JPS63133125A - Driving method for liquid crystal matrix panel - Google Patents

Driving method for liquid crystal matrix panel

Info

Publication number
JPS63133125A
JPS63133125A JP28241086A JP28241086A JPS63133125A JP S63133125 A JPS63133125 A JP S63133125A JP 28241086 A JP28241086 A JP 28241086A JP 28241086 A JP28241086 A JP 28241086A JP S63133125 A JPS63133125 A JP S63133125A
Authority
JP
Japan
Prior art keywords
liquid crystal
panel
component
pulse
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28241086A
Other languages
Japanese (ja)
Inventor
Hisahide Wakita
尚英 脇田
Tsuyoshi Kamimura
強 上村
Hiroyuki Onishi
博之 大西
Shiyuuko Ooba
大庭 周子
Isao Ota
勲夫 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28241086A priority Critical patent/JPS63133125A/en
Publication of JPS63133125A publication Critical patent/JPS63133125A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize high contrast display without degrading a liquid crystal by applying a DC component to most of a scanning period, and applying a pulse, which neutralizes the DC component, just before or a little before a selection period. CONSTITUTION:A ferroelectric liquid crystal 4 is held between a pair of substrates 1 whose counter faces electrodes are provided on to form matrix picture elements, and an asymmetrical memory is provided. In this case, the DC component is applied in most of the scanning period, and the pulse which neutralizes said DC component is applied just before or a little before the selection period. Only a scanning voltage is set to a prescribed waveform at the time of selecting another scanning electrode to apply said neutralizing pulse to a panel. Thus, the liquid crystal is prevented from being degraded by electrochemical reaction, and the panel having the asymmetrical memory is easily oriented as desired by the surface treatment like rubbing.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は強誘電性液晶を液晶層として持つ液晶マトリッ
クスパネルの駆動法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for driving a liquid crystal matrix panel having a ferroelectric liquid crystal as a liquid crystal layer.

従来の技術 近年、応答速度が速くメモリー性のある強誘電性液晶の
報告がなされている(例えば、竹添秀夫、福田敦夫、久
世栄−;「工業材料」、第31巻、第10号、22)。
Prior Art In recent years, reports have been made on ferroelectric liquid crystals with fast response speed and memory properties (for example, Hideo Takezoe, Atsuo Fukuda, Sakae Kuze; "Industrial Materials", Vol. 31, No. 10, 22). ).

以下、図面を用いて従来の強誘電性液晶パネルの一例に
ついて説明する。第3図は従来のスメクチック液晶パネ
ルの構造を示すものである。第3図において1はガラス
基板、2はITO(インジウム ティン オキサイド)
より成る透明電極、4は強誘電性液晶層、5は液晶分子
のCダイレフクー、6は双極子モーメントである。強誘
電性液晶は一般に分子長軸に垂直な方向に双極子モーメ
ントをもっており、薄膜化により自発分極を持つように
なる。強誘電性を示すカイラルスメクチック相の例を用
いて強誘電性液晶の表記方法に第4図に示す。第4図f
a)は分子層の法線に対し分子長軸が±θ度傾いた状態
、第4図(blは−θ度傾いた状態の強誘電性液晶の表
記法である。7は層の法線、8は分子の長軸方向n、9
は双極子モーメン)Ps、10はnをxy平面上に投影
した時のCダイレクタ−C111は分子長軸の法線に対
する傾き角±θ度である。以上のような構造を持つ強誘
電性液晶パネルについて、以下その動作原理について図
を参照しながら説明する。
An example of a conventional ferroelectric liquid crystal panel will be described below with reference to the drawings. FIG. 3 shows the structure of a conventional smectic liquid crystal panel. In Figure 3, 1 is a glass substrate, 2 is ITO (indium tin oxide)
4 is a ferroelectric liquid crystal layer, 5 is a C-dyle reflex of liquid crystal molecules, and 6 is a dipole moment. Ferroelectric liquid crystals generally have a dipole moment in the direction perpendicular to the long axis of the molecules, and as they become thinner, they come to have spontaneous polarization. FIG. 4 shows how to describe ferroelectric liquid crystal using an example of a chiral smectic phase exhibiting ferroelectricity. Figure 4 f
a) is a state in which the long axis of the molecules is tilted by ±θ degrees with respect to the normal to the molecular layer; Figure 4 is the notation for ferroelectric liquid crystal in a state in which the long axis is tilted by -θ degrees; 7 is the normal to the layer. , 8 is the long axis direction n of the molecule, 9
is the dipole moment) Ps, 10 is the C director when n is projected onto the xy plane -C111 is the tilt angle ±θ degrees with respect to the normal to the long axis of the molecule. The operating principle of the ferroelectric liquid crystal panel having the above structure will be explained below with reference to the drawings.

第5図に従来の強誘電性液晶パネルの表示方法の原理図
を示す。12は層法線に対して分子長軸が±θ度傾いた
液晶分子、13は一θ度傾いた液晶分子、14は紙面表
方向の双極子モーメント、15は紙面裏方向の双極子モ
ーメント、16は2枚の偏光板の方向である。さて、第
5図(alは電圧無印加の状態、第5図(b)は紙面表
から裏へ正の電圧を印加した場合、第5図(C1は紙面
裏から表へ正の電圧を印加した場合の動作原理である。
FIG. 5 shows a principle diagram of a conventional ferroelectric liquid crystal panel display method. 12 is a liquid crystal molecule whose long axis of the molecule is tilted by ±θ degrees with respect to the layer normal, 13 is a liquid crystal molecule whose molecular axis is tilted by 1θ degree, 14 is a dipole moment in the front direction of the paper, 15 is a dipole moment in the back direction of the paper, 16 is the direction of the two polarizing plates. Now, Figure 5 (al is the state where no voltage is applied, Figure 5 (b) is when a positive voltage is applied from the front to the back of the paper, Figure 5 (C1 is when a positive voltage is applied from the back to the front of the paper) This is the operating principle when

このように電圧の印加方向によりセル全体が±θ度傾い
た2つの状態をとり、したがって、電気光学効果による
複屈折または2色性を利用すれば明暗を表すことができ
る。これら2状態は自発分極の向きから、ユニフォーム
・アンプ(UU)、ユニフォーム・ダウン(UD)と呼
ばれる。
In this way, the entire cell assumes two states tilted by ±θ degrees depending on the direction of voltage application, and therefore brightness and darkness can be expressed by utilizing birefringence or dichroism due to the electro-optic effect. These two states are called uniform amplifier (UU) and uniform down (UD) based on the direction of spontaneous polarization.

以上が強誘電性液晶パネルの表示原理だが、マトリック
ス駆動を行う場合は選択期間に設定された絵素状態をメ
モリー効果により保持することによりコントラストを出
すことができる。マトリ、7クスパネルの表示に成功し
た従来例の駆動法を第6図に示す。表示したパネルはラ
ビングにより配向させたものであり、双安定メモリーを
有する。
The above is the display principle of a ferroelectric liquid crystal panel, but when matrix driving is performed, contrast can be achieved by retaining the pixel state set during the selection period using a memory effect. FIG. 6 shows a conventional driving method that has been successful in displaying matrix and 7x panels. The displayed panel was oriented by rubbing and has bistable memory.

駆動法はフレーム内ACの電圧平均化法に基づいタモノ
で、1走査は2フレームからなり各フレームで白と黒を
別々に書込んでいる。(例えば、原理、川口、岩佐、甲
斐:ニス・アイ・ディ ”85ダイジエスト、1985
年、135頁(T、HAI?ADA、 M、TA−GU
CHI、に、IWASA、M、KAI:S10  ’8
5  Digest  (1985)  p。
The driving method is based on the intra-frame AC voltage averaging method; one scan consists of two frames, and white and black are written separately in each frame. (For example, Principles, Kawaguchi, Iwasa, Kai: Niss.I.D. 85 Digest, 1985
Year, 135 pages (T, HAI?ADA, M, TA-GU
CHI, Ni, IWASA, M, KAI:S10 '8
5 Digest (1985) p.

131〕 発明が解決しようとする問題点 以上のように、従来の駆動法は液晶パネルの双安定性を
前提にしたものであった。従って、強誘電性液晶パネル
において品位の高い表示を得るためには、均一なモノド
メイン配向を得ることと、安定なメモリー効果が必要で
あるといえる。ところが、ラビング等の表面処理により
良好な配向を得るためには、表面に一軸方向の異方性を
与えて分子が一定方向に向くようにしなければならない
ので、これは基板表面と分子の相互作用による双安定メ
モリー効果とは矛盾してしまう。そこで、双安定性を得
られるようななるべく弱い一軸異方性で、できるだけ良
好な配向を得るような表面処理法を特に工業的に有利な
ラビング法に関しては、各種の配向膜及び液晶材料を用
いて実験が行われている。通常、上下基板に異種の配向
膜を用いるとUU、UDの一方のみが安定になる場合が
多い。
131] Problems to be Solved by the Invention As described above, the conventional driving method is based on the bistability of the liquid crystal panel. Therefore, in order to obtain a high-quality display in a ferroelectric liquid crystal panel, it is necessary to obtain uniform monodomain alignment and a stable memory effect. However, in order to obtain good orientation through surface treatments such as rubbing, it is necessary to give the surface uniaxial anisotropy so that the molecules are oriented in a fixed direction. This contradicts the bistable memory effect. Therefore, a surface treatment method that obtains as good alignment as possible with as weak uniaxial anisotropy as possible to obtain bistability, especially the industrially advantageous rubbing method, uses various alignment films and liquid crystal materials. Experiments are being conducted. Usually, when different types of alignment films are used on the upper and lower substrates, only one of UU and UD becomes stable in many cases.

また、上下対称な配向膜でも液晶によってはラビング方
向がUU、UDの2つの分子方向の中間(分子層法線と
等しい)からずれるために一方の状態のメモリー性が強
まり単安定になることや、さらには、電場を切ると必ず
ラビング方向に分子が向いてしまうというような報告が
なされている。
In addition, even if the alignment film is vertically symmetrical, depending on the liquid crystal, the rubbing direction may deviate from the middle of the two molecular directions (UU and UD) (equal to the molecular layer normal), which may increase the memory property of one state and cause it to become monostable. Furthermore, it has been reported that when the electric field is turned off, the molecules are always oriented in the rubbing direction.

(例えば、村上他:第11回液晶討論会予稿集、144
頁)。ラビングにより配向させたパネルをマトリックス
駆動により表示させた従来例においても、そのコントラ
ストは剪断応力等で配向させたセルで得られるコントラ
ストに比べると格段に低い。
(For example, Murakami et al.: Proceedings of the 11th LCD Symposium, 144
page). Even in a conventional example in which a panel oriented by rubbing is displayed by matrix driving, the contrast is much lower than that obtained by cells oriented by shear stress or the like.

これは、パネルの双安定性を利用しているにもかかわら
ず、ラビングによりその安定度が浅くなっているためで
ある。以上のように、ラビングにより双安定性が劣化も
しくは喪失する場合が多く、従来の双安定性のあるパネ
ルを従来の交流化された駆動法でマトリックス駆動を行
うと、良質な表示を均一に実現するのは難しい。
This is because although the bistability of the panel is utilized, its stability is shallow due to rubbing. As mentioned above, bistability often deteriorates or is lost due to rubbing, and if a conventional bistable panel is matrix-driven using the conventional AC driving method, a uniform high-quality display can be achieved. It's difficult to do.

本発明は上記問題点に鑑み、双安定性のない強誘電性液
晶パネルでも、高デユーティ−の単純マトリックス駆動
で品位の高い表示ができ、液晶を劣化させない液晶マト
リックスパネルの駆動法を与えるものである。
In view of the above-mentioned problems, the present invention provides a driving method for a liquid crystal matrix panel that allows high-duty simple matrix driving to provide high-quality display even with a non-bistable ferroelectric liquid crystal panel, and that does not degrade the liquid crystal. be.

問題点を解決するための手段 上記問題点を解決するために本発明の液晶マトリンクス
バネルの駆動法は、対向面に電極を存する一対の基板間
に強誘電性液晶を挾持し、マトリックス状の画素を形成
し、明暗いずれか一方の状態にのみメモリーを有する液
晶マトリックスパネルにおいて、走査の大部分に直流成
分を加え、選択期間の直前もしくはやや前に前記の直流
成分を中和するパルスを加えることにより、液晶を劣化
させることなく高コントラストの表示を実現するもので
ある。
Means for Solving the Problems In order to solve the above problems, the method for driving a liquid crystal matrix panel of the present invention involves sandwiching a ferroelectric liquid crystal between a pair of substrates having electrodes on opposing surfaces, and driving a matrix-like liquid crystal panel. In a liquid crystal matrix panel that forms pixels and has memory for only one of the bright and dark states, a DC component is added to most of the scan, and a pulse is added to neutralize the DC component just before or slightly before the selection period. This enables high contrast display without deteriorating the liquid crystal.

作用 従来の強誘電性液晶パネルは基板表面と分子の相互作用
だけで双安定メモリーを得ようとしたために上記のよう
な問題点が生した。本発明の駆動法は、液晶パネル自身
は単安定メモリーしか持たないものを、直流バイアス電
圧を前記の単安定メモリー状態の自発分極の向きとは逆
方向に加えることにより双安定性をもたらし、さらに液
晶が劣化しないように前記の直流バイアス成分を中和す
るパルスを表示に影響しないように選択期間の直前に印
加するものである。基板表面に強い一軸異方性を与える
と、液晶+オ料や再配向時の条件等に適切に設定すれば
、前記の一軸方向にUD、UU状態のいずれか一方の分
子の方向が揃った良好なモノドメイン配向を簡単に得ら
れる。仮にUDの分子長軸方向が一軸方向だとすると、
そのパネルはUDにメモリーを持つので、印加電圧に上
向きの直流バイアス成分(Vdc<O)を重畳すれば、
Vdcの電圧を適切に設定することにより、UU。
Function Conventional ferroelectric liquid crystal panels have had the above-mentioned problems because they attempted to obtain bistable memory only through the interaction of molecules with the substrate surface. In the driving method of the present invention, the liquid crystal panel itself has only monostable memory, but by applying a DC bias voltage in the opposite direction to the direction of spontaneous polarization in the monostable memory state, it brings about bistability. A pulse for neutralizing the DC bias component is applied immediately before the selection period so as not to affect the display so as not to deteriorate the liquid crystal. When strong uniaxial anisotropy is imparted to the substrate surface, if the conditions for liquid crystal + olefin and reorientation are appropriately set, the orientation of the molecules in either the UD or UU state is aligned in the uniaxial direction. Good monodomain alignment can be easily obtained. If the molecular long axis direction of UD is uniaxial,
Since the panel has memory in UD, if an upward DC bias component (Vdc<O) is superimposed on the applied voltage,
By setting the voltage of Vdc appropriately, UU.

UDの両方に等しい安定度(闇値電圧)のメモリーを持
たずことができる。選択期間からT秒間■dcを印加し
、選択期間の少し前にVdc−T+Vrs−1=Qとな
る平均電圧Vrs、幅t  (Vrs>Q、t〈〈T)
の中和パルスを印加すると、中和パルスにより絵素はU
D状態にリセットされ、選択期間の印加パルスの電圧ま
たはパルス幅の大小に応じてUUに反転するかUDのま
ま保持される。Vdcと重畳する波形はネマチックに用
いられる電圧平均化法でよいが、それに限定されない。
It is possible to have no memory of equal stability (dark value voltage) on both UDs. Apply ■dc for T seconds from the selection period, and a little before the selection period, the average voltage Vrs becomes Vdc-T+Vrs-1=Q, width t (Vrs>Q, t<<T)
When a neutralizing pulse of U is applied, the picture element becomes U due to the neutralizing pulse.
It is reset to the D state, and is inverted to UU or kept as UD depending on the voltage or pulse width of the applied pulse during the selection period. The waveform superimposed on Vdc may be a voltage averaging method used in nematics, but is not limited thereto.

単安定パネルは、上下の基板表面(配向膜)の性質を変
えても得られるが、このような構成にすると上下基板間
で分子が捻れた構造をもつツイスト状態が安定になるこ
とを防げる。従ってこのような構成のパネルに本発明の
駆動法を適用することも有益である。その他、双安定パ
ネルであってもその闇値電圧が対称でない場合に、本発
明の駆動法に通用して、液晶の劣化を起さずに闇値電圧
のバランスをとることも有効である。
Monostable panels can be obtained by changing the properties of the surfaces of the upper and lower substrates (alignment films), but this configuration prevents the twisted state in which molecules are twisted between the upper and lower substrates from becoming stable. Therefore, it is also advantageous to apply the driving method of the present invention to a panel having such a configuration. In addition, even in a bistable panel, when the dark value voltages are not symmetrical, the driving method of the present invention is applicable and it is effective to balance the dark value voltages without causing deterioration of the liquid crystal.

また、走査電極に印加する波形を所定のものにすれば、
他の走査電極を選択中に中和パルスを絵素に印加できる
ことができるので、走査時間が非常に短くてすむ。
Also, if the waveform applied to the scanning electrode is set to a predetermined value,
Since the neutralization pulse can be applied to the picture elements while other scan electrodes are being selected, the scan time can be very short.

実施例 以下に本発明の一実施例を図面を用いて説明する。Example An embodiment of the present invention will be described below with reference to the drawings.

エステル系の強誘電性液晶の混合物を、ラビング処理さ
れた2μmスペースのマトリックスパネルに注入し、直
流電場を印加しながら等労相から徐冷していくと、等労
相→カイラルネマチック相−力イラルスメクチンクC相
を経て第2図のように配向した。このパネルはUDのみ
にメモリーがあったが直流バイアス1.2ボルトを印加
するとUUにもメモリーが生し、闇値電圧特性もほぼ正
負対称で非常に急峻な特性が得られた。このパネルに第
1図の本発明の駆動波形を印加したところ、1 /40
0デユーティーでコントラスト約JOの表示が得られた
。第1図fa)からFd)は、それぞれ走査電圧、信号
電圧、絵素ムこ印加される電圧、透過光量を表す。中和
パルスのかかる位相の走査電圧以外は】/7ハイアスの
フレーム内AC電圧平均化法の波形に従い、信号電圧に
Vdc=−1,2ポル1−のDCバイアスを重畳してい
る。パルス幅I]は100μ秒、Voは25ポルI・で
ある。
When a mixture of ester-based ferroelectric liquid crystals is injected into a rubbed matrix panel with a 2 μm space and slowly cooled from the iso-labor phase while applying a DC electric field, the chiral nematic phase changes from the chiral nematic phase to the chiral nematic phase. The membrane was oriented as shown in FIG. 2 through the mectink C phase. This panel had memory only in UD, but when a DC bias of 1.2 volts was applied, memory was generated in UU as well, and the dark value voltage characteristics were almost symmetrical between positive and negative, and very steep characteristics were obtained. When the driving waveform of the present invention shown in Fig. 1 was applied to this panel, the voltage was 1/40.
At 0 duty, a display with a contrast of approximately JO was obtained. 1 fa) to Fd) represent the scanning voltage, signal voltage, voltage applied to the picture element, and amount of transmitted light, respectively. A DC bias of Vdc=-1, 2pol 1- is superimposed on the signal voltage in accordance with the waveform of the intra-frame AC voltage averaging method of ]/7 Hias except for the scanning voltage of the phase where the neutralizing pulse is applied. The pulse width I] was 100 μsec, and Vo was 25 pol I·.

次に、等労相→カイラルネマチック相→スメクチックA
→カイラルスメクチックC相を経る液晶を十分な圧力で
ラビングしたスペース2.2μmのマトリックスパネル
に注入して徐冷すると第2のような配向が得られた。こ
の液晶を用いると、ラビングの圧力や配向膜の条件によ
っては、双安定のパネルの得られたが、本実施例のパネ
ルの方が均一な配向を示し、配向が均一なために闇値特
性も急峻であった。そのため、第1図の駆動法で駆動し
たところ、前記の双安定パネルを従来の駆動法で駆動し
た場合よりもコントラストは高かった。
Next, Todoro phase → chiral nematic phase → smectic A
→A liquid crystal that had undergone a chiral smectic C phase was injected into a matrix panel with a space of 2.2 μm that had been rubbed with sufficient pressure, and when it was slowly cooled, a second-like orientation was obtained. When using this liquid crystal, a bistable panel could be obtained depending on the rubbing pressure and the conditions of the alignment film, but the panel of this example showed a more uniform alignment, and because of the uniform alignment, the dark value characteristic It was also steep. Therefore, when the bistable panel was driven using the driving method shown in FIG. 1, the contrast was higher than when the bistable panel was driven using the conventional driving method.

発明の効果 本発明の液晶マトリックスパネルの駆動法は、印加電圧
に直流バイアス電圧を重畳することにより、従来は利用
されていなかった非対称なメモリーでの表示が可能にな
り、また走査の終りに印加される中和パルスにより電気
化学反応に液晶が劣化することを防げる。非対称なメモ
リーをもつパネルは、ラビング等の表面処理により従来
の双安定パネルより簡単に望ましい配向が得られ、また
直流バイアスにより正負対称で安定なメモリーと急峻な
闇値特性も得られるので、非常に品位の高い表示を実現
できる。
Effects of the Invention By superimposing a DC bias voltage on the applied voltage, the liquid crystal matrix panel driving method of the present invention enables display with an asymmetric memory, which has not been used in the past. This neutralizing pulse prevents the liquid crystal from deteriorating due to electrochemical reactions. Panels with asymmetrical memory can achieve a desired orientation more easily than conventional bistable panels through surface treatments such as rubbing, and can also provide stable memory with positive/negative symmetry and steep dark value characteristics through direct current bias, making them extremely useful. A high-quality display can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の液晶マトリックスパネルの駆動法の波
形図、第2図は実施例における液晶分子の配向を示した
平面図、第3図は強誘電性液晶パネルの断面図、第4図
はカイラルスメクチックC液晶の表記法を示す模式図、
第5図は従来の強誘電性液晶パネルの表示の原理を示す
平面図、第6図は従来の強誘電性液晶マトリックスパネ
ルの駆動波形図である。 ■・・・・・・ガラス基板、2・旧・・透明電極、3・
旧・・配向膜、4・・・・・・強誘電性液晶層、5・・
・・・・液晶分子のCダイレクタ−16・・・・・・双
極子モーメント、7・・・・・・層の法線、8・・・・
・・分子の長軸方向n、9・・・・・・双極子モーメン
ト、10・・・・・・Cダイレクタ−111・・・・・
・分子長軸の層法線に対する傾き角±θ度、12・・・
・・・層法線に対して分子長軸が+θ度傾いた液晶分子
、13・・・・・・−θ度傾いた液晶分子、14・旧・
・紙面表方向の双極子モーメント、15・・団・紙面裏
方向の双極子モーメント、16・・・・・・2枚の偏光
板の方向。 代理人の氏名 弁理士 中尾敏男 はが1名l−ガラス
寡状 2−− 、■丁○電極 第4図 第5図
Figure 1 is a waveform diagram of the driving method for the liquid crystal matrix panel of the present invention, Figure 2 is a plan view showing the orientation of liquid crystal molecules in the example, Figure 3 is a cross-sectional view of the ferroelectric liquid crystal panel, and Figure 4. is a schematic diagram showing the notation of chiral smectic C liquid crystal,
FIG. 5 is a plan view showing the principle of display of a conventional ferroelectric liquid crystal panel, and FIG. 6 is a driving waveform diagram of a conventional ferroelectric liquid crystal matrix panel. ■・・・Glass substrate, 2. Old transparent electrode, 3.
Old... Alignment film, 4... Ferroelectric liquid crystal layer, 5...
...C director of liquid crystal molecules 16...Dipole moment, 7...Normal of layer, 8...
...Long axis direction of molecule n, 9...Dipole moment, 10...C director-111...
・Inclination angle of the long axis of the molecule with respect to the layer normal ±θ degrees, 12...
...Liquid crystal molecules whose molecular long axes are tilted by +θ degrees with respect to the layer normal, 13...Liquid crystal molecules whose molecular long axes are tilted by -θ degrees, 14. Old.
・Dipole moment toward the front of the paper, 15...Dipole moment toward the back of the paper, 16...Direction of the two polarizing plates. Name of agent: Patent attorney Toshio Nakao 1 person 1-Glass 2-- ■Ding○ Electrode Figure 4 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)対向面に電極を有する一対の基板間に強誘電性液
晶を挟持し、マトリックス状の画素を形成し、非対称な
メモリーを有する液晶マトリックスパネルにおいて、走
査の大部分に直流成分を加え、選択期間の直前もしくは
やや前に前記直流成分を中和するパルスを加えることを
特徴とする液晶マトリックスパネルの駆動法。
(1) In a liquid crystal matrix panel in which a ferroelectric liquid crystal is sandwiched between a pair of substrates having electrodes on opposing surfaces to form a matrix of pixels and has an asymmetric memory, a direct current component is added to most of the scanning, A method for driving a liquid crystal matrix panel, characterized in that a pulse for neutralizing the DC component is applied immediately before or slightly before a selection period.
(2)他の走査電極が選択されている時刻に走査電圧の
みを所定の波形にすることで、直流成分中和パルスがパ
ネルに印加できることを特徴とする特許請求の範囲第(
1)項記載の液晶マトリックスパネルの駆動法。
(2) A DC component neutralizing pulse can be applied to the panel by changing only the scanning voltage to a predetermined waveform at a time when another scanning electrode is selected.
1) Driving method of the liquid crystal matrix panel described in section 1).
(3)選択期間にパネルに印加されるパルスが正負対称
であることを特徴とする特許請求の範囲第(1)項また
は第(2)項のいずれかに記載の液晶マトリックスパネ
ルの駆動法。
(3) The method for driving a liquid crystal matrix panel according to claim 1 or 2, wherein the pulses applied to the panel during the selection period are symmetrical in positive and negative directions.
JP28241086A 1986-11-26 1986-11-26 Driving method for liquid crystal matrix panel Pending JPS63133125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28241086A JPS63133125A (en) 1986-11-26 1986-11-26 Driving method for liquid crystal matrix panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28241086A JPS63133125A (en) 1986-11-26 1986-11-26 Driving method for liquid crystal matrix panel

Publications (1)

Publication Number Publication Date
JPS63133125A true JPS63133125A (en) 1988-06-04

Family

ID=17652047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28241086A Pending JPS63133125A (en) 1986-11-26 1986-11-26 Driving method for liquid crystal matrix panel

Country Status (1)

Country Link
JP (1) JPS63133125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7233306B2 (en) 2000-04-28 2007-06-19 Fujitsu Limited Display panel including liquid crystal material having spontaneous polarization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7233306B2 (en) 2000-04-28 2007-06-19 Fujitsu Limited Display panel including liquid crystal material having spontaneous polarization
US7830344B2 (en) 2000-04-28 2010-11-09 Fujitsu Limited Display panel including liquid crystal material having spontaneous polarization

Similar Documents

Publication Publication Date Title
JPH086025A (en) Liquid crystal electro-optic device, projection type display system using the same and method for driving liquid crystal electro-optic device
JP2612503B2 (en) Liquid crystal element
US6760088B2 (en) Ferroelectric liquid crystal display
JP3586681B2 (en) Reflection type ferroelectric liquid crystal display device and driving method thereof
KR100751188B1 (en) Method of Fabricating Ferroelectric Liquid Crystal Display
JP3099937B2 (en) Liquid crystal display
JP2003005223A (en) Method for manufacturing liquid crystal display element of high-contrast asymmetrical electrooptic characteristics
JP2940287B2 (en) Antiferroelectric liquid crystal display device
JPS63133125A (en) Driving method for liquid crystal matrix panel
JP3166726B2 (en) Antiferroelectric liquid crystal optical element and driving method thereof
JP4463413B2 (en) Liquid crystal display device and manufacturing method thereof
EP0775930A2 (en) Liquid crystal display apparatus
KR100412489B1 (en) ferroelectric liquid crystal display
KR100433412B1 (en) Method of producing FLCD
JP3365587B2 (en) Liquid crystal device
US7307678B2 (en) Liquid crystal display and fabricating method thereof
JPH08152654A (en) Liquid crystal device
JPH1082985A (en) Display element and display element device
JPS6256933A (en) Driving method for liquid crystal matrix display panel
JP2984790B2 (en) Display element device and display element driving method
JP2614347B2 (en) Liquid crystal element and liquid crystal display
JPS6256937A (en) Driving method for liquid crystal matrix display panel
JP2003344857A (en) Liquid crystal element and driving method of the same
JP2000275684A (en) Liquid crystal element and liquid crystal device using the same
JPS62262833A (en) Driving method for liquid crystal matrix panel