絶縁抵抗、誘電体損失等のコンデンサ
ー特性に優れた粒界絶縁型コンデンサーを製造し得る半
導体磁器コンデンサー用組成物を提供することを目的と
する。
In view of these conventional problems, the present invention provides a composition for semiconductor ceramic capacitors that can further improve the dielectric constant and produce grain-boundary insulated capacitors that have excellent capacitor properties such as insulation resistance and dielectric loss. The purpose is to

[問題点を解決するための手段] 本発明者等は、上記目的に従って、チタン酸ストロンチ
ウム系半導体磁器コンデンサーの改善のため、チタン酸
ストロンチウムにチタン酸カルシウムを固溶させた系に
ついて種々検討した結果、五酸化ニオブを半導体化剤と
し、これに二酸化マンガンと酸化第二銅および/または
三酸化ビスマスを特定量添加した半導体!1器組成物が
結晶粒を成長させることを見出し、この磁器組成物を焼
結後、その磁器表面に絶縁化剤を塗布し、粒界層を熱拡
散することにより、誘電率と絶縁抵抗は大きく、しかも
誘電体損失の小さい優れた半導体磁器コンデンサーが青
られることが判明し、本発明に至った。
[Means for Solving the Problems] In accordance with the above objectives, the present inventors have conducted various studies on systems in which calcium titanate is dissolved in strontium titanate in order to improve strontium titanate-based semiconductor ceramic capacitors. , a semiconductor made by using niobium pentoxide as a semiconductor agent and adding specific amounts of manganese dioxide, cupric oxide and/or bismuth trioxide! After sintering this porcelain composition, we applied an insulating agent to the porcelain surface and thermally diffused the grain boundary layer, thereby improving the dielectric constant and insulation resistance. It was discovered that an excellent semiconductor porcelain capacitor that is large and has low dielectric loss can be developed, leading to the present invention.

すなわち本発明は、チタン酸ストロンチウム(Sr T
i 03 ) 99.9〜87,5モル、チタン酸カル
シウム(Ca ’r+ 03 )  O,t 〜12,
5モルからなる合計100モルに対し、五酸化ニオブ(
Nb205)0.02〜1.00−Eル、二酸化マンガ
ン(Mn 02 )0.10〜1.00−Eル、酸化第
二銅(Cub)0.01〜0.85モルおよび/または
三酸化ビスマス(B1203 )  0.01〜0.5
0モルを添加してなる半導体磁器コンデンサー用組成物
にある。
That is, the present invention provides strontium titanate (SrT
i 03 ) 99.9-87.5 mol, calcium titanate (Ca'r+ 03 ) O,t ~12,
Niobium pentoxide (
Nb205) 0.02-1.00-E, manganese dioxide (Mn02) 0.10-1.00-E, cupric oxide (Cub) 0.01-0.85 mol and/or trioxide Bismuth (B1203) 0.01-0.5
There is a composition for a semiconductor ceramic capacitor in which 0 mol is added.

本発明においては、上述のように、チタン酸ストロンチ
ウム99,9〜87,5モル、チタン酸カルシウム0.
1〜12.5モルの合計100モルに対して、半導体化
剤としての五酸化ニオブ0.02〜1.00モル配合し
たものを半導体磁器組成物の主成分とし、これに二酸化
マンガン0.10〜1.00モルと酸化第二銅0.01
〜0.85モルおよび/または三酸化ビスマス0.01
〜0.50モルを添加することを特徴とするものである
In the present invention, as described above, 99.9 to 87.5 moles of strontium titanate and 0.9 to 87.5 moles of strontium titanate are used.
The main component of the semiconductor ceramic composition is 0.02 to 1.00 mole of niobium pentoxide as a semiconducting agent to a total of 100 moles of 1 to 12.5 moles, and 0.10 mole of manganese dioxide. ~1.00 mol and cupric oxide 0.01
~0.85 mol and/or 0.01 bismuth trioxide
It is characterized by adding ~0.50 mol.

この組成において、チタン酸ストロンチウムに対するチ
タン酸カルシウムの固溶量が0.1モル未満では添加効
果がなく、12.5モルを超えると誘電率が低下し、誘
電体損失が増大する。また、二酸化マンガンの添加量が
0.10モル未満では添加効果がなく、1.00モルを
超えると誘電率が低下し、誘電体損失が増大する。酸化
第二銅の添加量が0.01モル未満では絶縁抵抗が低く
なり、0.85モルを超えると誘電率が低下し、誘電体
損失が増大する。三酸化ビスマスの添加量が0.01未
満では添加効果がなく、0.5モルを超えると粒成長が
阻害され、誘電率が低下する。
In this composition, if the solid solution amount of calcium titanate relative to strontium titanate is less than 0.1 mol, there is no effect of addition, and if it exceeds 12.5 mol, the dielectric constant decreases and dielectric loss increases. Further, if the amount of manganese dioxide added is less than 0.10 mol, there is no effect of addition, and if it exceeds 1.00 mol, the dielectric constant decreases and dielectric loss increases. If the amount of cupric oxide added is less than 0.01 mol, the insulation resistance will be low, and if it exceeds 0.85 mol, the dielectric constant will decrease and dielectric loss will increase. If the amount of bismuth trioxide added is less than 0.01 mol, there will be no effect, and if it exceeds 0.5 mol, grain growth will be inhibited and the dielectric constant will decrease.

かかる組成を有する本発明の組成物は、焼結した後、そ
の表面に絶縁化剤を塗布して絶縁化される。
The composition of the present invention having such a composition is sintered and then insulated by applying an insulating agent to its surface.

ここに用いられる絶縁化剤としては、炭酸リチウムと三
酸化ビスマスとの組合せによるものが、絶縁化効果が顕
著であり好ましい。この炭酸リチウムと三酸化ビスマス
の混合割合は、炭酸リチウム80〜25モル%、三酸化
ビスマス20〜75モル%の範囲が好ましい。さらに、
上記絶縁化剤に加えて、アルカリ炭酸塩と金属酸化物、
例えば二酸化マンガン、酸化第二銅等の組合せでも有効
な絶縁化剤として使用することができる。
As the insulating agent used here, a combination of lithium carbonate and bismuth trioxide is preferable because it has a remarkable insulating effect. The mixing ratio of lithium carbonate and bismuth trioxide is preferably in the range of 80 to 25 mol% of lithium carbonate and 20 to 75 mol% of bismuth trioxide. moreover,
In addition to the above insulating agents, alkali carbonates and metal oxides,
For example, a combination of manganese dioxide, cupric oxide, etc. can also be used as an effective insulating agent.

上記した炭酸リチウムと三酸化ビスマス等の金属酸化物
からなる絶縁化剤は、水と水溶性糊剤、あるいはワニス
に分散し、半導体磁器1c#fの両面に対し、約5Rg
程度塗布し、例えば約1200℃で30分拡散処理が行
なわれる。
The above-mentioned insulating agent made of lithium carbonate and metal oxide such as bismuth trioxide is dispersed in water and a water-soluble glue or varnish, and applied to both sides of the semiconductor porcelain 1c#f at approximately 5Rg.
A diffusion process is performed at about 1200° C. for 30 minutes, for example.

[実施例] 次に、本発明を実施例および比較例に基づいて具体的に
説明する。
[Examples] Next, the present invention will be specifically described based on Examples and Comparative Examples.

実施例1〜11および比較例1〜8 チタン酸ストロンチウムとチタン酸カルシウムが第1表
の割合となるように、炭酸ストロンチウム、炭酸カルシ
ウム、二酸化チタンをそれぞれ秤潰した。また、チタン
酸ストロンチウムとチタン酸カルシウムの合計100モ
ルに対し、五酸化ニオブ、二酸化マンガン、酸化第二銅
、三酸化ビスマスが第1表の配合割合となるように、五
酸化ニオブ、二酸化マンガン、酸化第二銅および三酸化
ビスマスをそれぞれ秤量した。これらを湿式ボールミル
で24時間同温粉砕処理を行ない、後乾燥した。
Examples 1 to 11 and Comparative Examples 1 to 8 Strontium carbonate, calcium carbonate, and titanium dioxide were each weighed so that the proportions of strontium titanate and calcium titanate were as shown in Table 1. In addition, niobium pentoxide, manganese dioxide, cupric oxide, and bismuth trioxide should be mixed in the proportions shown in Table 1 for a total of 100 moles of strontium titanate and calcium titanate. Cupric oxide and bismuth trioxide were each weighed. These were subjected to isothermal pulverization treatment for 24 hours in a wet ball mill, and then dried.

このものを大気中で1050〜1150℃、3時間仮焼
し、冷却後微粉砕した。この粉末にバインダーを加え圧
力1ton/cIiのもとて直径15mの円板に成型し
た。
This product was calcined in the air at 1050 to 1150°C for 3 hours, cooled, and then finely pulverized. A binder was added to this powder and it was molded into a disc with a diameter of 15 m under a pressure of 1 ton/cIi.

成型品は大気中700℃、1時間仮焼しバインダーを除
いた後、水素1〜10容量%の窒素またはアルゴン気流
中で焼結した。焼結は1400〜1460℃、4時間行
なった。
The molded product was calcined in the atmosphere at 700° C. for 1 hour to remove the binder, and then sintered in a nitrogen or argon stream containing 1 to 10% hydrogen by volume. Sintering was performed at 1400 to 1460°C for 4 hours.

焼結体の半均結晶粒径はSEMで測定したところ50μ
mから 100μmの範囲にあった。この焼結体に第1
表に示す絶縁化剤を両面に塗布した後、1100〜13
00℃、30分拡散処理し、粒界層の絶縁化を行なった
The semi-uniform crystal grain size of the sintered body was 50μ as measured by SEM.
It ranged from m to 100 μm. This sintered body has a first
After applying the insulating agent shown in the table on both sides,
A diffusion treatment was performed at 00° C. for 30 minutes to insulate the grain boundary layer.

この絶縁化半導体磁器の両面に銀電極を塗布焼付けし、
測定に供した。y、電率(ε)と誘電体損失(tanδ
)は周波数lKH2,25°Cで測定した。
Silver electrodes are applied and baked on both sides of this insulated semiconductor porcelain.
It was used for measurement. y, electric constant (ε) and dielectric loss (tanδ
) was measured at frequency lKH2 and 25°C.

また絶縁抵抗は、25℃において直流電圧50Vを印加
し、60秒接の抵抗値を用いた。
Moreover, the insulation resistance was determined by applying a DC voltage of 50 V at 25° C. and using the resistance value after 60 seconds of contact.

これらの結果を第1表にそれぞれ示した。These results are shown in Table 1.

さらに、誘電率の温度特性は一25℃から+85℃の温
度範囲で20℃を基準にして算出し、その結果を第1図
に示した。なお、第1図において、縦軸は誘電率(%)
、横軸は温度(”C)を示す。
Further, the temperature characteristics of the dielectric constant were calculated in the temperature range from -25°C to +85°C with 20°C as a reference, and the results are shown in FIG. In Figure 1, the vertical axis is the dielectric constant (%).
, the horizontal axis indicates temperature ("C).

第1表に示されるように、チタン酸ストロンチウムとチ
タン酸カルシウムに五酸化ニオブを配合した基本組成に
、二酸化マンガンと酸化第二銅および/または三酸化ビ
スマスを特定範囲で配合した実施例1〜11は、本発明
の範囲外にある比較例1〜8と比較して、誘電率が大き
く、しかも絶縁抵抗、誘電体損失も所望の範囲にある。
As shown in Table 1, Examples 1 to 1 are a basic composition of strontium titanate, calcium titanate, and niobium pentoxide, and a specific range of manganese dioxide, cupric oxide, and/or bismuth trioxide. Sample No. 11 has a larger dielectric constant than Comparative Examples 1 to 8, which are outside the scope of the present invention, and also has insulation resistance and dielectric loss within the desired range.

[発明の効果〕 以上説明したように、五酸化ニオブを半導体化剤とする
チタン酸ストロンチウムとチタン酸カルシウムの固溶体
に、二酸化マンガンと酸化第二鋼および/または三酸化
ビスマスを特定量添加した本発明の磁器組成物は、高誘
電率で誘電体損失と絶縁抵抗に優れたコンデンサー材料
を提供することができる。
[Effects of the Invention] As explained above, this invention is made by adding specific amounts of manganese dioxide, second steel oxide, and/or bismuth trioxide to a solid solution of strontium titanate and calcium titanate using niobium pentoxide as a semiconducting agent. The ceramic composition of the invention can provide a capacitor material with a high dielectric constant and excellent dielectric loss and insulation resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、誘電率の温度特性を示すグラフ。 FIG. 1 is a graph showing the temperature characteristics of dielectric constant.

Claims (1)

【特許請求の範囲】[Claims] 1、チタン酸ストロンチウム99.9〜87.5モル、
チタン酸カルシウム0.1〜12.5モルからなる合計
100モルに対し、五酸化ニオブ0.02〜1.00モ
ル、二酸化マンガン0.10〜1.00モル、酸化第二
銅0.01〜0.85モルおよび/または三酸化ビスマ
ス0.01〜0.50モルを添加してなる半導体磁器コ
ンデンサー用組成物。
1. Strontium titanate 99.9 to 87.5 mol,
For a total of 100 moles consisting of 0.1 to 12.5 moles of calcium titanate, 0.02 to 1.00 moles of niobium pentoxide, 0.10 to 1.00 moles of manganese dioxide, and 0.01 to cupric oxide. A composition for a semiconductor ceramic capacitor containing 0.85 mol and/or 0.01 to 0.50 mol of bismuth trioxide.
JP61156239A 1986-07-04 1986-07-04 Compound for semiconductor porcelain capacitor Pending JPS6313316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61156239A JPS6313316A (en) 1986-07-04 1986-07-04 Compound for semiconductor porcelain capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61156239A JPS6313316A (en) 1986-07-04 1986-07-04 Compound for semiconductor porcelain capacitor

Publications (1)

Publication Number Publication Date
JPS6313316A true JPS6313316A (en) 1988-01-20

Family

ID=15623412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61156239A Pending JPS6313316A (en) 1986-07-04 1986-07-04 Compound for semiconductor porcelain capacitor

Country Status (1)

Country Link
JP (1) JPS6313316A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224967A (en) * 2006-02-22 2007-09-06 Denso Corp Passage throttling member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224967A (en) * 2006-02-22 2007-09-06 Denso Corp Passage throttling member

Similar Documents

Publication Publication Date Title
JPS6313316A (en) Compound for semiconductor porcelain capacitor
JPS6313317A (en) Compound for semiconductor porcelain capacitor
JPS6256361A (en) Dielectric ceramic composition
JPS6313315A (en) Compound for semiconductor porcelain capacitor
JPS62262303A (en) High dielectric constant porcelain compound
JPS637611A (en) Compound for semiconductor porcelain capacitor
JPS6126208B2 (en)
JPH0237045B2 (en)
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JPS6046811B2 (en) Composition for semiconductor ceramic capacitors
JPH0470763B2 (en)
JP2734910B2 (en) Method for producing semiconductor porcelain composition
JP2762831B2 (en) Method for producing semiconductor porcelain composition
JPH0785459B2 (en) Grain boundary insulation type semiconductor ceramic capacitor
JPS6199210A (en) Ceramic dielectric composition
JP2900687B2 (en) Semiconductor porcelain composition and method for producing the same
JPS61240622A (en) Semiconductor ceramic composition and semiconductor ceramicsand capacitor using the same
JP2734888B2 (en) Method for producing semiconductor porcelain composition
JPS6032342B2 (en) Ceramic materials for reduction and reoxidation type semiconductor capacitors
JPS62115705A (en) Compound for semiconductor porcelain capacitor
JPH02153863A (en) Semiconductor porcelain composition of grain boundary insulation type
JPH0582341B2 (en)
JPS63162569A (en) High permittivity ceramic composition
JPS6020345B2 (en) Grain boundary insulated semiconductor ceramic composition
JPH03285871A (en) Grain boundary insulation type semiconductor porcelain composition and production thereof